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Abstract: In this study, we present a numerical scheme similar to the Galerkin method in
order to obtain numerical solutions of the Bagley Torvik equation of fractional order 3/2. In
this approach, the approximate solution is assumed to have the form of a polynomial in the
variable t = xα, where α is a positive real parameter of our choice. The problem is firstly
expressed in vectoral form via substituting the matrix counterparts of the terms present
in the equation. After taking inner product of this vector with nonnegative integer powers
of t up to a selected positive parameter N, a set of linear algebraic equations is obtained.
After incorporation of the boundary conditions, the approximate solution of the problem
is then computed from the solution of this linear system. The present method is illustrated
with two examples.
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1 Introduction

Historically, the idea of fractional calculus first appeared in a letter written by Leibniz to
L’Hôspital in 1695. Curiously, the first rigorous definition of derivatives having
noninteger orders only appeared in a work of Lacroix [Lacroix (1819)] in 1819. Over the
years, the subject of fractional calculus attracted many mathematicians; as a result,
different approaches were adopted to define fractional differential operators. Interested
readers may refer to Ross [Ross (1977)] for an account on the history of fractional calculus.

Although the concept of fractional derivative has such a long history, for almost three
centuries it remained as a topic which is only of theoretical interest for mathematicians.
The realization that it can be used as a tool to explain physical phenomena took place as
late as 1980s. Several of first such studies belong to Bagley et al. [Bagley and Torvik
(1983, 1984)], where they used fractional calculus to describe the behaviour of real
materials. The equations that they proposed in order to simulate the motion of a rigid
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plate immersed in a Newtonain fluid contained derivative of order 3/2. Fractional derivatives
have also been used in various fields such as control theory [Manabe (2002)],
electrochemistry [Oldham (2010)], oil industry [Fitt, Goodwin, Ronaldson et al. (2009)]
and vibrations [Hedrih (2006)].

In this study, our main interest will be to obtain approximate solutions to the Bagley-Torvik
equation given by

PðxÞy00ðxÞ þ RðxÞyð3=2ÞðxÞ þ SðxÞyðxÞ ¼ f ðxÞ; a � x � b; (1)

under the boundary conditions

yðaÞ ¼ c0; yðbÞ ¼ c1: (2)

Here y(x) is the unknown function to be determined and y(3/2)(x) is the fractional derivative
of order 3/2 which will be defined in the next section, P(x), R(x), S(x) and f(x) are real-valued
functions defined on a≤x≤b, and a, b, c0, c1 are real numbers. Here, we note that it is far more
common in the literature to consider Eq. (1) subject to initial conditions rather than
boundary conditions as given in Eq. (2). The existence and uniqueness of the solution to
problem Eqs. (1)–(2) is proved in Al-Mdallal et al. [Al-Mdallal, Syam and Anwar
(2010)] in the special case that P(x), R(x) and Q(x) are constants. We refer the reader to
Staněk [Staněk (2013)] for a treatment of existence and uniqueness of solutions of
nonlinear fractional differential equations of Bagley-Torvik type.

A few words on the physical significance of Eq. (1) might be helpful for the reader. The
relationship between the stress field and the transverse fluid velocity field contains a
fractional derivative; namely, the stress field is proportional to the fractional derivative of
order 1/2 of the transverse fluid velocity field. In view of this phenomenon, if a rigid
plate is immersed in a Newtonian fluid and is applied an external force f(x), the
displacement of this plate is known to satisfy the Bagley-Torvik Eq. (1). The reader is
referred to Esmaeili [Esmaeili (2017)] for a more thorough explanation.

Since the Bagley-Torvik Eq. (1) is of great importance, a substantial amount of literature has
been devoted to the examination of its various aspects. Among these studies, a large
proportion is related to obtaining its numerical solutions. To name a few of such studies,
Yüzbaşı [Yüzbaşı (2013)] used a collocation method based on Bessel polynomials to
numerically solve Bagley-Torvik equation, while Zahra et al. [Zahra and Elkholy (2013)]
used cubic spline polynomials for the same purpose. In Mohammadi [Mohammadi
(2014)], Mohammadi solved Bagley-Torvik equation numerically using Chebyshev
wavelet operational matrix. Other collocation methods were utilized by Mohammadi
et al. [Mohammadi and Mohyud-Din (2016)], where the base functions were chosen to
be Legendre polynomials, and by Al-Mdallal et al. [Al-Mdallal, Syam and Anwar
(2010)], where collocation was combined with shooting method. In addition, Bansal
et al. [Bansal and Jain (2016)] used generalized differential transform method in order to
obtain analytical solutions of Bagley-Torvik equations. More recent studies on the topic
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include Legendre-collocation spectral method by Al-Mdallal et al. [Al-Mdallal and Omer
(2018)], a method employing Laplace transform in conjunction with Laguerre
polynomials by Ji et al. [Ji and Hou (2020)] and a method based on fractional Taylor
vector approximation [Krishnasamy and Razzaghi (2016)]. Lastly, Esmaeili [Esmaeili
(2017)] used exponential integrators to solve the Bagley-Torvik equation by firstly
converting it to an equation of order 1/2.

In this paper, we present a Galerkin-like approach to solve the Bagley-Torvik Eq. (1) under
the boundary conditions Eq. (2) instead of the more commonly used initial conditions. We
claim that the presented method gives fairly accurate results with relatively small
computational cost.

The organization of the paper is as follows: In Section 2, some preliminary information is given.
The Galerkin-like method is explained in Section 3. Then, we discuss two numerical examples
in Section 4. Finally, the conclusions regarding the present scheme are given in Section 5.

2 Basic definitions

In this section, we define the Caputo derivative for the fractional derivative present in
Eq. (1). The following definitions related to the Caputo derivative are taken from
Momani et al. [Momani and Odibat (2007)].

Definition 2.1 A real-valued function f(x) defined for x>0 is said to belong to the space Cμ,
where l 2 R, if there exist a real number p>μ and a function f1(x) ∈ C[0,∞] such that f(x)=
xpf1(x).

A direct consequence of this definition is that Cl�Cc for γ<μ.

Definition 2.2 A real-valued function f(x) defined for x>0 is said to belong to the space Cm
l ,

where m 2 N [ f0g; l 2 R, if f (m)(x) ∈ Cμ holds for the m-th derivative of f(x).

Now, we are ready for the definition of fractional derivative.

Definition 2.3 Let f ∈ Cμ, where μ≥−1. The Riemann-Liouville fractional integral operator
of order α≥0 of f, denoted by Jα f(x) is defined by the following:

J 0f ðxÞ¼ f ðxÞ;

J af ðxÞ¼ 1

�ðaÞ
Z x

0
ðx� tÞa�1f ðtÞdt; a>0:

The Γ that appears in the above definition is the special function defined by

�ðzÞ¼R1
0 xz�1e�xdx

for every complex number z which is not a nonpositive integer. The fractional derivative
in the Caputo sense is advantageous over the Riemann-Liouville sense in that it is easier
to deal with the integer order initial conditions using fractional derivative in the Caputo
sense [Staněk (2013)]. Therefore, the following definition is in order:

Definition 2.4 Let f(x) be a real-valued function. The fractional derivative of f(x) in the
Caputo sense, denoted by Da

�f ðxÞ, is defined by
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Da
�f ðxÞ ¼ Jm�aDmf ðxÞ ¼ 1

�ðm� aÞ
Z x

0
ðx� tÞm�a�1f ðmÞðtÞdt;

where m − 1 < α < m and m 2 N, f 2 Cm
�1 and D ¼ d

dx
is the usual derivative of first order.

The following consequences for the Caputo fractional derivative will be important for us in
the remaining of the paper:

Da
�c¼0; ðc is a constantÞ

Da
�x

b ¼
0; if b 2 N [ f0g andb�bac
�ðbþ 1Þ
bþ 1� a

xb�a; ifb>bac

8<
:

Da
�ðf ðxÞþgðxÞÞ¼Da

�ðf ðxÞÞþDa
�ðgðxÞÞ:

(3)

Here, bac stands for the largest integer that is not greater than α. It is important to notice that
the above does not define Da

�x
b for 0<β<1. Therefore, for these values of β, we use the

identity

J axb ¼ �ðbþ 1Þ
bþ 1� a

xb�a; b 2 ð0; 1Þn 1

2

� �
;

which holds for the fractional derivative of order α of xβ in the Riemann-Liouville sense.
Note that this fractional derivative does not exist if b ¼ 1

2 : The proofs of these properties
are straightforward using Definition 2.4. The interested reader can find them among other
useful properties in a study by Diethelm et al. [Diethelm, Ford, Freed et al. (2005);
Podlubny (1998)].

3 Method of solution

In this section, we will describe the procedure to solve Eq. (1). The same method was
employed to obtain approximate solutions of high-order Fredholm integro-differential
equations [Türkyılmazoğlu (2014)] and high-order integro differential equations with
weakly singular kernel [Yüzbaşı and Karaçayır (2016)].

As the first step of the Galerkin-like scheme, we assume that the unique solution y(x) of
Eq. (1) is uniquely expressible in the form of a power series

yðxÞ ¼
X1
k¼0

akt
k ;

where t=xα for some α>0 such that Ma 6¼ 1
2 for any integer M (see the last paragraph of

Section 2). Truncating this power series after the (N+1)st term then yields

yN ;aðxÞ ¼
XN
k¼0

akx
ak ¼ XðxaÞ � A: (4)

Here, the variable row vector X(x) and the column vector A are given by
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XðxÞ ¼ ½ 1 x x2 . . . xN �; A ¼ ½ a0 a1 a2 . . . aN �T :
Under this setting, the coefficients ai, i=0, 1,… , N are the unknown constants which will be
determined as the output of the method. The approximate solution yN,α, which is a
polynomial of degree N of the variable t=xα, can then be obtained from these coefficients.

Since the solution method should be programmable for computer, we would like all the
operations to be expressed in terms of matrices. To this end, the second ordinary
derivative of yN,α(x) can be expressed as a product of matrices with the help of a special
matrix. Namely, if we define B to be the (N+1) × (N+1) matrix such that Bk+1, k+1=
kα(kα−1) for k=1,2, …, N and Bi,j = 0 elsewhere, then the following equality holds:

y
00
N ;aðxÞ ¼ x�2XðxaÞBA

¼ ½ x�2 xa�2 . . . xNa�2 �

0 0 . . . 0

0 aða� 1Þ . . . 0

..

. ..
. . .

. ..
.

0 . . . 0 NaðNa� 1Þ

2
66664

3
77775

a0
a1
a2

..

.

aN

2
66666664

3
77777775
:

(5)

Here, multiplication by the term x−2 from the left-hand side is to be interpreted as scalar
multiplication.

As for the fractional derivative of order 3/2 of the approximate solution yN,α(x), it is useful to
rewrite property Eq. (3) of the Caputo derivative for a¼ 3

2 as follows:

D3=2
� c¼0; ðc is a constantÞ

D3=2
� xb ¼

0; if b 2 N [ f0g and b�1
�ðbþ 1Þ
b� 1

2

xb�
3
2; if b>1

8<
:

D3=2
� ðf ðxÞþgðxÞÞ¼D3=2

� ðf ðxÞÞþD3=2
� ðgðxÞÞ:

In order to deal with the task of expressing the fractional derivative of yN,α by means
of a product of matrices, we define a new auxiliary matrix as follows: Let Γ(3/2),α be the
(N+1) × (N+1) diagonal square matrix defined by

�
ð3=2Þ;a
kþ1;kþ1 ¼

�ðkaþ 1Þ
� ka� 1

2

� � ; if k�1 and ka 6¼1;

0; otherwise:

8<
:

Note again that all the entries of Γ(3/2),α that are not on the main diagonal are equal to 0. As
an illustration, for the choice of α=1, the matrix Γ(3/2),α is given by

A Galerkin-Type Fractional Approach for Solutions of Bagley-Torvik Equations 945



Γð3=2Þ;1 ¼

0 0 0 0 . . . 0
0 0 0 0 . . . 0

0 0
�ð3Þ

�ð3=2Þ 0 . . . 0

0 0 0
�ð4Þ

�ð5=2Þ 0 . . . 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 . . .
�ðN þ 1Þ
� N � 1

2

� �

2
66666666666664

3
77777777777775

:

For general α>0, in view of the properties of fractional derivative stated at the end of Section
2, we have

yð3=2ÞN ;a ðxÞ¼x�3=2XðxaÞΓð3=2Þ;aA: (6)

The next step is to substitute the matrix expression Eq. (4) for yN,α(x), the matrix expression
Eq. (5) for the ordinary second derivative yN,α′′ (x) and the expression Eq. (6) for the
fractional derivative yð3=2ÞN ;a ðxÞ into Eq. (1). This gives us the relation

GðxÞA ¼ f ðxÞ; (7)

where

GðxÞ ¼ PðxÞx�2XðxaÞBþ RðxÞx�3=2XðxaÞ�ð3=2Þ;a þ SðxÞXðxaÞ:
Now, it is time to apply the central idea of the present numerical method. Namely, we now
apply inner product to Eq. (7) with the elements of the set Ф = {1, xα, x2α, …, xNα}. The
inner product to be used here is the standard inner product in the Hilbert space L2[a, b],
which is defined by

, f ; g >¼
Z b

a
f ðxÞgðxÞdx;

where f and g are two functions from L2[a,b]. For each k=0, 1, … , N, inner product of Eq.
(7) with xkα results in a linear equation in the unknown coefficients ak, yielding a total of N+
1 linear equations. Thus, Eq. (7) will have been converted to an algebraic linear system
WA=F, where the (N+1) × (N+1) matrix W and the column matrix F of length N+1 are
given by

Wi;j¼, xaði�1Þ;GðxÞ1;j >; Fi;1¼, xaði�1Þ; f ðxÞ >
for all i, j=1, 2, … , N+1. More explicitly, W and F are given by
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W ¼

, 1;GðxÞ1;1 > , 1;GðxÞ1;2 > . . . , 1;GðxÞ1;Nþ1 >
, xa;GðxÞ1;1 > , xa;GðxÞ1;2 > . . . , xa;GðxÞ1;Nþ1 >

, x2a;GðxÞ1;1 > , x2a;GðxÞ1;2 > . . . , x2a;GðxÞ1;Nþ1 >

..

. ..
. ..

. ..
.

, xNa;GðxÞ1;1 > , xNa;GðxÞ1;2 > . . . , xNa;GðxÞ1;Nþ1 >

2
666664

3
777775
;

F ¼ , 1; f ðxÞ > , xa; f ðxÞ > , x2a; f ðxÞ > . . . , xNa; f ðxÞ >� �T
:

Before proceeding with the solution of the linear system WA=F, a restriction on the
approximate solution yN,α(x) is in order. We would like the error of the approximate
solution to be equal to zero on the boundary points; in other words, we demand yN,α to
satisfy the boundary conditions Eq. (2) given by y(a)=c0 and y(b)=c1. This restriction we
impose on yN,α implies the linear equations

PN
k¼0 aka

ka ¼ c0 and
PN

k¼0 akb
ka ¼ c1. In

order to form a new linear system including these two equations in a0, a1, …, aN, we
express the initial conditions in vector form. They can be written as

1 aa a2a . . . aNa
� �

A ¼ c0; 1 ba b2a . . . bNa
� �

A ¼ c1: (8)

With the aim of including these boundary conditions in the algorithm, we sacrifice the
equations corresponding to inner product with x0=1 and x1 in favour of Eq. (8)
corresponding to the boundary conditions Eq. (2). This amounts to updating the first two
rows of the system matrix W and the first two entries of the right-hand size F, thus
yielding a new system ~WA ¼ ~F, explicitly given by

~W ¼

1 aa . . . aNa

1 ba . . . bNa

, x2a;GðxÞ1;1 > , x2a;GðxÞ1;2 > . . . , x2a;GðxÞ1;Nþ1 >

, x3a;GðxÞ1;1 > , x3a;GðxÞ1;2 > . . . , x3a;GðxÞ1;Nþ1 >

..

. ..
. ..

. ..
.

, xNa;GðxÞ1;1 > , xNa;GðxÞ1;2 > . . . , xNa;GðxÞ1;Nþ1 >

2
666666664

3
777777775
;

~F ¼ c0 c1 , x2a; f ðxÞ > , x3a; f ðxÞ > . . . , xNa; f ðxÞ >� �T
:

Finally, provided that the modified system matrix ~W is of full rank, we compute the matrix
of unknown coefficients as A¼ ~W�1~F, and thus the approximate solution is obtained by

yN ;aðxÞ ¼ a0 þ a1xa þ . . .þ aNxNa:

Before moving on to the next section, it will be of benefit to summarize the scheme
explained in this section in a step-by-step fashion. Such a description can be as follows:
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STEP 1: CHOOSE N AND α
STEP 2: FORM THE VECTOR OF UNKNOWNS A ¼ ½ a0 a1 a2 � � � aN �T
STEP 3: FORM THE VECTOR XðxaÞ ¼ ½ 1 xa x2a � � � xNa �
STEP 4: FORM THE MATRIX B AS FOLLOWS: INITIALIZE B = 0. THEN FROM i=1
to N DO

SET Bi+1,i+1= iα(iα − 1)

STEP 5: FORM THE MATRIX Γ3/2,α AS FOLLOWS: INITIALIZE Γ3/2,α = 0. THEN
FROM k=1 to N DO

IF kα ≠ 1 SET �
3=2;a
kþ1;kþ1 ¼

�ðkaþ 1Þ
�ðka� 1

2Þ
STEP 6: FORM THE VECTOR G(x) AS FOLLOWS:

G(x) = P(x)x−2X(xα)B + R(x)x−3/2X(xα)Γ(3/2),α + S(x)X(xα)
STEP 7: DEFINE THE MATRIX WAS FOLLOWS:

FIRST ROW OF W ¼ ½ 1 aa a2a � � � aNa �
SECOND ROW OF W ¼ ½ 1 ba b2a � � � bNa �
FOR i = 3 TO N + 1, j = 1 to N + 1 DO

SET Wi;j ¼
R b
a x

ði�1ÞaGðxÞ1;jdx
STEP 8: DEFINE THE COLUMN MATRIX F AS FOLLOWS:

F1,1 = c0, F2,1 = c1
FOR i = 3 TO N + 1 DO

SET Fi;1 ¼
R b
a x

ði�1Þaf ðxÞdx
STEP 9: SOLVE THE LINEAR ALGEBRAIC SYSTEM WA = F
STEP 10: SET yN,α(x) = a0 + a1x

α + a2x
2α + … + xNα

END

4 Numerical examples

In this section, we solve two example problems using the method explained in Section 3.

Example 1. Let us consider the following Bagley-Torvik equation with constant coefficients
studied also in Yüzbaşı et al. [Yüzbaşı (2013); Jafari, Yousefi, Firoozjaee et al. (2011)]:

y00ðxÞ þ yð3=2ÞðxÞ þ yðxÞ ¼ 1þ x; 0 � x � 1; yð0Þ ¼ 1; yð1Þ ¼ 2: (9)

The exact solution of this problem is yexact(x)=1+x. Using the method explained in Section 3,
we obtained approximate solutions of Eq. (9) corresponding to the values 1 and 1/3 for the
parameter α and several values for the parameter N. For instance, applying the method with
N=4 results in the linear system given by

948 CMES, vol.123, no.3, pp.941-956, 2020



1 0 0 0 0
1 1 1 1 1

0:333333 0:25 1:511454 2:669670 3:855880
0:25 0:2 1:168168 2:163496 3:236019
0:2 0:166666 0:953176 1:819387 2:788280

2
66664

3
77775

a0
a1
a2
a3
a4

2
66664

3
77775 ¼

1
2

0:583333
0:45

0:366666

2
66664

3
77775:

Solving this system yields the unknown coefficients given by

a0¼1; a1¼1; a2¼�2:051	10�15; a3¼�9:335	10�15; a4¼�2:907	10�15:

Thus, the approximate solution y4,1 is obtained by

y4;1ðxÞ¼1þx�2:051	10�15x2�9:335	10�15x3�2:907	10�15x4:

In a similar manner, we have carried out the calculations required to compute the
approximate solution y4,1/3 and obtained

y4;1=3ðxÞ¼1�1:1102	10�15x2=3þx�1:0111	10�15x4=3:

We obtained the approximate solutions corresponding to other values of N for both values of
the parameter α. In order to measure their accuracy, we consider their actual absolute error
given by eN,α(x)=|yN,α(x) − yexact(x)|. Fig. 1 depicts the absolute actual errors of the
approximate solutions obtained by N=4,5,6,9 corresponding to the parameter value α=1. It
is seen from the plot that increasing N significantly improves the accuracy of the
approximate solutions. In addition, the approximate solutions corresponding to N=6 and
N=9 are illustrated together with the exact solution for both values of the parameter α in
Figs. 2 and 3. The approximate solutions seem indistinguishable from the exact solution.
Tabs. 1 and 2 give a more detailed comparison of the actual and approximate solutions for
selected values of x.

Example 2. Next, let us consider the following constant coefficient Bagley-Torvik equation
without ordinary derivative studied in Diethelm et al. [Diethelm, Ford, Freed et al. (2005);
Esmaeili and Shamsi (2011)]:

yð3=2ÞðxÞ þ yðxÞ ¼ 2
ffiffiffi
x

p
�ð3=2Þ þ x2 � x; 0 � x � 1; yð0Þ ¼ 0; yð1Þ ¼ 0: (10)

The exact solution of this problem is yexact(x) = x2 − x. As in the previous example, we
obtained approximate solutions which are polynomials of x and

ffiffiffi
x3

p
; in other words, we

used the parameter values α=1 and α=1/3. Setting N=5 and carrying out the calculations
explained in Section 3 gives rise to the linear algebraic system
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Figure 1: Graphics of the absolute error |eN,1(x)| of the approximate solutions of Eq. (9)
corresponding to N=4,5,6 and 9
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Figure 2: Comparison of the exact solution of Eq. (9) with the approximate solutions
obtained using N=6 and N=9 corresponding to α=1
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Figure 3: Comparison of the exact solution of Eq. (9) with the approximate solutions
obtained using N=6 and N=9 corresponding to α=1/3

Table 1: Values of the approximate solutions yN,1 of Eq. (9) and the exact solution for several
values of N

x y4,1(x) y5,1(x) y6,1(x) y9,1(x) yexact(x)

0 1 1 1 1 1

0.2 1.2 1.2 1.2 1.2 1.2

0.4 1.3999999999 1.3999999999 1.4 1.4 1.4

0.6 1.5999999999 1.6 1.6 1.6 1.6

0.8 1.7999999999 1.8 1.8 1.8 1.8

1 2 2 2 2 2

Table 2: Values of the approximate solutions yN,1/3 of Eq. (9) and the exact solution for several
values of N

x y4,1/3(x) y5,1/3(x) y6,1/3(x) y9,1/3(x) yexact(x)

0 1 1 1 1 1

0.2 1.2000000001 1.1999999999 1.2 1.2 1.2

0.4 1.3999999999 1.3999999999 1.4 1.4 1.4

0.6 1.5999999999 1.6000000001 1.6 1.6 1.6

0.8 1.7999999999 1.7999999999 1.8 1.8 1.8

1 2 2 2 2 2
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1 0 0 0 0 0

1 1 1 1 1 1

0:333333 0:25 0:844788 1:169670 1:455880 1:712170

0:25 0:2 0:668168 0:963496 1:236019 1:486659

0:2 0:166666 0:553176 0:819387 1:073994 1:313718

0:166666 0:142857 0:472193 0:712913 0:949603 1:176867

2
666666664

3
777777775

a0
a1
a2
a3
a4
a5

2
666666664

3
777777775

¼

0

0

0:594788

0:468168

0:386510

0:329336

2
666666664

3
777777775

for α=1 and to the system

1 0 0 0 0 0

1 1 1 1 1 1

0:6 0:236301 0:623187 0:375 1:036530 1:184618

0:5 0:270352 0:514011 0:333333 0:875342 1:021250

0:428571 0:261986 0:441453 0:3 0:759555 0:898720

0:375 0:245433 0:388461 0:272727 0:671918 0:803169

2
666666664

3
777777775

a0
a1
a2
a3
a4
a5

2
666666664

3
777777775

¼

0

0

0:939308

0:819370

0:727272

0:654218

2
666666664

3
777777775

for α=1/3. These two systems yield the unknown coefficients

a0¼0; a1¼�0:999999; a2¼0:999999; a3¼2:955	10�12; a4¼�3:013	10�12;

a5¼1:066	10�12

for α=1 and

a0¼0; a1¼1:185766; a2¼8:262147; a3¼�6:404463; a4¼�10:245550;

a5¼7:202100

for α=1/3, resulting in the approximate solutions
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y5;1ðxÞ¼�0:999999xþ0:999999x2þ2:955	10�12x3�3:013	10�12x4

þ1:066	10�12x5;

y5;1=3ðxÞ¼1:185766x1=3þ8:262147x2=3�6:404463x�10:245550x4=3þ7:202100x5=3:

The actual absolute errors corresponding to several N values are visualized in Fig. 4 for α=1
and in Fig. 5 for α=1/3. It can be observed that the approximate solutions undergo smaller
error as we increase N. In addition, the approximate solution values corresponding to N=6
and N=9 and the exact solution values are tabulated in Tab. 3 for selected values of x.
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Figure 4: Graphics of the absolute error |eN,1(x)| of the approximate solutions of Eq. (10)
corresponding to N=5,6,7 and 9
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Figure 5: Graphics of the absolute error |eN,1/3(x)| of the approximate solutions of Eq. (10)
corresponding to N=6,7,8 and 9
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Let us now compare the solutions we have obtained with Adams-Bashforth-Moulton
method (ABM) [Diethelm, Ford, Freed et al. (2005)] and the pseudospectral method
(PM) [Esmaeili and Shamsi (2011)]. As only the maximum absolute error over the entire
interval [0,1] is considered in these two studies, we calculated the maximum absolute
error eN ;a

		 		
1 of our approximate solutions. The results are collected in Tab. 4. The

values show that the present scheme outperforms the other two methods.

5 Conclusion

In this paper, we have presented a Galerkin-like approach for the approximate solution of the
fractional Bagley-Torvik equation. It turns out that our approach gives fairly good results
besides its simplicity. Another advantage of this approach is that the accuracy of the
approximate solutions undergo a significant improvement with increasing N values.
Simulation results on two example problems show that high levels of accuracy can be
attained even for small values of N. Comparison of one example problem with other
methods has revealed that the present scheme gives more accurate results for similar
parameter values. On the whole, the results make it clear that the numerical scheme
presented in this paper can be relied upon when one would like to solve fractional-order
differential equations of Bagley-Torvik type.

Acknowledgement: The authors wish to express their appreciation to the reviewers for their
helpful suggestions which greatly improved the presentation of this paper.

Funding Statement: The authors received no specific funding for this study.

Table 3: Values of the approximate solutions yN,1 and yN,1/3 of Eq. (10) and the exact solution
for N=6 and N=9

x y6,1(x) y9,1(x) y6,1/3(x) y9,1/3(x) yexact(x)

0 0 0 0 0

0.2 −0.160000000007319 −0.160000000000078 −0.160000000084956 − 0.160000000001054 − 0.16

0.4 −0.240000000006765 −0.240000000000098 −0.240000000080142 − 0.240000000000987 − 0.24

0.6 −0.240000000004904 −0.240000000000058 −0.240000000059207 − 0.240000000000727 − 0.24

0.8 −0.160000000002833 −0.160000000000039 −0.160000000031111 − 0.160000000000382 − 0.16

1 0 0 0 0 0

Table 4: Maximum absolute errors for x ∈ [0, 1] in Example 2

(N,α)=
(6,1)

(N,α)=
(6,1/2)

(N,α)=
(9,1)

(N,α)=
(9,1/2)

PM (N,α)=
(10,1/2)

ABM h=
1/20,α=0.5

Max. error 8.935E−11 8.627E−11 8.257E−13 1.067E−12 6.83E−4 3.42E−3
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