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Abstract: In this work, a numerical scheme is constructed for solving nonlinear parabolic-
type partial-integro differential equations. The proposed numerical scheme is based on
radial basis functions which are local in nature like finite difference numerical schemes.
The radial basis functions are used to approximate the derivatives involved and the integral
is approximated by equal width integration rule. The resultant differentiation matrices are
sparse in nature. After spatial approximation using RBF the partial integro-differential
equations reduce to the system of ODEs. Then ODEs system can be solved by various
types of ODE solvers. The proposed numerical scheme is tested and compared with other
methods available in literature for different test problems. The stability and convergence of
the present numerical scheme are discussed.
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1 Introduction

In the fields of sciences and engineering, physical systems which depends on time and space
can be formulated by partial differential equations. Some time the physical system may not
be accurately model by such formulations at a given time by ignoring effect of the system in
some past times. Specifically in the fields of nuclear reactors, thermoplastic and heat flow
there is need to include the memory effect to the system. This addition always occurs as
an integral term in basic differential equation resulting a partial integro-differential
equation. Various types of partial integro-differential equations available in the literature
using for different physical systems. In the present work, we study the parabolic-type
Volterra partial integro-differential equations [Avazzadeh, Rizi, Ghaini et al. (2012)].
These type of equations have application in reaction-diffusion problems [Engler (1983)],
compression of viscoelastic media [Visser (1997)] and nuclear reactor dynamics
[Pachpatte (1983)]. The analytical solution can be available in few cases, so researchers
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have introduced different techniques for the approximating solutions of PIDEs. Some of
these efficient numerical methods include the finite difference method [Tang (1993)], the
Quintic B-spline collocation method [Zhang, Han and Yang (2013)], the Variational
iteration method [Nawaz (2011)], the Quasi-wavelet with numerical method [Yang, Xu
and Zhang (2011)], the spectral method [Fakhar-Izadi and Dehghan (2011)], the Method
of lines [Kauthen (1992)], the Finite Element Methods [Yanik and Fairweather (1988)],
the orthogonal spline collocation method [Yan and Fairweather (1992)], the Galerkin
methods [Zhang, Lin, Lin et al. (2001)] and the θ-weighted with Radial Basis Functions
[Avazzadeh, Rizi, Ghaini et al. (2012)]. Hardy [Hardy (1971)] introduced a numerical
method using multiquadrics (MQ) radial basis functions. In year 1982 [Franke (1982)] a
comparison had been made among different numerical methods and the Hardy’s MQ
radial basis functions method outclass all the other methods regarding accuracy, stability
and ease of implementations. Tarwater [Tarwater (1985)] demonstrated the effect of
shape parameter in MQ on the solution accuracy. In the work [Carlson and Foley (1991)]
it has suggested that a small value of the shape parameter be used if the function varies
rapidly, but a large value be used if the function has large curvature. In 1990 Kansa
extended the method of Hardy’s for solving numerically various types differential
equations vary efficiently [Kansa and Multiquadrics (1990)]. The convergence analysis
have been discussed by many authors (see for example [Micchelli (1984); Madych and
Nelson (1990); Franke and Schaback (1998)]). The most advantage of utilizing the RBF
for the approximation of PDEs is its effortlessness, pertinence to various PDEs, and
viability in managing with multi-dimensional issues and complicated domains. In most of
the cases the global method returned the differentiation matrices asymmetric and dense,
which needed large amount of data and computations time. To overcome these issues the
authors in Tolstykh et al. [Tolstykh (2000); Shu, Ding and Yeo (2003); Vertnik and Šarler
(2006)] developed a local meshless technique where the kernel based interpolant in small
sub-domains centered around each center is used for system matrices. This idea has been
extended to develop different sorts of very efficient numerical methods and has been
used effectively to a wide range of unsolved issues (see for example [Sarra (2012), Yao,
Šarler and Chen (2011)]). Various other modification of local RBF methods and their
application can be found in the literature for example local RBF method for Darcy flow
by Kosec et al. [Kosec and Šarler (2008)], local RBF-based differential quadrature
method for incompressible Navier-Stokes equations by Shu et al. [Shu, Ding and Yeo
(2005)], H-adaptive local radial basis function collocation meshless method by Kosec
et al. [Kosec and Šarler (2011)], the meshless local Petrov Galerkin (MLPG) method by
Atluri et al. [Atluri and Shen (2005)], Stable calculation of Gaussian-based RBF-FD
stencils by Fornberg et al. [Fornberg, Lehto and Powell (2013)], Scattered node compact
finite difference-type formulas generated from radial basis functions by Wright et al.
[Wright and Fornberg (2006)]. In this work, we use such type approach to solve the
nonlinear parabolic-type Volterra partial integro-differential equations [Avazzadeh, Rizi,
Ghaini et al. (2012)].
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2 Development of the proposed method

The nonlinear parabolic-type Volterra partial integro-differential equation is of the type

utðx; tÞ ¼ Luðx; tÞ þ
Z t

0
jðx; t; s; uðx; sÞÞdsþ f ðx; tÞ; (1)

where x2��Rd; d�1, and t∈[0, T], and subject to the following initial and and the
boundary conditions respectively

uðx; 0Þ ¼ u0ðxÞ; x 2 �; (2)

Buðx; tÞ ¼ gðx; tÞ; x 2 @�; (3)

where L and B are spatial operators. It is assume that the functions κ and f are continuous on
{(x,t): x∈Ω, 0≤t≤T}. Let N be the number of points in the set {xi, i=1,…, N}∈Ω and Ωk be a
sub-domain in the domain Ω contains m points for each center xk in Ω. The unknown
function u is approximated by the linear combination of radial basis functions in each
sub-domain Ωk, k=1, …, N (see for example [Uddin, Ali and Ali (2015); Uddin,
Minullah, Ali et al. (2015)]) is given by

uðx; tÞ ¼
Xm
j¼1

’ðrjÞ�j; (4)

where rj=‖x − xj‖, and x, xj∈Ωk is the Euclidean norm between two centers x and xj and φ is a
radial basis function defined for r≥0 and λj are the expansion coefficients. From Eq. (4), N
number of m×m systems of linear equations in the matrix form are given by

uk¼Ak�k ; k¼1;…;N ; (5)

where Ak=[φ(‖ xi−xj‖)]m×m, xi,xj∈Ωk, is the system matrix for each k=1,…,N, and

�k¼ðAkÞ�1uk ; k¼1;…;N : (6)

and we can also approximate Luðx; tÞ by

Luðx; tÞ ¼
Xm
j¼1

L’ðrjÞ�j; (7)

which can be represented by the matrix-vector form

Luðx; tÞk ¼ Ak
L�

k ; k¼1;…;N ; (8)

where Ak
L ¼ ½L’ðkxi � xjkÞ�m�m; xi; xj 2 �k ; k¼1;…;N .
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By eliminating the expansion coefficients λk from Eqs. (6)-(8), we get

Luk ¼ Wkuk ; k¼1;…;N ; (9)

where Wk¼Ak
LðAkÞ�1, denote the corresponding weight for the kth center, hence for all

centers k=1, …, N, we have from Eq. (9)

LU ¼ WU ; (10)

whereW is a N×N sparse differentiation matrix. Using these kernel based approximation of
function u and Lu in the model Eq. (1), we get the system of ODEs of Eq. (1),

dU

dt
¼ F þWU þ K; (11)

where

K ¼
Z t

0
kðxi; t; s; uðxi; sÞÞds;F ¼ f ðxi; tÞ; i¼1;…;N

are N×1 matrices. Advancing the solution in time, we write the solution of Eq. (11) in the
form

Unþ1 ¼ f1þ dtWgUn þ dtfFn þ Kng; (12)

where Un, Fn and Kn denote the values at (xi,tn=n δt, i=1,…, N), with step size δt and the ith
element of Kn can be computed by using the numerical trapezoidal rule as

Kn ¼ tn
2n

fjðxi; tn; s0; uðxi; s0ÞÞ þ 2
Xn�1

q¼1

jðxi; tn; sq; uðxi; sqÞÞ þ jðxi; tn; sn; uðxi; snÞÞg: (13)

This is the required scheme for obtaining the numerical solution at any time level n. Initially
we take U0=h0(x) from the given initial condition u(x,0)=h0(x). In the next section we will
discuss the stability and convergence of the this scheme.

3 Stability and convergence of the scheme

The scheme in Eq. (12) is a recurrence relation that allows us to advance the solution in time
from tn=nδt to tn+1=(n+1)δt. The value of the amplification matrix B=1+δtW depend on the
ratio δt/hr, here r is the order of largest space derivative and h denote the distance between
two nodes. Suppose un be the exact solution of Eq. (1) at time tn=n δt, then it follows that |
DNu(x)−DNU(x)|≤ChN|u| see [Fasshauer (2007); Uddin and Haq (2011)]. Further assume the
numerical scheme in Eq. (12) is of order p in space, so we get

unþ1 ¼ Bun þ dtfFn þ Kng þ OððdtÞ2 þ hpÞ; dt ! 0; h ! 0: (14)
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We define the error at nth time level by εn=un−Un, By subtracting Eq. (12) from Eq. (14) we
get

enþ1 ¼ Ben þ OððdtÞ2 þ hpÞ; dt ! 0; h ! 0: (15)

By Lax-Richtmyer definition of stability the scheme Eq. (15) is stable if

kBk � 1; (16)

The result B≤ρ(B) is always true and B=ρ(B) if B is normal. Let us assume that the initail
condition and the solution of the given integro-differential equation must be sufficiently
smoothand h to be enough small. For keeping the values of δt/hr to be constant we must
have δt → 0. so there exist a constant C such that

kenþ1k � kBkenk þ CððdtÞ2 þ hpÞ; n¼0; 1; 2;…; T : (17)

Since initailly at n=0, U0=u0 therefore ε0=0 and so by mathematical induction, we have

kenþ1k � ð1þ kBk2 þ…þ kBkn�1ÞCððdtÞ2 þ hpÞ; n¼0; 1; 2;…; T : (18)

By using Eq. (16), we have

kenþ1k � nCððdtÞ2 þ hpÞ; n¼0; 1; 2;…; T : (19)

This shows the scheme is convergent.

4 Application of the method to problems

In this section, we apply the present numerical scheme to various problems 1-D and 2-D of
the type given in Eq. (1) to confirm the accuracy, efficiency and validity of the present
numerical scheme. The L2 and L∞ error norms are used to measure the error in solutions
of the of Eq. (1) whose special 1D case is given by

utðx; tÞ ¼ aðx; tÞuxxðx; tÞ þ
Z t

0
jðx; t; s; uðx; sÞÞdsþ f ðx; tÞ; x 2 ½a; b�; t 2 ½0;T �: (20)

Problem 4.1 In this problem, we solved the problem in Eq. (20) with the following initial
and boundary conditions,

uðx; 0Þ¼x; 0�x�1; uð0; tÞ¼0; uð1; tÞ¼e�t; 0� t�T : (21)

For the choice of the functions α(x,t)=x2/2, and κ(x, s, t, u)=es−tu, the function f(x,t) can be
found when the exact solution is used u(x,t)=xe−xt, see for example [Avazzadeh, Rizi, Ghaini
et al. (2012)]. We tested the accuracy of our numerical scheme by calculating the error
norms L2 and L∞ respectively, and these numerical results are shown in Tab. 1 for all
time t∈[0,1]. The solution is advanced in time with a step size δt=0.0001. The present
numerical scheme performed well and more accurate results are obtained as compared to
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results for the same problem in Avazzadeh et al. [Avazzadeh, Rizi, Ghaini et al. (2012)], and
these results are shown in Tab. 1 and Fig. 1 respectively.

Problem 4.2 In this second problem, we consider Eq. (20) subject to the following initial
and boundary conditions

uðx; 0Þ ¼ xð1� xÞ; x 2 ½0; 1�; uð0; tÞ ¼ uð1; tÞ ¼ 0; 0 � t � T ; (22)

and given selected function α(x, t)=x2(1 − x)/2, and κ(x, s, t, u)=(1−2x)es−tu(x, s)2, where the
exact solution, u(x, t)=x(1−x)e−xt is used from Avazzadeh et al. [Avazzadeh, Rizi, Ghaini
et al. (2012)] for the purpose of comparison. The problem is solved by the present

Table 1: L2 and L∞ error norms for δt=0.0001, N=40, MQ: ’ðrÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
, c=5.2, and

comparison with Avazzadeh et al. [Avazzadeh, Rizi, Ghaini et al. (2012)] (Method-I)

Time Present Method Method-I
t L2 L∞ L2 L∞

0.1 8.1660e-8 9.1909e-7 7.2262e-5 1.8818e-5

0.2 1.3134e-7 1.3936e-6 1.0648e-4 2.6480e-5

0.3 1.7393e-7 1.7837e-6 1.2475e-4 3.0188e-5

0.4 2.1714e-7 2.173e-6 1.3405e-4 3.1915e-5

0.5 2.6589e-7 2.6139e-6 1.3791e-4 3.2470e-5

0.6 3.2399e-7 3.1429e-6 1.3840e-4 3.2421e-5

0.7 3.9458e-7 3.7823e-6 1.3681e-4 3.2001e-5

0.8 4.8030e-7 4.5658e-6 1.3397e-4 3.1393e-5

0.9 5.8336e-7 5.5011e-6 1.3047e-4 3.0699e-5

1.0 7.0563e-7 6.6145e-6 1.2669e-4 2.9994e-5

Figure 1: Approximate solution: Error versus number of nodes at time 0.1 in spatial
domain [0, 1], corresponding to problem 1
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numerical method and the results are compared with results discussed in Avazzadeh et al.
[Avazzadeh, Rizi, Ghaini et al. (2012)] (Method-I), and the same are shown in Tabs. 2-3
and Fig. 2.

Problem 4.3 In this problem, Eq. (20) is solved with the present method for the following
values of the functions α(x, t)=1+x2, and κ(x, s, t, u)=x2+tu2, subject to the following initial
condition

uðx; 0Þ ¼ sin hxþ 1; x 2 ½0; 1�; (23)

Table 2: L2 and L∞ error norms for δt=0.0001, N=40, c=8, MQ: ’ðrÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
, corresponding

to problem 2

Time Present Method Method-I
t L2 L∞ L2 L∞

0.1 1.8022e-8 2.2784e-7 2.5238e-5 7.3486e-6

0.2 3.121e-8 4.1113e-7 4.4124e-5 1.2618e-5

0.3 4.8468e-8 6.2691e-7 5.8625e-5 1.6448e-5

0.4 8.1653e-8 9.3944e-7 6.9800e-5 1.9233e-5

0.5 1.3738e-7 1.4026e-6 7.8325e-5 2.1268e-5

0.6 2.1761e-7 2.0756e-6 8.4760e-5 2.2710e-5

0.7 3.2293e-7 2.9844e-6 8.9535e-5 2.3722e-5

0.8 4.535e-7 4.1341e-6 9.2955e-5 2.4371e-5

0.9 6.0915e-7 5.5204e-6 9.5293e-5 2.4779e-5

1.0 7.8944e-7 7.1405e-6 9.6750e-5 2.4925e-5

Table 3: Absolute error for different t, and x, MQ: ’ðrÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
, corresponding to

problem 2

x t Exact solution Absolute Error

0.1 0.01 0.08991 1.9703e-11

0.2 0.05 0.15841 1.3513e-8

0.3 0.1 0.20379 8.1282e-8

0.4 0.15 0.22602 1.5278e-7

0.5 0.2 0.22621 1.1920e-7

0.7 0.5 0.14798 1.3717e-6

0.9 0.9 0.040037 2.4739e-6
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and boundary conditions

uð0; tÞ ¼ 1; uð1; tÞ ¼ sin hxþ e�t; 0 � t � T ; (24)

where the exact solution u(x,t)=sinhx+e−xt of the above problem is used from the earlier
work [Avazzadeh, Rizi, Ghaini et al. (2012)]. The error norms L2 and L∞, when the
solution is advanced with step size δt=0.0001 are compared our results with obtained
results in Avazzadeh et al. [Avazzadeh, Rizi, Ghaini et al. (2012)] are shown in Tab. 4
and Fig. 3 respectively. The proposed method gives more accurate results than the
method in Avazzadeh et al. [Avazzadeh, Rizi, Ghaini et al. (2012)].

Problem 4.4 In this problem, we solved Eq. (20) with the exact solution u(x,t)=�x3e�x2t and
with the initial and boundary conditions

uðx; 0Þ ¼ �x3; x 2 ½0; 1�; uð0; tÞ ¼ 0; uð1; tÞ ¼ �e�t; 0 � t � T ; (25)

The values of the functions α(x, t)=x2/2 and κ(x, s, t, u)=(1 − 2x)es−2tu3 are used. The results
of the present kernel based local method is represented in the form norms L2 and L∞ in
Tab. 5 and Fig. 4. These results compared with the results of an other method in
Avazzadeh et al. [Avazzadeh, Rizi, Ghaini et al. (2012)].

Problem 4.5 We consider an other set of function for approximate the problem in Eq. (20)
by the current numerical scheme with the initial condition and boundary conditions given by

uðx; 0Þ ¼ sin x; x 2 ½0; 1�; uð0; tÞ ¼ 0; uð1; tÞ ¼ e�t sinð1Þ; 0 � t � T ; (26)

where α(x, t)=x5+4x2 and κ(x,s,t,u)=(x3 t3+1) s2 u2 and f(x,t) can be found from the exact
solution u(x, t)=e−tsin x, given in Avazzadeh et al. [Avazzadeh, Rizi, Ghaini et al.
(2012)]. The present localized kernel based method is used and the solution is advanced in
time with the time step δt. The results are shown in form of error norms L2 and L∞
respectively and are shown in Tabs. 6-7 and Fig. 5. The proposed method performed more
accurate results than the method in Avazzadeh et al. [Avazzadeh, Rizi, Ghaini et al. (2012)].

Figure 2: Approximate solution: error versus of nodes at time t=0.1 in the spatial domain
[0,1], corresponding to problem 2
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Problem 4.6 Here we applied the local kernel based method for solving Eq. (20) having the
exact solution given by u(x, t)=x cos(t) with initial condition u(x,0)=x, x∈[0,1], and with the
boundary conditions u(0,t)=0, u(1,t)=cos(t), 0≤t≤T. The functions α(x, t)=cos2x+sin(x) and
κ(x, s, t, u)=ex+s+tu2 are used and the function f(x,t) can be found from the exact solution.
The error norms L2 and L∞ are shown in Tab. 8 and Fig. 6.

Problem 4.7 In this last test problem, we find the numerical solution by present numerical
scheme for a 2D problem in the form of Eq. (1) given by

Table 4: L2 and L∞ error norms for δt=0.0001, N=40, c=4.3, MQ: ’ðrÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
,

corresponding to problem 3

Time Present Method Method-I
t L2 L∞ L2 L∞

0.1 5.7009e-8 6.2154e-7 2.8762e-5 5.6669e-6

0.2 8.3627e-8 8.7320e-7 7.1767e-5 1.4970e-5

0.3 1.1948e-7 1.1814e-6 1.1479e-4 2.4301e-5

0.4 1.661e-7 1.5692e-6 1.5411e-4 3.2854e-5

0.5 2.2597e-7 2.0635e-6 1.8929e-4 4.0506e-5

0.6 3.0259e-7 2.6969e-6 2.2070e-4 4.7335e-5

0.7 4.0021e-7 3.5096e-6 2.4891e-4 5.3505e-5

0.8 5.2369e-7 4.546e-6 2.7449e-4 5.9117e-5

0.9 6.7837e-7 5.8545e-6 2.9796e-4 6.4264e-5

1.0 8.6992e-7 7.4851e-6 3.1977e-4 6.9050e-5

Figure 3: Approximate solution: error vs. number of nodes in spatial domain at time t=0.1
of problem 3
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utðx; y; tÞ þ
Z t

0
jðx; y; t; s; uðx; sÞÞds ¼ ðD� bÞuðx; y; tÞ þ f ðx; y; tÞ: (27)

where (x, y)∈[0,1]×[0,1], and t∈[0, T], subject to the conditions: u(0, y, t)=y(y−1)t and
u(x, 0, t)=u(x, 1, 0)=0 for all t∈(0, T], and u(x, y, 0)=0 and uðx; y; tÞ ! 0 as x ! þ1
The function κ(x, y, s, t, u)=exp(−β (t−s))u(x, s) is selected, where as the function f(x, y, t)
is calculated using the exact solution taken from Han et al. [Han, Zhu, Brunner et al.
(2006)] as u(x, y, t)=y(y−1)t exp(−βx). The results of the present kernel based local
method is represented in the form norms L2 and L∞ are presented in Tab. 9 and Fig. 7

Table 5: L2 and L∞ error norms for δt=0.0001, N=40, c=3.2, corresponding to problem 4

Time Present Method Method-I
t L2 L∞ L2 L∞

.1 5.6637e-8 8.1797e-7 2.9221e-4 8.9279e-5

0.2 6.4247e-7 7.2644e-6 3.8885e-4 1.1055e-4

0.3 1.4046e-6 1.4915e-5 4.2964e-4 1.1711e-4

0.4 2.1522e-6 2.215e-5 4.4344e-4 1.1751e-4

0.5 2.8162e-6 2.8506e-5 4.4216e-4 1.1473e-4

0.6 3.3698e-6 3.3817e-5 4.3204e-4 1.1021e-4

0.7 3.8078e-6 3.8205e-5 4.1670e-4 1.0478e-4

0.8 4.1361e-6 4.1696e-5 3.9825e-4 9.9165e-5

0.9 4.3669e-6 4.4425e-5 3.7824e-4 9.3371e-5

1.0 4.5149e-6 4.6522e-5 3.5750e-4 8.7583e-5

Figure 4: Approximate solution: Error versus number of nodes in space domain [0, 1], at
t=0.1 to problem 4
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Table 6: L2 and L∞ error norms for δt=0.0001, N=10, c=3.6, MQ: of problem 5

Time Present Method Method-I
t L2 L∞ L2 L∞

0.1 2.0737e-7 9.5969e-7 7.4402e-5 1.8045e-5

0.2 3.1607e-7 1.4274e-6 8.6495e-5 2.0161e-5

0.3 3.7380e-7 1.6866e-6 8.7941e-5 2.0125e-5

0.4 4.0106e-7 1.8103e-6 8.5265e-5 1.9312e-5

0.5 4.0873e-7 1.845e-6 8.0760e-5 1.8165e-5

0.6 4.0354e-7 1.8216e-6 7.5505e-5 1.6893e-5

0.7 3.9002e-7 1.7604e-6 7.0018e-5 1.5621e-5

0.8 3.7130e-7 1.6758e-6 6.4581e-5 1.4378e-5

0.9 3.4959e-7 1.5776e-6 5.9339e-5 1.3192e-5

1.0 3.2641e-7 1.4728e-6 5.4369e-5 1.2075e-5

Table 7: Absolute error for different t, and x, MQ: ’ðrÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2

p
, corresponding to problem 5

x t Exact Absolute Error

0.1 0.1 0.09033 4.4754e-7

0.2 0.2 0.16266 1.2312e-6

0.4 0.4 0.26103 1.7712e-6

0.5 0.5 0.29079 1.6049e-6

0.7 0.7 0.31991 9.4521e-7

0.9 0.9 0.31848 2.4739e-6

Figure 5: Approximate solution: Error versus number of nodes in spatial domain [0, 1], at
time t=0.1 to problem 4
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Table 8: L2 and L∞ error norms for problem 7 with δt=0.0001, N=40, c=1.83 using MQ

Time Present Method Method-I
t L2 L∞ L2 L∞

0.1 1.03610e-9 1.4038e-8 3.3649e-7 2.0870e-7

0.2 1.0384e-9 1.4140e-8 3.9640e-7 2.1980e-7

0.3 1.02538e-9 1.3986e-8 4.1812e-7 2.2400e-7

0.4 1.0018e-9 1.3689e-8 4.2893e-7 2.2640e-7

0.5 9.7049e-10 1.3285e-8 4.3757e-7 2.2860e-7

0.6 9.3274e-10 1.2793e-8 4.4727e-7 2.3130e-7

0.7 8.8991e-10 1.2225e-8 4.5903e-7 2.3460e-7

0.8 8.4356e-10 1.1596e-8 4.7297e-7 2.3830e-7

0.9 7.9563e-10 1.0919e-8 4.8973e-7 2.4280e-7

1.0 7.4872e-10 1.0209e-8 5.0876e-7 2.4780e-7

Figure 6: Approximate solution with N=40

Table 9: L2 and L∞ error norms for δt=0.0001 Using IMQ ’ðrÞ¼1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2

p

t I×J Shape parameter L2 L∞

0.1 4×4 0.66 5.0351e-5 7.6403e-4

0.5 4.1577e-4 5.5003e-3

0.1 8×8 0.42 7.9110e-5 2.2450e-3

0.5 5.5718e-4 1.2990e-2

0.1 16×16 0.14 6.9801e-5 3.2969e-3

0.5 3.7400e-4 1.7412e-2

0.1 32×32 0.066 7.3087e-5 6.7045e-3

0.5 3.7354e-4 3.4084e-2
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respectively. These solutions are well comparable with exact and numerical results obtained
in Han et al. [Han, Zhu, Brunner et al. (2006)].

5 Conclusion

In this work, a local kernel based numerical scheme is developed for solving the nonlinear
Volterra type integro-differential equations. The numerical scheme is local in nature like
finite differences numerical scheme and the system matrices are small and well
conditioned. The numerical scheme is stable for a large range of RBF shape parameters.
Convergence and stability of the proposed numerical scheme have been established. A
number of 1D and 2D integral equations have been solved to validate the present
numerical scheme. The efficiency and applicability of the proposed method is well
demonstrated and compared with some available results. The developed numerical
scheme is an alternative for solving such types of models effetely and accurately.
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