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Crank-Nicolson ADI Galerkin Finite Element Methods for Two
Classes of Riesz Space Fractional Partial Differential Equations

An Chen1, *

Abstract: In this paper, two classes of Riesz space fractional partial differential equa-
tions including space-fractional and space-time-fractional ones are considered. These two
models can be regarded as the generalization of the classical wave equation in two space
dimensions. Combining with the Crank-Nicolson method in temporal direction, efficient
alternating direction implicit Galerkin finite element methods for solving these two frac-
tional models are developed, respectively. The corresponding stability and convergence
analysis of the numerical methods are discussed. Numerical results are provided to verify
the theoretical analysis.

Keywords: Fractional partial differential equations, Galerkin approximation, alternating
direction implicit method, stability, convergence.

1 Introduction
In this paper, we mainly consider the development of the efficient alternating direction im-
plicit (ADI) Galerkin finite element methods for solving the two-dimensional Riesz space
fractional partial differential equations including space-fractional and space-time-fractional
ones. Let T > 0 be a fixed time. The space-fractional partial differential equation is de-
scribed by

∂2u

∂t2
= Kx

∂2α1u

∂|x|2α1
+Ky

∂2α2u

∂|y|2α2
+ f(x, y, t), (x, y, t) ∈ Ω× (0, T ],

u = 0, (x, y, t) ∈ ∂Ω× (0, T ],

u(x, y, 0) = φ0(x, y), ut(x, y, t)|t=0 = φ1(x, y), (x, y) ∈ Ω,

(1)

in which 1
2 < α1, α2 < 1,Kx,Ky > 0, and Ω = (a, b)× (c, d). The functions f, φ0, and

φ1 are assumed to be suitably smooth. The fractional operator ∂2α1

∂|x|2α1
is in the Riesz sense,

that is
∂2α1u

∂|x|2α1
= −c1(RLD

2α1
a,x u+RL D

2α1

x,b u),
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where c1 = 1
2 cos(α1π) . Here, for n−1 < β < n, n ∈ N, the Riemann-Liouville derivatives

RLD
β
a,x and RLD

β
x,b are defined respectively by

RLD
β
a,xu(x, y, t) =

1

Γ(n− β)

∂n

∂xn

∫ x

a
(x− s)n−β−1u(s, y, t)ds,

RLD
β
x,bu(x, y, t) =

(−1)n

Γ(n− β)

∂n

∂xn

∫ b

x
(s− x)n−β−1u(s, y, t)ds.

The fractional operator ∂2α2

∂|y|2α2
is also in the Riesz sense, and can be given similarly.

Replacing the second order partial derivative in time in (1) with Caputo derivative oper-
ator CD

β
0,t with order β ∈ (1, 2), we obtain the following space-time-fractional partial

differential equation in two space dimensions,

CD
β
0,tu(x, y, t) = Kx

∂2α1u

∂|x|2α1
+Ky

∂2α2u

∂|y|2α2
+ f(x, y, t), (2)

in which the Caputo derivative operator CD
β
0,t is defined by

CD
β
0,tu(x, y, t) =

1

Γ(2− β)

∫ t

0
(t− s)1−β ∂

2u(x, y, s)

∂s2
ds.

The initial and boundary conditions for (2) are imposed as same with the Eq. (1).
When α1 = α2 = 1 and Kx = Ky (and β = 2 for (2)), then both the Eqs. (1) and
(2) reduce to the classical partial differential wave equations in two spatial dimensions. So,
these two fractional models (1) and (2) can be regarded as the generalization of the classical
wave equations.
In recent years, fractional approach has been received many attentions as a powerful model-
ing methodology, and it is widely applied in materials and mechanics, anomalous diffusion,
turbulence, wave propagation, etc. In particular, one of the resulting equations may be the
space-fractional model (1) or the space-time-fractional model (2). Recently, the fraction-
al model which involves the Riesz derivative in space or the Caputo derivative in time
has attracted many researchers’ attention. Li et al. [Li, Yi and Kurths (2018)] introduced
the fractional convection operator with Riesz derivative. By employing a continuous time
random walks (CTRWs) scheme on one-dimensional lattice and choosing certain kind of
two-sided power-law jump length distribution, Li et al. [Li and Yi (2019)] obtained a frac-
tional convention equation containing Riesz derivative. Cai et al. [Cai and Li (2019a)]
further studied the properties of Riesz derivative and clarified the relationship between
Riesz derivative and fractional Laplacian. In addiction, they also investigated the regularity
of the solution to a corresponding fractional differential equation [Cai and Li (2019b)]. A-
man et al. [Aman, Al-Mdallal and Khan (2018)] investigated the effect of second order slip
on magnetohydrodynamic flow of a fractional Maxwell fluid by considering the Caputo
derivative in time. Al-Mdallal et al. [Al-Mdallal, Abro and Khan (2018)] also considered
a kind of non-Newtonian models in a porous medium, namely fractional Walter’s liquid
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model by fractional approach in . Bira et al. [Bira, Raja Sekhar and Zeidan (2018)] stud-
ied some nonlinear time-fractional evolution equations arising in some important physical
phenomena.
It is well known that the analytical solutions of fractional partial differential equations are
not always readily obtained, so seeking efficient and reliable numerical treatments is of
great importance in real applications. Many numerical methods have been proposed for
solving fractional partial differential equations in one and several space variables [Li and
Zeng (2015); Li and Cai (2019)]. Moreover, one can refer to the review paper [Li and
Chen (2018)] for more details. For the Galerkin finite element methods, recently Li et al.
[Li and Wang (2020)] established the discontinuous Galerkin finite element method for a
Caputo-type nonlinear conservation law. However, the numerical discretized strategy can
not be directly extended to deal with the space-fractional models. About 2006, Ervin et
al. developed a rigorous theoretical framework for the wellposedness of a Galerkin weak
formulation to fractional elliptic differential equations with constant diffusivity coefficient
[Ervin and Roop (2006, 2007)]. Subsequently, many researchers extended the theoretical
framework to other numerical methods for numerically solving different space-fractional
models, see Zeng et al. [Zeng, Liu, Li et al. (2014)] and the references therein.
It seems that the numerical study for fractional models (1) or (2) is scarce, especially using
the finite element methods. Besides, solving a space-fractional partial differential equa-
tion always leads to expensive computational cost due to the nonlocal properties of Riesz
derivative, that is, one needs to calculate the inverse of the dense coefficient matrix with
computational cost of N3

x and storage of N2
x , which Nx is the stepsize number. The com-

putational cost will increase more rapidly if we solve the space-time one, let alone solve
the high-dimensional one. Although some algorithms have been proposed to deal with such
problem, such as high-order algorithms and fast algorithms (cf. [Wang and Basu (2012)]),
more proper and efficient methods with rigorous analysis need to be further developed. It
is known that ADI methods have proved to be valuable techniques for solving classical
partial differential equations in serval space dimensions. Their effectiveness is to rely on
the fact that they reduce the solution of a multidimensional problem to the solution of sets
of independent one-dimensional problems.
In this paper, we aim to apply the ADI technique with finite element methods to solving
the multidimensional fractional problems (1) and (2). Especially, we propose a Crank-
Nicolson ADI Galerkin finite element scheme, that is, we use the finite element method in
space, and Crank-Nicolson method in time, then combine the alternating direction implicit
method to obtain a numerical scheme for (1). Based on the same discretized technique in
space, we further apply the modified L1 method for Caputo derivative in (2), then obtain
an efficient discretized scheme for (2). It is worthy to mention that the modified L1 method
is different from the classical L1 one. For the classical L1 method, the discretization of
the Caputo derivative is considered on the grid points of the form {t0, t1, t2 · · · }, while the
modified L1 method is on {t0, t1/2, t3/2, · · · }. So the two proposed methods naturally lead
to the Crank-Nicolson schemes since they are derived on the direct discretization for the
first-order/Caputo derivative at the half grid point in time.
The rest of this paper is constructed as follows. We first introduce the preliminaries in
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Section 2, then we derive the Galerkin ADI finite element schemes in Section 3. The corre-
sponding theoretical analyses, including stability analysis and error estimate of the derived
schemes, are presented in Section 4. In Section 5, numerical results are demonstrated to
verify the effectiveness of the numerical schemes. Some conclusions and further discus-
sions are given in Section 6. As a notation convention, we use the notation C to denote a
generic positive constant, which may change at different occurrences, but is always inde-
pendent of the mesh spacing.

2 Preliminaries
In this section, we introduce some notations and lemmas that are useful in the following
numerical study.
Let Ω ⊆ R2 be a convex domain and satisfy Ω = Ix × Iy = (a, b) × (c, d). Denote
the inner product on the space L2(Ω) by (·, ·), and the associated norm is ‖u‖L2(Ω). The
fractional derivative spaces and some related lemmas are introduced as follows, see Ervin
et al. [Ervin and Roop (2007); Zeng, Liu, Li et al. (2014)] for more details.
Definition 2.1. For µ > 0, define the semi-norm

|u|JµL(Ω) =
(
‖RLDµ

a,xu‖2L2(Ω) + ‖RLDµ
c,yu‖2L2(Ω)

)1/2

and the norm

‖u‖JµL(Ω) =
(
‖u‖2L2(Ω) + |u|2JµL(Ω)

)1/2
,

and denote JµL(Ω) (or JµL,0(Ω)) as the closure of C∞(Ω) (or C∞0 (Ω)) with respect to ‖ ·
‖JµL(Ω).
Definition 2.2. For µ > 0, define the semi-norm

|u|JµR(Ω) =
(
‖RLDµ

x,bu‖
2
L2(Ω) + ‖RLDµ

y,du‖
2
L2(Ω)

)1/2

and the norm

‖u‖JµR(Ω) =
(
‖u‖2L2(Ω) + |u|2JµR(Ω)

)1/2
,

and denote JµR(Ω) (or JµR,0(Ω)) as the closure of C∞(Ω) (or C∞0 (Ω)) with respect to ‖ ·
‖JµR(Ω).
Definition 2.3. For µ 6= n− 1/2, n ∈ N, define the semi-norm

|u|JµS (Ω) =
(
|(RLDµ

a,xu,RLD
µ
x,bu)L2(Ω)|+ |(RLDµ

c,yu,RLD
µ
y,du)L2(Ω)|

)1/2

and the norm

‖u‖JµS (Ω) =
(
‖u‖2L2(Ω) + |u|2JµS (Ω)

)1/2
,

and denote JµS (Ω) (or JµS,0(Ω)) as the closure of C∞(Ω) (or C∞0 (Ω)) with respect to ‖ ·
‖JµS (Ω).

The fractional Sobolev space Hµ(Ω) can be defined through the Fourier transform.
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Definition 2.4. For µ > 0, define the semi-norm

|u|Hµ(Ω) = ‖|ω|µF(u)(ω)‖L2(Ω)

and the norm

‖u‖Hµ(Ω) =
(
‖u‖2L2(Ω) + |u|2Hµ(Ω)

)1/2
,

and denote Hµ(Ω) (or Hµ
0 (Ω)) as the closure of C∞(Ω) (or C∞0 (Ω)) with respect to ‖ ·

‖Hµ(Ω). Here, F(u)(ω) is the Fourier transformation of function u(x, y).

The above mentioned spaces are equivalent which are shown in the lemma below.
Lemma 2.1. For µ > 0, µ 6= n−1/2, n ∈ N. Then the spaces JµL,0(Ω), JµR,0(Ω), JµS,0(Ω),
and Hµ

0 (Ω) are equivalent, with equivalent seminorms and norms.

Lemma 2.2. Let β ∈ (1, 2), Then ∀u ∈ Hβ
0 (Ω) and ∀v ∈ Hβ/2

0 (Ω), we have

(RLD
β
a,xu, v) = (RLD

β/2
a,x u,RLD

β/2
x,b v), (RLD

β
x,bu, v) = (RLD

β/2
x,b u,RLD

β/2
a,x v).

Similarly, the results for (RLD
β
c,yu, v) and (RLD

β
y,du, v) also hold.

Lemma 2.3. Let µ > 0 and denote û as the extension of u by zero outside Ω . Then
∀u ∈ JµL,0(Ω) ∩ JµR,0(Ω), we have

(RLD
µ
a,xu,RLD

µ
x,bu) = cos(µπ)‖RLDµ

−∞,xû‖2L2(R2) = cos(µπ)‖RLDµ
x,∞û‖2L2(R2).

Similarly, the results for (RLD
µ
c,yu,RLD

µ
y,du) also hold.

Lemma 2.4. Let µ1, µ2 > 0 and denote û as the extension of u by zero outside Ω . Then
∀u ∈ Jmax{µ1,µ2}

L,0 (Ω) ∩ Jmax{µ1,µ2}
R,0 (Ω), we have

(RLD
µ1
a,xRLD

µ2
c,yu,RLD

µ1

x,bRLD
µ2

y,du) = cos(µ1π) cos(µ2π)‖RLDµ1

−∞,xRLD
µ2

−∞,yû‖2L2(R2),

(RLD
µ1
a,xRLD

µ2

y,du,RLD
µ1

x,bRLD
µ2
c,yu) = cos(µ1π) cos(µ2π)‖RLDµ1

−∞,xRLD
µ2

−∞,yû‖2L2(R2).

3 The ADI Galerkin finite element schemes
3.1 Space-fractional partial differential equation

We first rewrite the initial-boundary problem (1) as a first-order one by setting φ = ∂u/∂t.
That is,
∂φ

∂t
= (Lx + Ly)u+ f(x, y, t), (x, y, t) ∈ Ω× (0, T ], T > 0,

∂u

∂t
= φ,

(3)

with Lxu = Kx
∂2α1u
∂|x|2α1

and Lyu = Ky
∂2α2u
∂|y|2α2

.

For the finite difference of temporal direction, let tn = nτ for n = 0, 1, · · · , nT , where τ =
T/nT is the time step size and nT is given positive integer. Denote tn+1/2 = (tn+ tn+1)/2
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for n = 0, 1, · · · , nT − 1. Suppose that u(x, y, t) is suitably smooth with respect to the
variable t, then we readily obtain

‖u(x, y, tn+1/2)− un+1/2‖L2(Ω) ≤ C max
0≤t≤T

‖∂
2u

∂t2
‖L2(Ω)τ

2, (4)

and

‖
∂u(x, y, tn+1/2)

∂t
− δtun+1/2‖L2(Ω) ≤ C max

0≤t≤T
‖∂

3u

∂t3
‖L2(Ω)τ

2, (5)

where un+1/2 = un+1+un

2 and δtun+1/2 = un+1−un
τ .

Now we consider (3) on the time level (x, y, tn+1/2), namely,
∂φ(x, y, tn+ 1

2
)

∂t
= (Lx + Ly)u(x, y, tn+ 1

2
) + f(x, y, tn+ 1

2
),

∂u(x, y, tn+ 1

2
)

∂t
= φ(x, y, tn+ 1

2
).

Using the approximations (4) and (5), we have{
δtφ

n+1/2 = (Lx + Ly)u
n+1/2 + f(x, y, tn+ 1

2
) +O(τ2),

δtu
n+1/2 = φn+1/2 +O(τ2).

(6)

Note that un+1/2 = τ
2φ

n+1/2 + un, then (6) can be rewritten as δtφ
n+1/2 =

τ

2
(Lx + Ly)φ

n+1/2 + (Lx + Ly)u
n + f(x, y, tn+ 1

2
) +O(τ2),

δtu
n+1/2 = φn+1/2 +O(τ2).

(7)

Adding a small term τ4

16LxLyδtφ
n+1/2 = O(τ2) to the left-hand side of the first equation

in (7), one has
δtφ

n+1/2 +
τ4

16
LxLyδtφ

n+1/2 =
τ

2
(Lx + Ly)φ

n+1/2

+ (Lx + Ly)u
n + f(x, y, tn+ 1

2
) +O(τ2),

δtu
n+1/2 =φn+1/2 +O(τ2).

That is,
(1− τ2

4
Lx)(1− τ2

4
Ly)φ

n+1 =(1 +
τ2

4
Lx)(1 +

τ2

4
Ly)φ

n

+ τ(Lx + Ly)u
n + τf(x, y, tn+ 1

2
) +O(τ3),

δtu
n+1/2 =φn+1/2 +O(τ2).

Define the finite element space Xr
h as the set of piecewise polynomials with degree at most

r(r ≥ 1). And denote the interpolation operator by Ih in Xr
h. Here, h denote the maximal

length of the sides of each finite element on Ω, so h is a parameter which decreases as the
element is made finer. Xr

h is obvious the finite dimensional subspace of the space V with

V =
{
u
∣∣ u|∂Ω, u,

∂α1u
∂|x|α1

, ∂
α2u

∂|y|α2
, ∂α1

∂|x|α1

∂α2

∂|y|α2
u ∈ L2(Ω)

}
.
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Suppose that unh ∈ Xr
h is the numerical solution of un and the initial values are approxi-

mated by u0
h = Π1,0

h φ0 and φ0
h = Π1,0

h φ1, where Π1,0
h denotes an appropriate projection of

φ0 and φ1 onto Xr
h. Thus, we obtain the ADI Galerkin finite element scheme as follows:

Find φn+1
h ∈ Xr

h for n = 0, 1, 2, · · · , nT − 1 such that

(φn+1
h , v) +

τ2

4
A(φn+1

h , v) +
τ4

16
B(φn+1

h , v)

=(φnh, v)− τ2

4
A(φnh, v) +

τ4

16
B(φnh, v)

− τA(unh, v) + τ(Ihf(x, y, tn+ 1

2
), v), v ∈ Xr

h,

u0
h =Π1,0

h φ0, φ0
h = Π1,0

h φ1,

(8)

from which we obtain the following approximation to u:

un+1
h = unh + τφ

n+1/2
h . (9)

Here the bilinear form A is defined by

A(u, v) = c1Kx

[
(RLD

α1
a,xu,RLD

α1

x,bv) + (RLD
α1

x,bu,RLD
α1
a,xv)

]
+ c2Ky

[
(RLD

α2
c,yu,RLD

α2

y,dv) + (RLD
α2

y,du,RLD
α2
c,yv)

]
,

(10)

and the bilinear form B in the perturbation term is defined by

B(u, v) = c1c2KxKy

[
(RLD

α1
a,xRLD

α2
c,yu,RLD

α1

x,bRLD
α2

y,dv)

+ (RLD
α1
a,xRLD

α2

y,du,RLD
α1

x,bRLD
α2
c,yv)

+ (RLD
α1

x,bRLD
α2
c,yu,RLD

α1
a,xRLD

α2

y,dv)

+ (RLD
α1

x,bRLD
α2

y,du,RLD
α1
a,xRLD

α2
c,yv)

]
.

(11)

Eq. (8) present the ADI Galerkin method in inner product form. We can rewrite them as
the matrix form. To this end, suppose Xr

h = Xr
h,x ⊗Xr

h,y, where Xr
h,x and Xr

h,y are finite-
dimensional subspaces of Hα1

0 (Ix) and Hα2

0 (Iy), respectively. And their corresponding
bases are denoted as {ϕi(x)}Nxi=1 and {ϑj(y)}Nyj=1. Here, Nx, Ny are the positive integers.
The uniform partitions of Ix and Iy are then given by

a = x0 < x1 < · · · < xNx−1 < xNx < xNx+1 = b,

c = y0 < y1 < · · · < yNy−1 < yNy < yNy+1 = d.

Let

unh(x, y) =

Nx∑
i=1

Ny∑
j=1

uni,jϕi(x)ϑj(y), φnh(x, y) =

Nx∑
i=1

Ny∑
j=1

φni,jϕi(x)ϑj(y),

and denote

(Mx)k,m = (ϕk(x), ϕm(x)), (Sx)k,m = (RLD
α1
a,xϕk(x),RLD

α1

x,bϕm(x)),

(My)k,m = (ϑk(y), ϑm(y)), (Sy)k,m = (RLD
α2
c,yϑk(y),RLD

α2

y,dϑm(y)).
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Choosing v = ϕk(x)ϑm(y), k = 1, 2, · · · , Nx, m = 1, 2, · · · , Ny, then by Lemma 2.2
we obtain the following matrix form for (8).

(Mx +
τ2

4
c1Kx(Sx + STx ))Φn+1(My +

τ2

4
c2Ky(Sy + STy ))T = RHSn,

where

RHSn = (Mx −
τ2

4
c1Kx(Sx + STx ))Φn(My −

τ2

4
c2Ky(Sy + STy ))T

−τ [c1Kx(Sx + STx )UnMT
y + c2KyMxU

n(Sy + STy )T ] + τFn+ 1

2 ,

(Fn+ 1

2 )k,m = (fn+ 1

2 , ϕkϑm).

Here, Φn+1, RHSn, Un, Fn+ 1

2 ∈ RNx×Ny .
Therefore, denoting the intermediate variable Φ∗

n+1 ∈ RNx×Ny , the alternating direction
Galerkin finite element scheme can be executed as follows. First we solve

(Mx +
τ2

4
c1Kx(Sx + STx ))Φ∗

n+1 = RHSn,

then

(My +
τ2

4
c2Ky(Sy + STy ))(Φn+1)T = (Φ∗

n+1)
T
,

from which we obtain the approximation to Un+1:

Un+1 = Un + τΦn+ 1

2 .

3.2 Space-time-fractional partial differential equation

We firstly present the modified L1 scheme of the Caputo derivative CD
β
0,t with β ∈ (1, 2)

below,

CD
β
0,tg(t)|t=tn+1

2

=
τ1−β

Γ(3− β)

[
b0δtg

n+ 1

2 −
n∑
k=1

(bn−k − bn−k+1)δtg
k− 1

2

− (bn −Bn)δtg
1

2 −Bng′(t0)
]

+Rn+ 1

2 ,

(12)

where the truncation error

|Rn+ 1

2 | ≤ Cτ3−β max
0≤t≤T

|g′′′(t)|. (13)

The coefficients bn and Bn are defined by bk = (k + 1)2−β − k2−β, k = 0, 1, 2, · · · , n,

Bn = 2
(

(n+
1

2
)2−β − n2−β

)
.

(14)
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One can readily observe that the coefficients (14) have the following properties,
Bn > 0,

bn−1 −Bn > 0,

Bn − bn > 0,

bn−k − bn−k+1 > 0.

Now considering the Eq. (2) on the time level (x, y, tn+1/2), and using the approximations
(12) and (4), we get

1

µ

[
b0δtu

n+ 1

2 −
n∑
k=1

(bn−k − bn−k+1)δtu
k− 1

2

− (bn −Bn)δtu
1

2 −Bnφ1

]
= (Lx + Ly)u

n+ 1

2 + fn+ 1

2 +O(τ3−β),

(15)

where µ = τβ−1Γ(3− β).
Denoting ũn+1

h = un+1
h − unh, then multiplying by µτ on both sides of (15), one has

ũn+1 − µτ

2
(Lx + Ly)ũ

n+1

=

n∑
k=1

(bn−k − bn−k+1)ũk + (bn −Bn)ũ1 + τBnφ1

+ µτ(Lx + Ly)u
n + µτfn+ 1

2 , n ≥ 1,

(16)

and

ũ1 − 1

2

µτ

B0
(Lx + Ly)ũ

1
h =

1

B0

[
τB0φ1 + τµ(Lx + Ly)u

0 + τµf
1

2

]
, n = 0. (17)

Adding two small terms (τµ)2

4 LxLyũ
n+1 and (τµ)2

4B2
0
LxLyũ

1 to the left-hand side of (16) and
(17), respectively, we obtain the following ADI Galerkin scheme for (2) in inner product
form: Find ũn+1

h ∈ Xr
h for n = 0, 1, 2, · · · , nT − 1 such that

(ũ1
h, χ) +

1

2

µτ

B0
A(ũ1

h, χ) +
1

4

(µτ
B0

)2
B(ũ1

h, χ)

=
1

B0

[
τB0(φ0

h, χ)− τµA(u0
h, χ) + τµ(Ihf(t 1

2
), χ)

]
, n = 0,

(ũn+1
h , χ) +

µτ

2
A(ũn+1

h , χ) +
(µτ

2

)2
B(ũn+1

h , χ)

=

n∑
k=1

(bn−k − bn−k+1)(ũkh, χ) + (bn −Bn)(ũ1
h, χ) + τBn(φ0

h, χ)

− µτA(unh, χ) + µτ(Ihf(tn+ 1

2
), χ), n ≥ 1,

(18)

with initial values u0
h = Π1,0

h φ0 and φ0
h = Π1,0

h φ1. From (18) we can obtain the following
approximation to u:

un+1
h = ũn+1

h + unh, n ≥ 0.
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Here the bilinear forms A and B are defined by (10) and (11), respectively. The matrix
form of (18) can be formulated similarly to (8), we omit the details here.

4 Stability and convergence
In this section, we first study the stability and convergence of the fully discrete scheme (8).
To this end, we rewrite (8) as

(δtφ
n+ 1

2

h , v) +A(u
n+ 1

2

h , v) +
τ4

16
B(δtφ

n+ 1

2

h , v) = (Ihf(tn+ 1

2
), v), v ∈ Xr

h. (19)

Denote α = (α1, α2), αmax = max{α1, α2}. The seminorm | · |α and norm ‖ · ‖α are
defined respectively by

|u|α =
(
Kx(RLD

α1
a,xu,RLD

α1

x,bu)+Ky(RLD
α2
c,yu,RLD

α2

y,du)
) 1

2

, ‖u‖α = (‖u‖2+|u|2α)
1

2 .

From the definition of the bilinear form A, we can readily obtain |u|α ≤ C
√
A(u, u).

The seminorm | · |α and norm ‖ · ‖α are equivalent if u ∈ Hα1

0 ∩H
α2

0 , see [Zeng, Liu, Li
et al. (2014)]. This result is demonstrated by the following lemma.
Lemma 4.1. If u ∈ Hα1

0 ∩H
α2

0 , then the seminorm | · |α and norm ‖ · ‖α are equivalent,
that is, there exists positive constants C1 < 1 and C2 independent of u, such that

C1‖u‖α ≤ |u|α ≤ ‖u‖α ≤ C2|u|Hαmax (Ω).

Define the operator Πh : V → Xr
h. Suppose that u ∈ H l(Ω), 0 < l < r + 1, 0 ≤ s ≤ l,

then the following approximation property holds,

‖u−Πhu‖s ≤ Chl−s‖u‖l, (20)

where the constant C is only dependent on Ω.
Define the orthogonal projection operator Πα,0

h : V → Xr
h by

A(u−Πα,0
h u, v) = 0, u ∈ V, ∀v ∈ Xr

h. (21)

We have the following important lemma for Πα,0
h (cf. [Zeng, Liu, Li et al. (2014)]), for

which we sketch a proof for completeness.
Lemma 4.2. Let r ∈ Z+, 1 ≤ m ≤ r + 1, and u ∈ Hm(Ω) ∩ V . If αi 6= 1/2, i = 1, 2,
then there exists a positive constant C independent of mesh spacing such that

|u−Πα,0
h u|α ≤ hm−αmax‖u‖m.

Proof. By Cauchy-Schwarz inequality and Lemma 2.3 for the definition of A, we obtain

A(u, v) ≤ C|u|α|v|α, A(u, u) ≥ |u|2α.
It follows that for ∀uh ∈ Xr

h, one has

|u−Πα,0
h u|2α = A(u−Πα,0

h u, u−Πα,0
h u)

≤ A(u−Πα,0
h u, u− uh) +A(u−Πα,0

h u, uh −Πα,0
h u)

= A(u−Πα,0
h u, u− uh) (Using (21))

≤ C|u−Πα,0
h u|α|u− uh|α.
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That is,

|u − Πh
α,0u|α ≤ C|u − uh|α.

Taking uh as Πhu, and utilizing Lemma 4.1 and the estimate (20), we obtain the desired 
result.

Lemma 4.3. If w ∈ Hm ∩Hα1

0 ∩H
α2

0 and 1 ≤ m ≤ r + 1, then we have

A(wn+ 1

2 , δtw
n+ 1

2 ) =
1

2τ
(|wn+1|2α − |wn|2α),

and

B(δtw
n+ 1

2 , wn+ 1

2 ) =
1

2τ

[
B(wn+1, wn+1))−B(wn, wn)

]
. (22)

Proof. One can readily derive the above results from the symmetry of these bilinear forms
A and B defined by (10) and (11). Thus we complete the proof.
Combining Lemma 2.4 with the above proof for equality (22), we readily obtain the fol-
lowing result.
Lemma 4.4. If w ∈ Hm ∩Hα1

0 ∩H
α2

0 and 1 ≤ m ≤ r + 1, then we have

B(w,w) ≥ 0.

We shall need the following version of Gronwall’s inequality (cf. [Zeng, Cao and Li
(2013)]).
Lemma 4.5. Assume that {κn} and {pn} are nonnegative sequences, and the sequence
{ρn} satisfies

ρ0 ≤ g0, ρn ≤ g0 +

n−1∑
k=0

pk +

n−1∑
k=0

κkρk, n ≥ 1, (23)

where g0 ≥ 0. Then the sequence {ρn} satisfies

ρn ≤
(
g0 +

n−1∑
k=0

pk

)
exp

( n−1∑
k=0

κk

)
, n ≥ 1.

Now, we are in the position to present the stability for the fully discrete scheme (8).
Theorem 4.1. The fully discrete scheme (8) associated with (9) is unconditionally stability
in the sense that

‖φmh ‖2 + |umh |2α ≤ C
[
‖φ0

h‖2 + |u0
h|2α +

τ4

16
B(φ0

h, φ
0
h) + τ

m−1∑
k=0

(‖fk+ 1

2 ‖2 + |ρk+ 1

2 |2α)
]
,

where C is a positive constant independent of mesh spacing, B is a bilinear form defined
by (11), and ρn+1/2 is the perturbation term for (9), that is

δtu
n+ 1

2 = φn+ 1

2 + ρn+ 1

2 .
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Proof. Let v = φ
n+ 1

2

h or, equivalently, v = δtu
n+1/2
h − ρn+1/2 in the equivalent form (19)

of (8), then we obtain

(δtφ
n+ 1

2

h , φ
n+ 1

2

h ) +A(u
n+ 1

2

h , δtu
n+ 1

2

h ) +
τ4

16
B(δtφ

n+ 1

2

h , φ
n+ 1

2

h )

=(Ihf(tn+ 1

2
), φ

n+ 1

2

h ) +A(u
n+ 1

2

h , ρn+ 1

2 ).

(24)

Note that

(δtφ
n+ 1

2

h , φ
n+ 1

2

h ) =
1

2τ

[
‖φn+1

h ‖2 − ‖φnh‖2
]
.

So, it follows from Lemma 4.3 that (24) can be rewritten as

‖φn+1
h ‖2 − ‖φnh‖2 + |un+1

h |2α − |unh|2α +
τ4

16
B(φn+1

h , φn+1
h )− τ4

16
B(φnh, φ

n
h)

=2τ(Ihf(tn+ 1

2
), φ

n+ 1

2

h ) + 2τA(u
n+ 1

2

h , ρn+ 1

2 ).

(25)

Using Cauchy-Schwarz inequality and the equivalence of | · |α and ‖ · ‖α, one has

2A(u
n+ 1

2

h , ρn+ 1

2 )

= A(un+1
h , ρn+ 1

2 ) +A(unh, ρ
n+ 1

2 )

≤ |un+1
h |α|ρn+ 1

2 |α + |unh|α|ρn+ 1

2 |α
≤ C

[
|un+1
h |2α + |unh|2α + |ρn+ 1

2 |2α
]
.

Similarly, we have

2(Ihf(tn+ 1

2
), φ

n+ 1

2

h )

= (Ihf(tn+ 1

2
), φn+1

h ) + (Ihf(tn+ 1

2
), φnh)

≤ C
[
‖Ihf(tn+ 1

2
)‖2 + ‖φn+1

h ‖2 + ‖φnh‖2
]
.

For sufficiently small τ , we can derive from (25) that

‖φn+1
h ‖2 − ‖φnh‖2 + |un+1

h |2α − |unh|2α +
τ4

16
B(φn+1

h , φn+1
h )− τ4

16
B(φnh, φ

n
h)

≤C
[
τ(‖Ihf(tn+ 1

2
)‖2 + |ρn+ 1

2 |2α) + τ(‖φnh‖2 + |unh|2α)
]
.

(26)

Then summing up n from 0 to m− 1 for (26) gives

‖φmh ‖2 + |umh |2α +
τ4

16
B(φmh , φ

m
h )

≤C
[
‖φ0

h‖2 + |u0
h|2α +

τ4

16
B(φ0

h, φ
0
h)

+ τ

m−1∑
n=0

(‖Ihf(tn+ 1

2
)‖2 + |ρn+ 1

2 |2α) + τ

m−1∑
n=0

(‖φnh‖2 + |unh|2α)
]
.

(27)
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From Lemma 4.4, the third term on the left-hand side of (27) is nonnegative. Removing
the nonnegative term, we get

‖φmh ‖2 + |umh |2α

≤C
[
‖φ0

h‖2 + |u0
h|2α +

τ4

16
B(φ0

h, φ
0
h)

+ τ

m−1∑
n=0

(‖Ihf(tn+ 1

2
)‖2 + |ρn+ 1

2 |2α) + τ

m−1∑
n=0

(‖φnh‖2 + |unh|2α)
]
.

(28)

Comparing each term in the above inequality with that in (23), then applying Lemma 4.5,
we can conclude that

‖φmh ‖2 + |umh |2α

≤C
[
‖φ0

h‖2 + |u0
h|2α +

τ4

16
B(φ0

h, φ
0
h) + τ

m−1∑
n=0

(‖Ihf(tn+ 1

2
)‖2 + |ρn+ 1

2 |2α)
]
.

This completes the proof.
Next, we study the convergence analysis for (8).
Theorem 4.2. Suppose that r ≥ 1, u and un+1

h (0 ≤ n ≤ nT − 1) are the solu-
tions of (1) and the fully discrete scheme (8), respectively. If u ∈ C3([0, T ];Hm) ∩
V, ∂α1

∂|x|α1

∂α2

∂|y|α2
∂ttu ∈ L∞(0, T ;Hm(Ω)) ,m ≥ r + 1, then there exists a positive con-

stant C independent of τ and h such that

|un+1
h − u(tn+1)|α ≤ C(τ2 + hr+1−αmax).

Proof. It is convenient to use the equivalent forms of (8) and (9) below. (δtφ
n+ 1

2

h , v) +A(u
n+ 1

2

h , v) +
τ4

16
B(δtφ

n+ 1

2

h , v) = (Ihf(tn+ 1

2
), v),

δtu
n+ 1

2

h = φ
n+ 1

2

h .

(29)

On the other hand, we consider the inner form for (3) at t = tn+1/2, that is,
(
∂φ

∂t
, v)
∣∣∣
t=tn+1/2

= ((Lx + Ly)u, v)
∣∣∣
t=tn+1/2

+ (f(x, y, tn+1/2), v),

∂u

∂t

∣∣∣
t=tn+1/2

= φ,

which can be written as

(δtφ
n+ 1

2 , v) +A(un+ 1

2 , v) +
τ4

16
B(δtφ

n+ 1

2 , v)

=(f(tn+1/2), v) + ([δtφ
n+ 1

2 − ∂tφ|t=tn+1/2
], v) +

τ4

16
B(δtφ

n+ 1

2 , v),

δtu
n+ 1

2 =φn+ 1

2 + δtu
n+ 1

2 − ∂u

∂t

∣∣∣
t=tn+1/2

.

(30)
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Let u∗ = Πα,0
h u, and denote e = u∗ − uh, η = u − u∗, ê = ∂u∗

∂t − φh, and η̂ = φ − ∂u∗
∂t .

Then u − uh = e + η, φ − φh = ê + η̂. Subtracting (29) from (30) gives the following
error equations.

(δtê
n+ 1

2 , v) +A(en+ 1

2 , v) +
τ4

16
B(δtê

n+ 1

2 , v)

=(Rn+1/2, v) +
τ4

16
B(δt(φ

n+ 1

2 − η̂n+ 1

2 ), v),

δtu
n+ 1

2 =ên+ 1

2 + ρn+ 1

2 .

where

Rn+1/2 = δtφ
n+ 1

2 − ∂tφ|t=tn+1/2
− δtη̂n+ 1

2 + f(tn+1/2)− Ihf(tn+1/2),

ρn+ 1

2 = η̂n+ 1

2 + δtu
n+ 1

2 − ∂u

∂t
|t=tn+1/2

− δtηn+ 1

2 .

By Theorem 4.1, we can derive that

‖êm‖2 + |em|2α

≤C
[
‖ê0‖2 + |e0|2α + τ4B(ê0, ê0) + τ

m−1∑
k=0

(‖Rk+1/2‖2 + |ρk+ 1

2 |2α)

+ τ5
m−1∑
k=0

‖ ∂α1

∂|x|α1

∂α2

∂|y|α2
(δt(φ

k+ 1

2 − η̂k+ 1

2 ))‖2
]
,

(31)

Next, we estimate the right-hand side of the above inequality.
For the initial errors e0 and ê0, we have

|e0|α = |Πα,0
h φ0 −Π1,0

h φ0|α ≤ |Πα,0
h φ0 − φ0|α + |φ0 −Π1,0

h φ0|α ≤ Chr+1−αmax ,

‖ê0‖ = ‖Πα,0
h φ1 −Π1,0

h φ1‖ ≤ ‖Πα,0
h φ1 − φ1‖+ ‖φ1 −Π1,0

h φ1‖ ≤ Chr+1−αmax .

The third term on the right-hand side of (31) has the following estimate.

τ4B(ê0, ê0) ≤ Cτ4.

Since

‖δtφn+ 1

2 − ∂tφ|t=tn+1/2
‖ ≤ Cτ2,

‖f(tn+1/2)− Ihf(tn+1/2)‖ ≤ Chr+1,

‖δtun+ 1

2 − ∂u

∂t
|t=tn+1/2

‖ ≤ Cτ2,
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we obtain

τ

m−1∑
k=0

‖Rk+1/2‖2

≤ C
[
τ4 + h2(r+1) + τ

m−1∑
k=0

‖δtη̂n+ 1

2 ‖2
]

≤ C
[
τ4 + h2(r+1) + ‖∂η̂

∂t
‖2L2(0,T ;L2(Ω))

]
≤ C

[
τ4 + h2(r+1)

]
,

and

τ

m−1∑
k=0

|ρn+ 1

2 |2α

≤ C
[
τ4 + τ

m−1∑
k=0

|η̂n+ 1

2 |2α + τ

m−1∑
k=0

|δtηn+ 1

2 |2α
]

≤ C
[
τ4 + h2(r+1−αmax)

]
.

For the last term in the right-hand side of (31), we can obtain

τ5
m−1∑
k=0

‖ ∂α1

∂|x|α1

∂α2

∂|y|α2
(δt(φ

k+ 1

2 − η̂k+ 1

2 ))‖2

≤τ5
m−1∑
k=0

[
‖ ∂α1

∂|x|α1

∂α2

∂|y|α2
δtφ

k+ 1

2 ‖2 + ‖ ∂α1

∂|x|α1

∂α2

∂|y|α2
δtη̂

k+ 1

2 ‖2
]
≤ Cτ4.

Therefore, from (31), we have

|en+1|α ≤ C(τ2 + hr+1−αmax).

It follows that

|un+1
h − u(tn+1)|α = |en+1 + ηn+1|α ≤ |en+1|α + |ηn+1|α ≤ C(τ2 + hr+1−αmax).

All this completes the proof.
In the following, we demonstrate the stability for the ADI Galerkin scheme (18).
Theorem 4.3. Suppose that unh is the solution of the ADI Galerkin scheme (18) and f ∈
C([0, T ];L2(Ω)). Then it holds that

|unh|2α ≤ C
[
|u0
h|2α + ‖φ0

h‖2 + τ

n∑
k=1

‖fk−
1

2 ‖2
]
, (32)

where C is a positive constant and independent of τ and h.
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Proof. Notice that the properties of the coefficients Bn and bn are nice, one can readily
derive the above stability result (32) by using the idea in the proof of Theorem 4.1. Thus
we omit the details here.
Finally, we present the error estimate for the ADI Galerkin scheme (18).
Theorem 4.4. Suppose that r ≥ 1, u and un+1

h (0 ≤ n ≤ nT − 1) are the solutions of
(2) and the fully discrete scheme (18), respectively. If u ∈ C3([0, T ];Hm) ∩ V, CDβ

0,t ∈
L∞(0, T ;Hm), ∂α1

∂|x|α1

∂α2

∂|y|α2
∂ttu ∈ L∞(0, T ;Hm(Ω)) ,m ≥ r + 1, then there exists a

positive constant C independent of τ and h such that

|un+1
h − u(tn+1)|α ≤ C(τmin{3−β, 1+β

2
} + hr+1−αmax). (33)

Proof. We first consider the case n ≥ 1 in (18). We use its equivalent form which is shown
below,

(δtu
n+ 1

2

h , χ) + µA(u
n+ 1

2

h , χ) +
(µτ)2

4
B(δtu

n+ 1

2

h , χ)

=

n∑
k=1

(bn−k − bn−k+1)(δtu
k− 1

2

h , χ) + (bn −Bn)(δtu
1

2

h , χ) +Bn(φ0
h, χ)

+µ(fn+ 1

2 , χ). (34)

The weak form of the Eq. (2) on the time level tn+ 1

2
is(

CD
β
0,tu(x, y, tn+ 1

2
), v
)

+A(u(x, y, tn+ 1

2
), v) = (f(x, y, tn+ 1

2
), v), v ∈ V,

which can be written as

τ1−β

Γ(3− β)

[
b0(δtu

n+ 1

2 , v)−
n∑
k=1

(bn−k − bn−k+1)(δtu
k− 1

2 , v)

− (bn −Bn)(δtu
1

2 , v)−Bn(φ1, v)
]

= −A(un+ 1

2 , v) + (fn+ 1

2 , v) + (Rn+ 1

2 , v). (35)

Here Rn+ 1

2 is the form as denoted in (13), with ∂3u/∂t3 instead of g(3)(t). Multiplying by
µ and adding the small term on both side of (35), we obtain

(δtu
n+ 1

2 , v) + µA(un+ 1

2 , v) +
(µτ)2

4
B(δtu

n+ 1

2 , v)

=

n∑
k=1

(bn−k − bn−k+1)(δtu
k− 1

2 , v) + (bn −Bn)(δtu
1

2 , v) +Bn(φ1, v)

+µ(fn+ 1

2 , χ)
]

+ µ(Rn+ 1

2 , v) +
(µτ)2

4
B(δtu

n+ 1

2 , v). (36)

Let u∗ = Πα,0
h u, e = u∗− uh, η = u− u∗, ê = ∂u∗

∂t − φh, η̂ = φ− ∂u∗
∂t , and v = χ in (36).
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Subtracting (34) from (36) and using the properties of u∗, we obtain

(δte
n+ 1

2 , χ) + µA(en+ 1

2 , χ) +
(µτ)2

4
B(δte

n+ 1

2 , χ)

=

n∑
k=1

(bn−k − bn−k+1)(δte
k− 1

2 , χ)

+(bn −Bn)(δte
1

2 , χ) +Bn(ê0, χ)
]

+ µ(ρn + rn, χ) +
(µτ)2

4
B(σn, χ).

Here

ρn =
1

µ

[ n∑
k=1

(bn−k − bn−k+1)δtη
k− 1

2 + (bn −Bn)δtη
1

2 +Bnη̂
0 − δtηn+ 1

2

]
,

σn = δt(u
n+ 1

2 − ηn+ 1

2 ), and rn = Rn+ 1

2 .
From (32) we can derive that

|en|2α ≤ C
[
‖ê0‖2 + |e0|2α + τ

n−1∑
k=0

‖ρk + rk‖2 + µτ3
n−1∑
k=0

‖ ∂α1

∂|x|α1

∂α2

∂|y|α2
σk‖2

]
.

It follows that

|un − unh|2α ≤C
[
|ηn|2α + |en|2α

]
≤C
[
|ηn|2α + ‖ê0‖2 + |e0|2α + τ

n−1∑
k=0

‖ρk + rk‖2

+ µτ3
n−1∑
k=0

‖ ∂α1

∂|x|α1

∂α2

∂|y|α2
σk‖2

]
.

(37)

In the following, we estimate the terms on the right-hand side of (37). First, by Lemma 4.2,
we obtain

|ηn|α ≤ Chr+1−αmax . (38)

Second, we have

τ

n−1∑
k=0

‖ρk‖2 ≤ Cτ
n−1∑
k=0

‖CDα
0,tη(tk+1/2)‖2 ≤ C‖CDα

0,tη‖2L∞(L2) ≤ Ch
2(r+1−αmax), (39)

and

τ

n−1∑
k=0

‖rk‖2 ≤ Cτ6−2β. (40)
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For the last term on the right-hand side of equation (37), we have the following estimate.

µτ3
n−1∑
k=0

‖ ∂α1

∂|x|α1

∂α2

∂|y|α2
σk‖2

≤µτ3
n−1∑
k=0

[
‖ ∂α1

∂|x|α1

∂α2

∂|y|α2
δtu

k+ 1

2 ‖2 + ‖ ∂α1

∂|x|α1

∂α2

∂|y|α2
δtη

k+ 1

2 ‖2
]
≤ Cτ1+β.

(41)

So using (38)-(41) gives (33). All this ends the proof.
Remark 4.1. It seems that the convergence order in time of the ADI Galerkin scheme
(18) will be destroyed when β < 5

3 . However we observe that the convergence order
in time always be 3 − β in the numerical tests. The disagreement probably means that
the theoretical analysis in (33) may be improved. One possible way to remove the term
O(τ

1+β

2 ) is by introducing a much smaller disturbance term to construct the ADI Galerkin
scheme, however it seems that the resulting scheme does not improve the numerical results
in practical computation but only cause more complicated computations.

5 Numerical results
In this section, we present numerical results to verify the theoretical analysis. For sake of
computational convenience, in our numerical tests, we fix the coefficientsKx = Ky = 1/2,
and let Ω = (0, 1)× (0, 1) and T = 1. All the tests are done by using the linear element.
Example 5.1. Consider the following initial conditions in the two-dimensional fractional
model (1):

u(x, y, 0) = (x− x2)(y − y2),
∂u

∂t

∣∣∣
t=0

= −(x− x2)(y − y2).

The source term f is given by

f(x, y, t) = e−t(x− x2)(y − y2)

+c1Kxe
−t(y − y2)

[x1−2α1 + (1− x)1−2α1

Γ(2− 2α1)
− 2

x2−2α1 + (1− x)2−2α1

Γ(3− 2α1)

]
+c2Kye

−t(x− x2)
[y1−2α2 + (1− y)1−2α2

Γ(2− 2α2)
− 2

y2−2α2 + (1− y)2−2α2

Γ(3− 2α2)

]
.

The corresponding exact solution is

u(x, y, t) = e−t(x− x2)(y − y2).

From the ADI Galerkin scheme (8), we obtain the numerical results of Tabs. 1-2 for Eq.
(1). All the numerical errors are computed at t = 1 for different values of α1 and α2. From
Tabs. 1-2, we can see that convergent orders in space and in time are (2−αmax)-order and
second-order accuracy in seminorm | · |α respectively, which is in line with the theoretical
analysis.
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Table 1: The | · |α errors in space for Eq. (1) and τ = 1/128

(α1, α2) \ 1/h 4 8 16 32 64
(0.7, 0.8) 1.8091E-02 6.2876E-03 2.4139E-03 9.8037E-04 4.0946E-04

- 1.5247 1.3811 1.3000 1.2596
(0.8, 0.6) 1.6880E-02 5.7873E-03 2.2043E-03 8.9343E-04 3.7385E-04

- 1.5443 1.3926 1.3029 1.2569
(0.9, 0.9) 2.5674E-02 1.1559E-02 5.6330E-03 2.8015E-03 1.3968E-03

- 1.1513 1.0370 1.0077 1.0041

Table 2: The | · |α errors in time for Eq. (1) and h = τ2/(2−αmax)

(α1, α2) \ 1/τ 8 10 12 14 16
(0.7, 0.8) 9.0185E-04 5.7691E-04 4.0031E-04 2.8875E-04 2.2066E-04

- 2.00 2.00 2.12 2.01
(0.8, 0.6) 8.2156E-04 5.2625E-04 3.6580E-04 2.6436E-04 2.0239E-04

- 2.00 1.99 2.11 2.00
(0.9, 0.9) 1.3025E-03 8.3332E-04 5.7845E-04 4.2427E-04 3.2614E-04

- 2.00 2.00 2.01 1.97
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Example 5.2. Consider the following homogeneous initial conditions in the two-dimensional
space-time fractional model (2):

u(x, y, 0) = 0,
∂u

∂t

∣∣∣
t=0

= 0.

The source term f is given by

f(x, y, t) =
6t3−β

Γ(4− β)
(x− x2)(y − y2)

+c1Kxt
3(y − y2)

[x1−2α1 + (1− x)1−2α1

Γ(2− 2α1)
− 2

x2−2α1 + (1− x)2−2α1

Γ(3− 2α1)

]
+c2Kyt

3(x− x2)
[y1−2α2 + (1− y)1−2α2

Γ(2− 2α2)
− 2

y2−2α2 + (1− y)2−2α2

Γ(3− 2α2)

]
.

Then we obtain the exact solution below

u(x, y, t) = t3(x− x2)(y − y2).

Using the ADI Galerkin scheme (18), we obtain the numerical results of Tabs. 3-4. Here
we let τ = 1/128 when test the convergence order in space (see Tab. 3), and let h =
τ (3−β)/(2−αmax) when test the convergence order in time (see Tab. 4). The numerical
errors are also obtained at t = 1. From Tabs. 3-4, we observe that the convergence orders
are 2 − αmax and 3 − β in space and in time, respectively, which show better results than
that in Theorem 4.4.

Table 3: The | · |α errors in space for Eq. (2) and τ = 1/128

(β, α1, α2) \ 1/h 4 8 16 32 64
(1.2, 0.6, 0.6) 2.2963E-02 8.2403E-03 3.0516E-03 1.1438E-03 4.3074E-04

- 1.4785 1.4331 1.4157 1.4089
(1.5, 0.7, 0.8) 3.3901E-02 1.4005E-02 5.9388E-03 2.5407E-03 1.0916E-03

- 1.2754 1.2377 1.2250 1.2188
(1.8, 0.8, 0.9) 4.3564E-02 1.9590E-02 8.9962E-03 4.1585E-03 1.9362E-03

- 1.1530 1.1227 1.1132 1.1028

Example 5.3. Now, we consider the following case for the space-time fractional model (2)
in which the exact solution is unknown: f = 1. The corresponding initial conditions are
provided by u(x, y, 0) = 0 and ∂u

∂t |t=0 = 0.

Since the exact solution is unknown, we determine the convergence order by the ratios
of differences between different numerical solutions which are computed by the consec-
utive halved stepsizes. That is, we compute the spatial convergence order by adopting
log2(e(h)/e(h/2)) with the error e(h) = |uh− uh/2|α. By applying the numerical scheme
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Table 4: The | · |α errors in time for Eq. (2) and h = τ (3−β)/(2−αmax)

(β, α1, α2) \ 1/τ 4 8 16 32 64
(1.1, 0.6, 0.7) 9.6692E-03 2.5979E-03 6.6892E-04 1.7573E-04 4.6300E-05

- 1.8960 1.9574 1.9285 1.9243
(1.3, 0.7, 0.8) 1.4540E-02 4.5724E-03 1.4354E-03 4.3194E-04 1.3093E-04

- 1.6690 1.6715 1.7326 1.7220
(1.9, 0.9, 0.9) 5.2136E-02 2.4952E-02 1.1715E-02 5.4774E-03 2.5577E-03

- 1.0631 1.0909 1.0968 1.0986

(18), we obtain the numerical results which are shown on Tab. 5. From the numerical
results, it can be seen that the | · |α errors will gradually decrease as step sizes shrink at the
rate of 1/2. However, the convergence orders are both less than the theoretical ones. Sim-
ilar numerical results are also observed for the temporal direction which are not presented
here. One possible reason is that the right-hand side function f is constant, which leads to
the issue that the regularity of analytical solution in (2) does not meet the requirements in
Theorem 4.4.

Table 5: The | · |α errors in space for Eq. (2) with f = 1, τ = 1/512

(β, α1, α2) \ 1/h 4 8 16 32 64
(1.5, 0.6, 0.7) 6.3901E-02 2.8252E-02 1.3456E-02 8.8215E-03 -

1.1775 1.0701 0.6091 - -
(1.5, 0.7, 0.8) 5.9511E-02 2.4521E-02 1.0241E-02 5.1653E-03 -

1.2792 1.2597 0.9874 - -
(1.5, 0.51, 0.99) 4.6506E-02 1.8758E-02 8.2999E-03 5.0017E-03 -

1.3099 1.1763 0.7307 - -

The corresponding theoretical analyses of the less regularity issue are not available in this
paper and need to be further studied in the future. However from the above numerical
study in Example 5.3, one still can get a glimpse of the behavior of the numerical solution
numerically with both the orders α1 and α2 tend to one. For simplicity of presentation, we
focus on the case β = 2 here, that is the fractional model (1), and compute the numerical
solution with various α1 and α2 by the numerical scheme (8). The numerical results are
presented in Fig. 1. From Fig. 1, we can observe that the numerical solution is more closer
to that of the integer case as the orders α1 and α2 tend to one. We also observe similar
phenomenon for the case β ∈ (1, 2) in which numerical results are not demonstrated here.
From this perspective, we may conclude that these two fractional models considered in this
paper can be regarded as the generalization of the corresponding classical integer-order
model.
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Figure 1: Numerical comparison at t = 1 for the fractional model (1) with f =
1, u(x, y, 0) = 0 and ∂u

∂t |t=0 = 0, computed by the scheme (8) with τ = 1/512 and
h = 1/64

6 Conclusion
In this work, we studied two classes of Riesz space-fractional partial differential equations
including space-fractional and space-time fractional derivatives. Our main contributions
in this work are to develop the efficient ADI Galerkin finite element schemes for these
two considered models and establish their stability and convergence. Numerical tests are
presented to verify the convergence theories. For sake of convenience, the current study
relies crucially on the high regularity of the solution. It would be interesting to extend the
argument to the less regularity issue, for example the weak singularity of the solution at
t = 0. However it seems that the extension is not an easy job and requires further study,
since most of the existed results only deal with the time-fractional problems, see Li et al.
[Li and Chen (2018)] and the references therein.
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