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Abstract: In this article, we approximate the solution of high order linear Fredholm
integro-differential equations with a variable coefficient under the initial-boundary
conditions by Bell polynomials. Using collocation points and treating the solution as a
linear combination of Bell polynomials, the problem is reduced to linear system of
equations whose unknown variables are Bell coefficients. The solution to this algebraic
system determines the approximate solution. Error estimation of approximate solution is
done. Some examples are provided to illustrate the performance of the method. The numerical
results are compared with the collocation method based on Legendre polynomials and the
other two methods based on Taylor polynomials. It is observed that the method is better than
Legendre collocation method and as accurate as the methods involving Taylor polynomials.

Keywords: Bell polynomials, collocation points, matrix method, Fredholm integro-
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1 Introduction
Integro-differential equations are one of the practical tools used in different disciplines of
sciences ranging from engineering to social sciences. Many mathematical models in those
areas involve integro-differential equations. Nuclear physics [Velasquez, Kelkar and
Upadhyay (2019)], molecular biology [Alonso, Bermejo, Pájaro et al. (2018)], biological
population models and ecology [Lutscher (2019)], control and stability theory [Alabau-
Boussouira, Ancona, Porretta et al. (2019)], elasticity theory [Umesh, Rajagopal and Reddy
(2019)], electromagnetic [Barrios, Retamal, Solano et al. (2019)], viscoelasticity [Vlasov
and Rautian (2019)], hydrodynamics [Rodrigues, Silva, Ramos et al. (2017)], economics
[Rivaz, Moghadam and Baniasadi (2019)] are among the well-known exemplary areas.

Our main interest is Fredholm integro differential equations (FIDE) with variable
coefficients. Since it is usually difficult to obtain exact solution for FIDEs, the
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development of numerical techniques has been the centre of attention for a large number of
researchers. Since we are specially interested in solution of the linear FIDEs in this work, we
overview the some works on the solution of this kind of FIDEs and some Volterra types.
Hosseini et al. [Hosseini and Shahmorad (2003)] proposed Tau numerical solution
method, Maleknejad et al. [Maleknejad and Mahmoidi (2004)] gave a solution by using
hybrid Taylor and block-pulse functions, Mohsen et al. [Mohsen and El-Gamel (2007)]
used a Sinc-collocation method for the linear FIDEs, He et al. [He and Wu (2007)]
proposed variational iteration method, Kurt et al. [Kurt and Sezer (2008)] presented a
Taylor polynomial approach, Farnoosh et al. [Farnoosh and Ebrahimi (2008)] gave the
Monte Carlo method. Vahidi et al. [Vahidi, Babolian, Cordshooli et al. (2009)] gave the
solution via Adomian’s decomposition method. Yüzbaşı et al. [Yüzbaşı, Şahin and Sezer
(2011)] suggested numerical solutions for the systems of linear FIDEs with Bessel
polynomial bases. Akyüz-Daşcıoğlu et al. [Akyüz-Daşcıoğlu and Sezer (2012)] presented
a matrix method to solve approximately the most general higher order linear FIDEs with
variable coefficients under the mixed conditions in terms of Taylor polynomials,
Yalcınbaş et al. [Yalçınbaş and Akkaya (2012)] proposed a solution via Boubaker
polynomial bases, Yüksel et al. [Yüksel, Yüzbaşı and Sezer (2012)] used a Chebyshev
method, Erdem et al. [Erdem, Yalçınbaş and Sezer (2013)] presented Bernoulli
polynomial approach for mixed linear FIDEs, Fathy et al. [Fathy, El-Gamel and El-Azab
(2014)] used Legendre-Galerkin method for the linear FIDEs, Mirzaee et al. [Mirzaee
and Hoseini (2014)] suggested solution via Fibonacci polynomials for the systems of
linear FIDEs with Fibonacci polynomials, Oğuz et al. [Oğuz and Sezer (2015)] proposed
Chelyshkov collocation method, Yüzbaşı et al. [Yüzbaşı, Gök and Sezer (2015)] gives
Müntz-Legendre matrix method for solving delay FIDEs with constant coefficients,
Savasaneril et al. [Savasaneril and Sezer (2016)] used Laguerre polynomial solution to
find an approximate solution of linear FIDE with variable coefficients, Elbeleze et al.
[Elbeleze, Kılıçman and Taib (2016)] suggested a modified homotopy perturbation
method for solving linear second-order FIDE, Yüzbaşı [Yüzbaşı (2017)] suggested
Shifted Legendre method with residual error estimation for the solution of delay linear
FIDEs, Mollaoğlu et al. [Mollaoğlu and Sezer (2017)] proposed a numerical solution
with residual error estimation by using Gegenbauer polynomials, Başar et al. [Başar and
Sezer (2018)] gave numerical solution based on Stirling polynomials for solving
generalized linear FIDEs with mixed functional arguments, Biçer et al. [Biçer, Öztürk
and Gülsu (2018)] used Bernoulli polynomials for the solution of linear FIDE with
piecewise intervals, Yüzbaşı [Yüzbaşı (2018)] suggested an exponential method and
Yüzbaşı et al. [Yüzbaşı and Ismailov (2018)] gave operational matrix method to solve
linear Fredholm-Volterra integro differential equations, Xue et al. [Xue, Niu, Yu et al.
(2018)] developed an improved reproducing kernel method for the solution of FIDE type
boundary value problems, Shiralashetti et al. [Shiralashetti and Kumbinarasaiah (2019)]
presented new operational matrix of differentiation using CAS wavelets and also
collocation method by genocchi polynomials, Jalilian et al. [Jalilian and Tahernezhad
(2019)] proposed exponential spline method for the solution of FIDEs of second kind,

974 CMES, vol.123, no.3, pp.973-993, 2020



Chen et al. [Chen, He and Zeng (2020)] developed a fast multiscale Galerkin method based
on a matrix compression scheme for approximating the second order FIDE with Dirichlet
boundary conditions.

In our study, we search for the solutions of the high-order linear Fredholm integro-
differential equation with variable coefficients in terms of Bell polynomials. The basic
idea is to approximate the solution function via Bell polynomials. On the examples, the
efficiency and accuracy is given and also method is compared with three solution
methods for integro differential equations given previously in literature: Legendre matrix
collocation method given by Yalçinbaş et al. [Yalçinbaş, Sezer and Sorkun (2009)] and
two methods based on Taylor polynomials by Yalçinbaş et al. [Yalçınbaş and Sezer
(2000); Akyüz-Daşcıoğlu and Sezer (2012)].

The high order linear Fredholm integro differential equation is given as follows:

Definition 1.1. Let m be positive integer and ajk ; bjk ; �; �j be real numbers for j; k=0, 1,..
m�1. Suppose that g xð Þ; Pk xð Þ is continuous on a; b½ � and the kernel function K x; tð Þ is
continuous on a; b½ �� a; b½ � and

Xm
k¼0

Pk xð Þy kð Þ xð Þ ¼ g xð Þ þ �

Zb

a

K x; tð Þy tð Þdt; a � x; t � b (1)

Xm�1

k¼0

ajky
kð Þ að Þ þ bjky

kð Þ bð Þ
� �

¼ �j; j ¼ 0; 1; 2; . . . ;m� 1 (2)

(1) is called the high-order linear Fredholm integro-differential equation with variable
coefficients under the mixed conditions (2).

The Bell polynomials were given by Bell in 1934 [Bell (1934)]. These polynomials can be
expressed in some ways. It can be written as a series expansion of a generating exponential
function, also it can be given by the second kind of Stirling numbers. Bell polynomials are
used in number theory, analysis, combinatorial analysis and statistics. Also, Mirzaee
[Mirzaee (2017)] used Bell polynomials to solve integral equations.

Definition 1.2. Bell [Bell (1934)] Let n be a natural number and S n; kð Þ be the Stirling
numbers of second kind, i.e.,

S n; kð Þ ¼
Xk
j¼0

�1ð Þj
k!

k
j

� �
k � jð Þn:

Then

Bn xð Þ ¼
Xn
k¼0

S n; kð Þxk (3)

is called a Bell polynomial of degree n.
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We look for an approximate solution of (1) in the following form:

y xð Þ ffi yN xð Þ ¼
XN
n¼0

anBn xð Þ (4)

where an; n ¼ 0; 1; 2; . . . ;N are coefficients and Bn xð Þ are Bell polynomials.

The organization of the paper is as follows: In Section 2 and its subsections, we present
matrix representations of Bell polynomials, differential part and integral part of (1). In
Section 3, the solution procedure is given. In Section 4, error estimation is done, In
Section 5 some numerical examples are given and the comparison of the method with
previous methods are given on the examples.

2 Basic matrix relations

Proposition 2.1. Let N be natural number. If the Bell polynomials Bk xð Þ from k¼0 to N are
written as the matrix, i.e.,

B xð Þ ¼ B0 xð Þ B1 xð Þ . . . BN xð Þ½ �:
Then

B xð Þ ¼ X xð ÞS (5)

where

XðxÞ ¼ ½1 x x2 … xN �; S ¼

S 0; 0ð Þ
0
0
..
.

0

S 1; 0ð Þ
S 1; 1ð Þ

0
..
.

0

S 2; 0ð Þ
S 2; 1ð Þ
S 2; 2ð Þ

..

.

0

� � �
� � �
� � �
. .
.

� � �

S N ; 0ð Þ
S N ; 1ð Þ
S N ; 2ð Þ

..

.

S N ;Nð Þ

2
666664

3
777775:

For the sake of clarity, let us denote Eq. (1) in the form

D xð Þ ¼ g xð Þ þ �I xð Þ (6)

where

D xð Þ ¼
Xm
k¼0

Pk xð Þy kð Þ xð Þ and I xð Þ ¼
Zb

a

K x; tð Þy tð Þdt

Now we transform the parts D xð Þ; I xð Þ and the conditions (2) into matrix form.

2.1 Matrix relation for the differential part D(x)
Since the approximate solution y xð Þ is the linear combination of Bell polynomials as shown
(3), it can be written as the product of unknown coefficient matrix A and B(x), i.e.,
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y xð Þ ¼ B xð ÞA; A ¼ a0 a1 . . . aN½ �T (7)

By substituting (5) into (7) we obtain

y xð Þ ¼ X xð ÞSA (8)

Theorem 2.2. Yalçınbaş et al. [Yalçınbaş and Akkaya (2012)] let X(x) denoted as in
Proposition 2.1. and X kð Þ xð Þ denote the kth derivative of each entry. Then the following
equality holds:

X kð Þ xð Þ ¼ X xð ÞMk (9)

where

M ¼

0 1 0 � � � 0
0 0 2 � � � 0
..
. ..

. ..
. � � � ..

.

0 0 0 � � � N
0 0 0 � � � 0

2
66664

3
77775; M0 ¼

1 0 0 � � � 0
0 1 0 � � � 0
0 0 1 � � � 0
..
. ..

. ..
. . .

.
0

0 0 0 � � � 1

2
66664

3
77775

Thus, by means of the equalities (8) and (9), the following equality can be written:

y kð Þ xð Þ ¼ B kð Þ xð ÞA ¼ XðkÞ xð ÞSA ¼ X xð ÞMkSA (10)

By substituting the expression (10) into Eq. (6), we get the relation

D xð Þ ¼
Xm
k¼0

Pk xð ÞX xð ÞMkSA:

2.2 Matrix representation of Fredholm integral part
Let us find the matrix form of the Fredholm integral part I xð Þ.
Theorem 2.3. Let K x; tð Þ be an analytic function on a; b½ � � a; b½ � where 0 2 a; b½ �. For
every E>0, there exists a natural number N such that

K x; tð Þ �
XN
p¼0

XN
q¼0

kpqx
ptq

�����
����� < E

where

kpq ¼ 1

p!q!

@pþqK 0; 0ð Þ
@xp@tq

; p; q¼0; 1; . . . ;N :

Proof. The theorem follows from the Maclaurin series expansion of K x; tð Þ.
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For E>0, one can accept

K x; tð Þ ¼
XN
p¼0

XN
q¼0

kpqx
ptq (11)

for a sufficiently large N .

The expression (11) can be converted into the matrix form

K x; tð Þ ¼ X xð ÞKXT tð Þ; K ¼ kpq
� �

: (12)

Substituting relations (12) and (10) in the Fredholm part, we obtain

I xð Þ ¼
Zb

a

X xð ÞKXT tð ÞX tð ÞMSAdt: (13)

Proposition 2.4. If X xð Þ ¼ 1 x . . . xN½ � and x 2 R, then

Zb

a

XT tð ÞX tð Þdt ¼ qij
h i

Nþ1ð Þ� Nþ1ð Þ
;

where

qij ¼
biþjþ1 � aiþjþ1

iþ jþ 1
; i; j¼0; 1; 2; . . . ;N :

LetQ ¼ qij
h i

. By substituting the expression (13) into Eq. (6), we get the matrix relation for
Fredholm integral part I xð Þ¼XðxÞKQMSA.

2.3 Matrix relation for the conditions
We can denote the matrix form of the initial condition Eq. (2) with the help of (8) as follows	Xm�1

k¼0

ajkX að ÞMkSþ bjkX bð ÞMkS

�� 

A ¼ �j; j¼0; 1; . . . ;m� 1: (14)

3 Solution method

We can give the solution steps as follows:

A) Express the Eq. (1) in matrix form by combining the matrix relations in Section 2 and to
derive the augmented matrix by using collocation points. B) Express the initial conditions as
augmented matrix. C) Combine augmented matrix of conditions with augmented matrix by
collocation points and find the solution.

A) In an attempt to set a fundamental matrix equation, replacing the matrix relations (10)
and (13) with (1) we derive that

978 CMES, vol.123, no.3, pp.973-993, 2020



Xm
k¼0

Pk xð ÞX xð ÞMkSA ¼ g xð Þ þ X xð ÞKQMSA (15)

The collocation points xi are defined by

xi ¼ aþ b� a

N
i; i¼0; 1; . . . ;N (16a)

or

xi ¼ bþ a

2
� b� a

2
cos

pi
N

� �
Chebyshev� Lobattoð Þ: (16b)

Using the points (16), the following system of the matrix equations is obtained:

Xm
k¼0

Pk xið ÞX xið ÞMkSA ¼ g xð Þ þ �X xið ÞKQSA (17)

or shortly

Xm
k¼0

PkXM
kS� �XKQSÞ

( )
A ¼ G

where

Pk ¼

Pk x0ð Þ
0
0
..
.

0

0
Pk x1ð Þ

0
..
.

0

� � �
� � �
� � �
. .
.

� � �

0
0
0
..
.

Pk xNð Þ

2
66664

3
77775; X ¼

1 x0 � � � xN0
1 x1 � � � xN1
1 x2 � � � xN2
..
. ..

. . .
. ..

.

1 xN � � � xNN

2
666664

3
777775; G ¼

g x0ð Þ
g x1ð Þ
g x2ð Þ
..
.

g xNð Þ

2
666664

3
777775

The fundamental matrix Eq. (17) for (1) corresponds to an equation system with N þ 1
algebraic equations for the N þ 1 unknown coefficients a0, a1, a2, … , aN. Concisely we
can write as

WA ¼ G or W;G½ � (18)

where

W ¼
Xm
k¼0

PkXM
kS� �XKQS
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B) At the same time, the matrix form (17) for the conditions can be expressed by

UjA ¼ �j or U;�j

� �
; j ¼ 0; 1; 2; . . . ;m� 1 (19)

where

Uj ¼ uj0 uj1 . . . ujN
� � ¼ Xm�1

k¼0

ajkX að ÞMkSþ bjkX bð ÞMkS
� �

C) To attain the solution of (1) under conditions (2), by substituting the rows in matrix Eq.
(18) for the last m rows of matrix Eq. (19), we obtain the new augmented matrix system

~WA ¼ ~G or ~W; ~G
� �

(20)

where the new augmented matrix system can be written as

~W; ~G
� � ¼

w00 w01 w02 � � � w0N ; g x0ð Þ
w10 w11 w12 � � � w1N ; g x1ð Þ
..
. ..

. ..
. ..

. ..
. ..

. ..
.

w N�mð Þ0 w N�mð Þ1 w N�mð Þ2 � � � w N�mð ÞN ; g xN�mð Þ
u00 u01 u02 � � � u0N ; �0

u10 u11 u12 � � � u1N ; �1

..

. ..
. ..

. ..
. ..

. ..
. ..

.

u m�1ð Þ0 u m�1ð Þ1 u m�1ð Þ2 � � � u m�1ð ÞN ; �m�1

2
6666666666664

3
7777777777775

If rank ~W
� � ¼ rank ~W; ~G

� � ¼ N þ 1, then we can deduce

A ¼ ~W
� ��1 ~G:

One can uniquely determine the matrix A (whence the coefficients a0; a1; a2; . . . ; aN ). Thus
the Eq. (1) under the coefficient Eq. (2) has unique solution, which is expressed by truncated
Bell series

y xð Þ ffi yN xð Þ ¼
XN
n¼0

anBn xð Þ:

4 Error estimation

The accuracy of the approximate solutions can easily be estimated as follows. Since the
truncated Bell series (3) is the approximate solution of (1), when yN xð Þ and its
derivatives are replaced in (1), the following equation should be satisfied approximately;
i.e., for x¼xq2 a; b½ �; q¼0; 1; . . . ;N,
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RN xq
� � ¼ Xm

k¼0

Pk xq
� �

y kð Þ
N xq
� �� �

Z b

a
K xq; tq
� �

y kð Þ
N tq
� �

dt � g xq
� � ffi 0

or

RN xq
� � � 10�kq ; ðkq is any positive integerÞ:

If max 10�kq ¼ 10�k (k is a positive integer) is assigned, then the truncation limit N is
increased until the difference RN xq

� �
at each point gets smaller than the assigned 10�k .

Thus, if RN xq
� � ! 0 when N gets larger enough, then the error diminishes.

Moreover, with help of the residual function denoted by RN xð Þ and the mean value of the
function RN xð Þj j on a; b½ �, the accuracy of the solution can be checked and the error
could be predicted [Mollaoğlu and Sezer (2017); Oğuz and Sezer (2015); Balcı and Sezer
(2015)]. Hence, one can reckon the upper bound for the mean error RN as described below:Z b

a
RN xð Þdx

����
���� �

Z b

a
RN xð Þj jdx

andZ b

a
RN xð Þj jdx ¼ b� að Þ RN cð Þj j; a � c � b

)
Z b

a
RN xð Þdx

����
���� ¼ b� að Þ RN cð Þj j ) b� að Þ RN cð Þj j �

Z b

a
RN xð Þj jdx

RN cð Þj j �
R b
a RN xð Þj jdx
b� a

¼ �RN :

5 Numerical examples

Using the exact solution y xð Þ and the approximate solution yN xð Þ, the error function eN is
calculated as described below

eN ¼ y xð Þ � yN xð Þ:
Example 1. Let us examine the second order linear Fredholm type integro-differential equation

y00 xð Þ þ xy0 xð Þ � y xð Þ ¼ � 5x

6
� 1þ

Z 1

0
xty tð Þdt; 0 � x; t � 1

with the initial conditions y 0ð Þ¼1, y0 0ð Þ¼1. Let the approximate solution y xð Þ by the
truncated Bell series
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y xð Þ ffi yN xð Þ ¼
XN
n¼0

anBn xð Þ:

where P0 xð Þ¼�1; P1 xð Þ¼x, P2 xð Þ¼1, g xð Þ¼ � 5

6
� 1, �¼1 and kernel K x; tð Þ¼xt.

Then for N¼2, the collocation points are

x0 ¼ 0; x1 ¼ 1

2
; x2 ¼ 1

	 


and from Eq. (15), the fundamental matrix equation of the problem is

P0XM
0Sþ P1XM

1Sþ P2XM
2S� �XKQS

 �
A ¼ G

where

P0 ¼
�1 0 0
0 �1 0
0 0 �1

2
4

3
5; P1 ¼

0 0 0
0 1=2 0
0 0 1

2
4

3
5; P2 ¼

1 0 0
0 1 0
0 0 1

2
4

3
5

S ¼
1 0 0
0 1 0
0 0 1

2
4

3
5; M ¼

0 1 0
0 0 2
0 0 0

2
4

3
5; K ¼

1 0 0
0 1 0
0 0 1

2
4

3
5

Q ¼
1 1=2 1=3

1=2 1=3 1=4
1=3 1=4 1=5

2
4

3
5; X ¼

1 0 0
1 1=2 1=4
1 1 1

2
4

3
5; G ¼

�1
�17=12
�11=6

2
4

3
5

The augmented matrix for fundamental matrix equation is found as

W;G½ � ¼
�1 0 2 ; �1
�5=4 �1=6 47=24 ; �17=12
�3=2 �1=3 29=12 ; �11=6

2
4

3
5

From Eq. (14), the matrix forms for the initial conditions are

U0;�0½ � ¼ 1 0 0 ; 1½ � and U1;�1½ � ¼ 0 1 1 ; 1½ �
From system (20), the new augmented matrix based on conditions can be obtained as
follows:

~W; ~G
� � ¼ �1 0 2 ; �1

1 0 0 ; 1
0 1 1 ; 1

2
4

3
5
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Solving this system, the undetermined Bell coefficient matrix is obtained as

A ¼ 1 1 0½ �T

By replacing the above Bell coefficient matrix with Eq. (7), we derive the approximate
solution y xð Þ¼xþ1 which is also the exact solution.

Example 2. Let us consider

y0 xð Þ � y xð Þ ¼ 1� e xþ1ð Þ=4

xþ 1
þ
Z 1=4

0
etxy tð Þdt

with y 0ð Þ¼1:

The exact solution of problem is y=ex and P0 xð Þ¼� 1; P1 xð Þ¼1, K x; tð Þ¼etx and

g xð Þ ¼ 1� e xþ1ð Þ=4

xþ 1
. For N¼3; 4 and 5 the obtained approximate solutions are

y3 xð Þ ¼ 0:18136x3 þ 0:498741x2 þ 1:0xþ 1:0

y4 xð Þ ¼ 0:045799x4 þ 0:166021x3 þ 0:500032x2 þ 0:999999xþ 1:0

y5 xð Þ ¼ 0:0092155x5 þ 0:04146967x4 þ 0:1666854x3 þ 0:4999992x2 þ 1:0xþ 1:0

The absolute errors of approximate solutions above on some points are shown in Tab. 1.

Example 3. Let us consider

y00 xð Þ þ xþ 1ð Þy0 xð Þ � 2y xð Þ ¼ xex � eþ 1þ
Z 1

0
y tð Þdt

with y 0ð Þ¼1 and y0 0ð Þ¼1:

The exact solution of problem is y=ex and P0 xð Þ¼�2; P1 xð Þ¼xþ1; P2 xð Þ¼1, K x; tð Þ¼1
and g xð Þ¼xex�eþ1. For N¼4; 8 and 9 the obtained approximate solutions are

Table 1: Comparison of the absolute errors of Example 2 for N=3, 4, 5

xi y xið Þ ¼ exi e3 xið Þj j e4 xið Þj j e5 xið Þjj
0 1.0 0 0 0

0.05 1.05127 1.57388 E-6 2.75073 E-8 6.35555 E-10

0.1 1.10517 2.14808 E-6 9.71756 E-8 1.55065 E-9

0.15 1.16183 4.80228 E-7 1.66110 E-7 3.66563 E-9

0.2 1.22140 2.23816 E-6 2.31760 E-7 6.48017 E-9

0.25 1.28403 2.03542 E-5 6.86219 E-7 1.67854 E-8
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y4 xð Þ ¼ 1þ xþ 0:4999x2 þ 0:1628x3 þ 0:0534x4

y6 xð Þ ¼ 1:941413812E � 3x6 þ 7:827919267E � 3x5 þ 4:186911067E � 2x4

þ 0:1666348620x3 þ 0:4999996243x2 þ 1:0xþ 1

y8 xð Þ ¼ 1þ xþ 0:5x2 þ 0:1667x3 þ 0:0417x4 þ 0:0083x5 þ 0:0014x6 þ 1:817E� 4x7

þ 3:6163E� 5x8

The absolute errors of approximate solutions above on some points are shown in Tab. 2.

On this example, let us see the effect of usage of different collocation points. In Tab. 2
absolute errors are given for the solution with the help of uniformly distributed
(equidistant mesh points) xk points given in (16a). We are presenting the absolute errors
for the solution with the help of Chebyshev-Lobatto points (16b) in Tab. 3.

Example 4. Let us study second order linear Fredholm type integro-differential equation
having the Bell series solution that is given by

Table 2: Comparison of the absolute errors of Example 3 for N=4, 6, 8

xi y xið Þ ¼ exi e4 xið Þj j e6 xið Þj j e8 xið Þj j
0 1 0 0 0

0.2 1.2214 2.0556E-5 7.4523E-8 2.6160E-9

0.4 1.4918 6.0813E-5 1.6743E-7 1.3178E-8

0.6 1.8221 8.2091E-5 2.9110E-7 4.0508E-8

0.8 2.2255 3.9652E-4 5.4930E-7 9.7239E-8

1 2.7183 2.1991E-3 8.8984E-6 2.1946E-7

Table 3: Comparison of the absolute errors of for N¼4; 8 according to distribution of points

xi y xið Þ ¼ exi N¼4 N¼8

For the points
in (16a)

For the points
in (16b)

For the points
in (16a)

For the points
in (16b)

0 1 0 0 0 0

0.2 1.2214 2.0556E-5 8.7954E-6 2.61602E-9 2.49100E-8

0.4 1.4918 6.0813E-5 4.9948E-6 1.31778E-8 1.80840E-7

0.6 1.8221 8.2091E-5 5.7088E-5 4.05084E-8 5.38540E-7

0.8 2.2255 3.9652E-4 2.5576E-4 9.72386E-8 1.07846E-6

1 2.7183 2.1991E-3 2.2878E-3 2.19459E-7 1.65554E-6
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y00 xð Þ þ xþ 1ð Þy0 xð Þ � 2y xð Þ ¼ xex � e3 þ 1þ
Z 3

0
y tð Þdt

with initial condition y 0ð Þ¼1 and y0 0ð Þ¼1: The exact solution of problem is y xð Þ¼ex and we
seek the approximate solution yN xð Þ as a truncated Bell series:

y xð Þ ffi yN xð Þ ¼
XN
n¼0

anBn xð Þ

where P0 xð Þ¼� 2; P1 xð Þ¼xþ1, P2 xð Þ¼1, g xð Þ¼xex�e3þ1, �¼1 and kernel K x; tð Þ¼1.
For N¼4; 8 and 10, the approximate solutions are obtained as:

y4 xð Þ¼1þxþ0:6139361x2þ0:0859716x3þ0:0935607x4

y8 xð Þ¼1þxþ0:500048624x2þ0:166504207x3þ0:042173056x4

þ0:007585005x5þ0:001982272x6�0:000056044x7þ0:000077314x8

y10 xð Þ¼1þxþ0:50000050244x2þ0:16666345457x3þ0:04168103175x4

þ0:00830203277x5þ0:00142860232x6þ0:0001673193x7

þ0:00003997532x8�0:00000164461x9þ0:00000092818x10

These approximate solutions of the equation are visualized in Fig. 1. It is seen that the graphs
of y8 xð Þ and y10 xð Þ almost coincide. The exact solution is not showed in Fig. 1 because it is
covered by the graphs of y8 xð Þ and y10 xð Þ because of precision problems in visualization.

The absolute errors for N¼4; 8; 10 are shown in Tab. 4. According to Tab. 4, it can be
said that when N increases, the absolute error gets smaller. For each N value, the

Figure 1: yN xð Þ for N¼4; 8; 10
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absolute error for the points close to zero is relatively less than other points since zero is
initial (condition) point.

Furthermore, the numerical results for residual functions are shown in Tab. 5. Also graphs of
the residual error functions are given in Fig. 2. According to Tab. 5, it can be said that when
N increases, the residual error will decrease. Also for each N value, the residual error on the
points close to zero is relatively less than other points. In Fig. 2, graphs of R8 xð Þ and R10 xð Þ
almost coincides with x-axis, i.e., residual errors get closer to zero.

Example 5. Let us study the following second order linear Fredholm type integro-
differential equation having the Bell series solution that is given by

y00 xð Þ þ xy0 xð Þ � xy xð Þ ¼ ex � 2sin xð Þ þ
Z 1

�1
sin xð Þe�ty tð Þdt

with initial condition y 0ð Þ¼1 and y0 0ð Þ¼1: The exact solution of problem is y xð Þ¼ex and we
seek the approximate solution yN xð Þ as a truncated Bell series:

y xð Þ ffi yN xð Þ ¼
XN
n¼0

anBn xð Þ

where P0 xð Þ¼ �x; P1 xð Þ¼x, P2 xð Þ¼1, g xð Þ¼ex�2sin xð Þ, �¼1 and kernel
K x; tð Þ¼ sin xð Þe�t. A solution to this example is given in Yalçınbaş et al. [Yalçınbaş and
Sezer (2000)] by means of Taylor polynomials. Akyüz-Daşçıoğlu et al. [Akyüz-
Daşçıoğlu and Sezer (2007)] provided a solution by giving another Taylor polynomial
approach. Also Yalçinbaş et al. [Yalçinbaş, Sezer and Sorkun (2009)] used Legendre
collocation matrix method via Legendre polynomials to solve this example. Thus we can
make a comparison of our proposed Bell polynomial approach on this example.

Table 4: Comparison of the absolute errors of Example 4 for N¼4; 8; 10

xi y xið Þ¼exi e4 xið Þj j e8 xið Þj j e10 xið Þj j
0 1.0 0 0 0

0.3 1.349858808 0.0084745163 2.653680784 E-6 2.209950588 E-8

0.6 1.8221188 0.0295935279 1.126619532 E-5 1.121597453 E-7

0.9 2.459603111 0.0617436015 2.638981446 E-5 2.878937693 E-7

1.2 3.320116923 0.1065174536 4.698802199 E-5 6.196286365 E-7

1.5 4.481689070 0.1634723484 7.498748225 E-5 1.308472130 E-6

1.8 6.049647464 0.2230546751 1.126399804 E-4 2.794784547 E-6

2.1 8.166169913 0.2570491257 1.651829221 E-4 5.922822344 E-6

2.4 11.02317638 0.2056864341 2.413512380 E-4 1.222886161 E-5

2.7 14.87973172 0.0397593562 2.458278482 E-4 2.368430265 E-5

3 20.08553692 0.6604621232 5.467501877 E-4 3.212657233 E-5
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In Tab. 6, comparison of the absolute errors in the proposed method and the Legendre
method in Yalçinbaş et al. [Yalçinbaş, Sezer and Sorkun (2009)] is given. It is seen that
for each N values, the results of proposed method are closer to the exact solution than
Legendre method.

In Tab. 7, the proposed Bell polynomial approach is compared with the two methods
based on Taylor polynomials given by Yalçınbaş et al. [Yalçınbaş and Sezer (2000);

Figure 2: Residual error functions of Example 3 for N¼4; 8; 10

Table 5: Comparison of RN xið Þ of Example 3 for N¼4; 8; 10

xi R4 xið Þj j R8 xið Þj j R10 xið Þj j
0 3.692318767E-5 1.630768123E-4 6.307681233E-5

0.3 4.361162589E-2 1.730831115E-4 6.373208341E-5

0.6 2.632650585E-2 1.386992010E-4 6.446963933E-5

0.9 3.231000235E-2 1.366793461E-5 6.474132843E-5

1.2 0.0797259151 8.687016312E-5 6.326585560E-5

1.5 2.406768057E-5 2.179274130E-5 5.742142341E-5

1.8 0.4290891256 8.403601647E-5 4.229604937E-5

2.1 1.597309010 3.946343543E-4 9.264301183E-6

2.4 4.147948963 1.788094064E-4 5.607134169E-5

2.7 9.099541009 9.892363935E-2 5.875317578E-5

3 18.01702685 6.046351838E-2 9.505659953E-4
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Table 6: Comparison of the numerical results with Legendre Method for Example 5

N=3 N=6 N=9

xi exi Legendre
method

Proposed
method

Legendre
method

Proposed
method

Legendre
method

Proposed
method

-1 0.36787944 0.36801200 0.36801433 0.36795047 0.36787028 0.36784656 0.36787636

-0.8 0.44932896 0.44621670 0.44621801 0.44939678 0.44932605 0.44929744 0.44932737

-0.6 0.54881164 0.54450947 0.54451010 0.54887061 0.54880910 0.54878097 0.54881096

-0.4 0.67032005 0.66689869 0.66689892 0.67037064 0.67031815 0.67028984 0.67031984

-0.2 0.81873075 0.81739274 0.81739278 0.81877398 0.81873030 0.81870073 0.81873073

0 1.00000000 1.00000000 1.00000000 1.00003513 1.00000000 1.00000000 1.00000000

0.2 1.22140276 1.21872886 1.21872889 1.22143042 1.22140351 1.22137279 1.22140279

0.4 1.49182470 1.47758771 1.47758776 1.49184806 1.49182898 1.49179492 1.49182492

0.6 1.82211880 1.78058493 1.78058493 1.82212371 1.82211200 1.82208957 1.82211958

0.8 2.22554093 2.13172890 2.13172871 2.22542162 2.22541674 2.22551275 2.22554282

1 2.71828183 2.53502800 2.53502741 2.71766127 2.71766268 2.71828047 2.71828527

Table 7: Comparison of the numerical results with Akyüz-Sezer and Yalcinbas-Sezer methods
for Example 5

xi y xið Þ¼exi

N=6 N=9

Yalcinbas-
Sezer
method

Akyüz-
Sezer
method

Proposed
method

Yalcinbas-
Sezer
method

Akyüz-Sezer
method

Proposed
method

-1 0.368050 0.368050 0.368045 0.367870 0.367879 0.367879 0.367876

-0.8 0.449329 0.449363 0.449361 0.449326 0.449328 0.449329 0.449327

-0.6 0.548812 0.548815 0.548814 0.548809 0.548811 0.548812 0.548811

-0.4 0.670320 0.670319 0.670320 0.670318 0.670320 0.670320 0.670320

-0.2 0.818731 0.818730 0.818731 0.818730 0.818730 0.818731 0.818731

0 1.00000000 1.000000 1.000000 1.00000000 1.000000 1.000000 1.00000000

0.2 1.221403 1.22140 1.221403 1.221404 1.22140 1.221403 1.221403

0.4 1.491825 1.49182 1.491825 1.491829 1.49182 1.491825 1.491825

0.6 1.822119 1.82211 1.822116 1.822112 1.82211 1.822119 1.822120

0.8 2.225541 2.22549 2.225501 2.225417 2.22554 2.225541 2.225543

1 2.718282 2.71805 2.718067 2.717663 2.71828 2.718282 2.718285
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Akyüz-Daşçıoğlu and Sezer (2007)]. For the sake of clarity, we call these methods
Yalcinbaş-Sezer and Akyüz-Sezer methods, respectively. It is seen in Tab. 7 that on some
points the proposed method has better approximation, on other points, Akyüz-Sezer and
Yalcinbaş-Sezer methods have better approximations We can conclude that these three
methods do not significantly differ from each other.

6 Conclusions

Efficiency of the proposed method provided by using Bell polynomials for the solution of
high order linear Fredholm integro differential equations with variable coefficients is shown
on the examples. To sum up briefly, in Example 1, it is seen that the method gives the exact
solution which is a polynomial. In case that the exact solution is polynomial, method can
give much better results. The absolute error calculations and the effect of the choice of
the collocation points are given in Example 2, it is observed that the choice of
collocation points does not affect the results significantly. In Example 3, absolute and
residual errors are analyzed and showed graphically. Method gives better results for the
points closer to initial points. The proposed method is compared to Legendre collocation
method and other two methods based on Taylor polynomials on Example 4. Bell
polynomial collocation method gives remarkably better results than Legendre collocation
method. The superiority over Legendre method is clear. But on the other side, the results
do not show a significant difference among two methods based on Taylor polynomials.

As in the other methods, the main advantage the proposed method is a solution of the integro
differential equations by means of matrix representations. This makes the problem easy
programmable for computers and simulation. Also this can give better approximate
results on short time and also testing errors easy. Computationally, the coefficients matrix
of Bell polynomials for the solutions whose entries are S n; kð Þ is always nonsingular
matrix, which always allows us to look for the solution in polynomial form of the
solution. However, it may not be able to provide solution smoothly since the determinant
of coefficient matrix ~W of the augmented matrix ~W; ~G

� �
can be zero. But this

disadvantage can be handled by replacing suitable rows of augmented matrix with the
row matrices of equations obtained from initial conditions.
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