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Abstract: The possibility to enhance the stability and robustness of electro-
hydraulic brake (EHB) systems is considered a subject of great importance in
the automotive field. In such a context, the present study focuses on an actuator
with a four-way sliding valve and a hydraulic cylinder. A 4-order nonlinear math-
ematical model is introduced accordingly. Through the linearization of the feed-
back law of the high order EHB model, a sliding mode control method is
proposed for the hydraulic pressure. The hydraulic pressure tracking controls
are simulated and analyzed by MATLAB/Simulink soft considering separately
different conditions, i.e., a sine wave, a square wave and a square wave with
superimposed sine disturbance. The results show that the proposed strategy can
track the target within 0.25 s, and the mean observed error is less than 1.2 bar.
Moreover, with such a strategy, faster response and less overshoot are possible,
which should be regarded as significant advantages.
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1 Introduction

1.1 Research Background

Over the recent years, the development trend of electrification, networking, intelligence, and sharing of
automotive has been actively responded and supported by variable automotive manufacturers and suppliers
home and abroad [1]. Many advanced solutions for conventional automotive parts and relevant technics
researches emerged, and the EHB is one of them. The electro-hydraulic brake system, with EHB for
short, is a kind of brake system, which can replace the vacuum booster absolutely and improve the
control effect to the brake request better. Apart from that, the EHB can also generate the expected brake
force within the range required by regulations, decrease the response time and be easy to match with
brake energy recycling function. But, the real running condition of automotive is very adverse for
hydraulic pressure control, and the strong real-time transience would result in distortion to real-time
hydraulic control at variable levels and the universal nonlinear factors would result in the physical model
hard to construct and meanwhile the control strategy hard to take effect [2]. Therefore, with the order that
EHB would work reliably and stably, the feasibility and validity research about resolving target pressure
and controlling real-time pressure has to be implemented.
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1.2 Research Status

A large number of studies about the EHB system have been carried out at home and abroad. Yu et al. [3]
at Tongji University designed an I-EHB, and analyzed its nonlinear factors with Stribeck friction model-
based, and designed an anti-integral saturation control measure, but didn’t take the fluid nonlinear factor
into account. He et al. [4] at Tsinghua University designed a double closed-loop strategy of slip rate and
brake torque with I-EHB model and 7-DOF vehicle model-based but didn’t take the fluid nonlinear factor
into account. Chen et al. [5] at Jilin University proposed a hybrid by-wire brake system with EHB in the
front axle and EMB in the rear axle but didn’t take the nonlinear factor into account. Chen et al. [6] at
Jiangsu University designed a tandem electro-hydraulic hybrid brake structure, a brake distribution
strategy, and a logic threshold-based pressure control strategy, but didn’t take the nonlinear factor into
account. Wang et al. [7] developed a robust wheel slip controller for in-wheel-motors-driven electric
vehicles. Raffone [8] proposed an algebraic mathematical model with motor on caliper aimed and
designed a robust EPB control strategy. Jegadeeshwaran et al. [9] proposed an on-line condition
monitoring by using a machine learning approach and acquired the vibration signals for both good as
well as faulty conditions of brakes. Ruderman et al. [10] proposes a sensorless estimation of external load
forces with the nonlinearity and dependency of sensor aimed at when observing the load in standard
hydraulic actuators. Cheng et al. [11] proposed a sliding mode control strategy based high-precision
hydraulic pressure feedback modulation including an open-loop load pressure control and validated a HIL
test rig. Xing et al. [12] developed an integrated time series model (TSM) based on multivariate deep
recurrent neural networks (RNN) with long short-term memory (LSTM) units and then constructed a real-
time multivariate LSTM-RNN model for the dynamic estimation of the brake pressure of EVs. Chen
et al. [13] proposed and designed a sliding mode control method for the master cylinder hydraulic
pressure and assessed the nonlinear characteristics of the system involved, but lacked the application of
higher-order model and relevant nonlinear theory in designing the control strategy.

1.3 Scientific and Engineering Contributions

The research for methods or theories of hydraulic pressure control to the electro-hydraulic brake system
is one of the urgencies in the process of developing the electric vehicle. Based on the requirements of the
stability and robustness of the electro-hydraulic brake (EHB) system, according to the feedback
linearization theory, the 4-order nonlinear mathematical model of an actuator with a four-way sliding
valve and a cylinder is established. Then, based on the model, a sliding mode control method is proposed
and designed. After several simulations, the results show that the proposed strategy can track the target
within 0.25 s, and the mean observed error is less than 1.2 bar. Moreover, with such a strategy, faster
response and less overshoot are possible.

1.4 Research Working

Based on the analysis of relevant researches home and abroad, a 4-order nonlinear mathematical model
is established according to the feedback linearization theory. Then, a sliding mode control method based on
the model is designed, aiming at the nonlinear higher-order EHB model proposed.

2 Actuator Design and Model Establishment

At the view of the structure, the EHB discards the vacuum booster, which depends on the engine to work
and consists of electromechanical and hydraulic subsystems. Of them, the electromechanical subsystem
consists of ECU, motor part, sensor part, and mechanics powertrain part; the hydraulic subsystem
consists of a master cylinder, pipeline, electromagnet valves, and wheel cylinder. Due to the necessity to
research, the actuator in EHB assembled by a four-way sliding valve and a wheel-cylinder is used to the
research object.
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Because of the advantages of small space to occupy, simple structure, low cost, and better loading ability
of the asymmetric cylinder [14], so the wheel-cylinder is chosen to be the hydraulic actuator. Besides, it is
used to transform the hydraulic energy in wheel-cylinder into mechanical energy to generate brake torque.
The hydraulic subsystem controlled by the sliding valve its structure is shown in Fig. 1.

m B

Figure 1: Valve control EHB physical model

As shown in Fig. 1, the adopted asymmetric cylinder is an ideal-zero-opened four-way sliding valve,
which means that its four orifices are symmetrical and matched. The flow in its throttle is turbulent, and
the fluid compressibility in it is ignored, the spool of it can move and fluid can flow in instance, the
pressure in each one chamber is equal anywhere, and the supply pressure py is constant while the return
pressure pg is zero; the pipelines are all short and thick; the influence of fluid mass and the dynamic
effect of pipeline are ignored; the fluid temperature and volume modulus are considered as constant in the
simulation duration; the external leakage in wheel-cylinder is laminar flow [14]; the direction that the
piston push toward is regarded as the forward kinematics.

The flow equation of the sliding valve is shown in Egs. (1) and (2).

O = dev\/ 1+ sg;(xv))ps + L+ nggn(xv))po — sgn(x,)p 1)
0, = dev\/ d- Sg; w)p: | (Z1- Sin(xV))p ® + sgn(x,)p (2)

where K, is presented as K; = Cym \/%.
And the flow continuity equations of the cylinder are shown in Egs. (3) and (4).

Vor +A1Lo + A1, .
gl lﬁO lpp1 (3)

Vg + A2 (L — Lo) — Aax,, |
B D2
e

where, o is the area gradient at sliding valve port when the sliding valve port with variable flowing resistance
is full circumference then v = = - d, C;. is the internal flow leakage coefficient, L is the total piston travel, L
is the initial piston position, x, is the piston motion displacement, f3, is the fluid volume modulus, Vg is the

01 = 41X, + Cie(p1 — p2) + Cecp1 +

0y = A2y + Cie(p1 — p2) — Ceep2 —

“)
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inlet pipeline volume from sliding valve to wheel-cylinder, ¥y, is the outlet pipeline volume from wheel-
cylinder to sliding valve.

The equation of force is shown in Eq. (5).
Aip1 — Aopr = mjép+chp+]OCp + F ®)]
In Eq. (5), the A4, Ayare presented in Egs. (6) and (7).

nd, >

A1=—41 (6)
n(d*> — dy?

, - i) ™

where, m is the total mass of rod and piston in wheel-cylinder; B, is the equivalent fluid damping coefficient;
k is the equivalent contacting stiffness between the brake disc and brake slipper.

And as the sliding valve is also a twin flapper-nozzle electro-hydraulic servo sliding valve, so its
dynamic model can be presented as a proportional component [15] as shown in Eq. (8).

x, = K, Ko fe 3
In Eq. (8), the f; is presented in Eq. (9).

Je = DpeA1 — prA> ©

where, K, is the gain of the servo valve; p, is the expected pressure in brake wheel-cylinder; K, is the gain
of the hydraulic pressure sensor.

3 Feedback Linearization to Nonlinear Model

According to the established nonlinear mathematical model, the rod displacement x,, rod velocity x,,
hydraulic pressure p; in the chamber without the rod of wheel-cylinder, and hydraulic pressure p, in the
chamber with the rod of wheel-cylinder are chosen to be the system state variable, which is shown in Eq. (10).
]T

x=[x1 x» x xu) =[x % p p (10)

The f is the input variable and presented in Eq. (11). And the nonlinear state equation is presented in Eq. (12).

u=f (11)
{jc:f(x) +g(x)u (12)
y="h(x) = Aix3 — Aox4
The state variables x;, X», X3, and x4 are shown in Eqs. (13)—(16).
X =%, =x (13)

—kx — B Ayxy — Ayxq — F
=i, = : X2 +m1x3 2X4 (14)
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B.101 — A1xz — (Cie + Cec)x3 + Cicxa)

x = ; = 15
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Vgr + A2 (L — Lo — x,)
The argumentation above can be concluded in Eqgs. (17)—(24).
f@=Mh A A A (17)
gb)=10 0 g gl (18)
Si=x (19)
f2 _ —/OC1 — BCXZ +;111X3 — AzX4 —F (20)
—A - ic ec ic
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Va1 + A1 (Lo + x,)

—A4 - Lic ic ec
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- BEKky \/% [u —senlps | (1 sn(m | sgn@pz} o4
According to the definition of Lie Derivative [16], the results shown below can be calculated.
L2h(x) = Axs — Aaxs (25)
LoL°sh(x) = A1g3 — A2gs (26)
Leh(x) = Aifs — Aofa 27)

According to the definition of relative order [16], the relative order of this system is 1. And due to the
system is a four-order system, an internal dynamic subsystem exists. In accordance with the theory of
feedback linearization in the nonlinear system, a transformation should be implemented on that subsystem
[6], and then a linear state equation is obtained, presented in Eq. (28).

zZ=v
{y:Z (28)

In Eq. (28), the z is a one order vector, and the transformation relation of state variable can be presented
in Eq. (29).
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zZ = h(x) = A1X3 — AzX4 (29)
y=z

In Eq. (28), the transformation relation of the input variable v can be presented in Eq. (30).

v = o) + f)u G0
The o and f are presented in Eqs. (31) and (32).

a(x) = Lyh(x) €1y

B(x) = LL'rh(x) 32)

In Eq. (33), the input variable # in nonlinear state space can be calculated from the input variable v in
linear state space by inverse transformation [16].

v—o(x)

“T TR

4 Sliding Mode Controller Design

Due to the limited condition to observe and measure, the precise nonlinear mathematical model is hard to
obtain when designing the feedback linearization control law. As to the servo wheel-cylinder controlled by
the sliding valve adopted in EHB in this paper, the variation of the load, the fluid viscosity, the supply
pressure, and the wear condition on some contact area would affect the tracking control of hydraulic pressure.

(33)

So, it is necessary to introduce a robust control algorithm to ensure the robustness to the parameter
variation and external disturbance [17] for the system transformed by feedback linearization.

First, the tracking pressure error [18] is defined as Eq. (34).
e=2z,—z (34)

In the Eq. (34), the z, is the expected pressure in wheel-cylinder of the system transformed by feedback
linearization. Due to the relative order of the system transformed by feedback linearization which is indicated
to be 1 [16]. So, the sliding mode surface can be designed as Eq. (35).

s=e (35)
Then, the equivalent control v,, is settled as Eq. (36).

S=é=z,—z (306)
When § = 0, then v, equals to z, obviously.

It is required that ss < 0 is permanently met to ensure the sliding mode exists [18]. So, the switching
control vy, is settled as Eq. (37).

Vo = —K - sgn(s) 37)

In the Eq. (37), the k is the gain of the switching control. Then, the output of the designed controller can
be stated as Eq. (38).
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V= Vg + Vi = Zo — K - sgN(S) (38)

In order to verify the stability of the control algorithm, the Lyapunov [11] function is settled in Eq. (39).

1
V:EE (39)

Additionally, the relative process can be calculated according to Eqs. (34)~(39) and shown in Eqgs. (40)+(44).

V=ss (40)
V=52 —2) (41)
V = s[z, — K- sgn(s) — 2] (42)
V = s[—r - sgn(s)] “3)
V=—x-s/<0 (44)

Therefore, it is indicated that the control system in the linear space after transformation is stable. But, due
to the chattering with which the sign function would bring to the system, so, it is replaced by the boundary layer
function to weaken the chattering [20]. The boundary layer function is demonstrated as Eq. (45).

sgn (s i>1
sar(2) _{ en(s)  (1>1) 45)
® " L (3<1) (31<1)

In Eq. (45), the ® is the thickness of the boundary layer.

According to Egs. (32)—(45), the sliding mode control law u can be calculated and shown as Eq. (46).

Z, — K - sat (%) — Lrh(x)

o LgLOh(x) (40

5 Simulation and Verification

According to the feedback linearization theory, and the linearization to the model of cylinder controlled
by servo sliding valve in the EHB, and the sliding mode control algorithm designed in this paper, a simulation
model is established in MATLAB/Simulink. The model is shown in Fig. 2 below. As shown in Fig. 3 below,
it illustrates the control logic designed in this paper.

Then, the tracking simulation verifications to the pressure signal in the sine wave, square wave, and the
square wave with sine wave disturbance mixed, are implemented. The parameters used in the simulation are
listed in Tab. 1.

5.1 Simulation and Verification under Sine Wave Signal
First, the pressure signal in the sine wave with mean value 5 MPa, amplitude 10 MPa, and frequency
0.25 Hz is adopted to the tracking simulation for 4 s. And the simulation result is shown in Figs. 4 and 5 below.

It can be inferred from Figs. 4 and 5, that the mean tracking error to the pressure signal in the sine wave
is —0.03931 MPa, and phase delay is acceptable under the sliding mode control algorithm. In the duration
of the simulation, the pressure responded to the target pressure signal starts keeping stable tracking error at
the time of 0.25 s.
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Figure 2: MATLAB/Simulink model
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Figure 3: Control logic diagram

Table 1: Simulation parameters

Parameter Value Unit Parameter Value Unit
p 850 kg/m? C; 4.5¢-13 m N/s
B, 1.7¢4 N/m’ Cee 4.5¢e-13 m N/s
m 0.6 Kg di 0.07 m
Lo 2e-3 m d 0.032 m
L 0.12 m Po 0 Pa
B, 1.1e4 N(m/s) Ds 1.2¢7 Pa
k 3.37e7 N/m © 4.15¢e4 -
w 1.57e-2 - K 2.155el13 —
Cy 0.67 - Ky 0.8 —
Vaii=12) 2¢-5 m’ K, le-5 -

10

target pressure | |
— tracking pressure

hydraulic pressure/MPa
(4]

15 2 25
simulation time/s

Figure 4: Tracking simulation result of the pressure signal in the sine wave



FDMP, 2020, vol.16, no.3 521

——tracking pressure

hydraulic pressure/MPa
L]

0 05 1 15 2 25 3 35 4
simulation time/s

Figure 5: Tracking simulation error of the pressure signal in the sine wave

5.2 Simulation and Verification under Square Wave Signal
Second, the pressure signal in the square wave with amplitude 10 MPa, and frequency 0.25 Hz is
adopted to the tracking simulation for 4 s. And the simulation result is showed in Figs. 6 and 7.

It can be inferred from Figs. 6 and 7, that the mean tracking error to the pressure signal in the square
wave is —0.0801 MPa under the sliding mode control algorithm. In the duration of the simulation, the
pressure responded to the target pressure signal starts keeping stable tracking error at the time of 0.1 s.

12

target pressure
10 tracking pressure| |

hydraulic pressure/MPa
(=]

L

0 05 1 15 2 25 3 35 4
simulation time/s

Figure 6: Tracking simulation result of the pressure signal in the square wave

5.3 Simulation and Verification under Superimposed Sine-Square Wave Signal

Last, to validate the stability of the robust control algorithm designed in this paper, the pressure signal in
the square wave with superimposed sine disturbance is adopted to the tracking simulation for 4 s. This
pressure signal contains the square wave with amplitude 10 MPa, and frequency 0.25 Hz and the sine
disturbance with mean value 0 MPa, amplitude 0.5 MPa, and frequency 0.25 Hz. The simulation result is
shown in Figs. 8 and 9.

It can be inferred from Figs. 8 and 9, that the mean tracking error to the pressure signal in the square
wave with superimposed sine disturbance is —0.1186 MPa under the sliding mode control algorithm. In
the duration of the simulation, the pressure responses to the target pressure signal and starts keeping
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Figure 7: Tracking simulation error of the pressure signal in the square wave
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Figure 8: Tracking simulation result of the pressure signal in the square wave with superimposed sine
disturbance
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Figure 9: Tracking simulation error of the pressure signal in the square wave with superimposed sine
disturbance
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stable tracking error at the time of 0.1 s, and the tracking error is more stable in the high target pressure signal
phase than in the low target pressure signal phase.

6 Conclusions

The brake wheel-cylinder controlled by a servo sliding valve, which is consisted of the four-way sliding
valve and cylinder with ideal feature, is adopted as the research object. Then, with the requirementof the
response efficiency and robustness of EHB aimed, the 4-order mathematical model of brake wheel-
cylinder controlled by servo sliding valve is settled. After that, the feedback linearization theory is
introduced to implement a linear transformation and a sliding mode control of hydraulic pressure based
feedback linearization of high order EHB model is proposed. Last, some simulations are implemented in
MATLAB/Simulink and the simulation results are analyzed.

By implementing the research stated above, some conclusions are obtained and stated below.

1. By applying the feedback linearization theory, the nonlinearity of the proposed valve control hydraulic
wheel-cylinder is transformed into approximate linearity when designing the SMC controller, which
proves correct and characterizes the novelty of the work in this paper.

2. The response characteristic, tracking effect and the phase delay are well limited in an acceptable section
for the tracking simulations, under the pressure signal in the sine wave, in the square wave, and in the
square wave with sine wave disturbance mixed. And they indicate that the strategy of sliding mode
control of hydraulic pressure based feedback linearization of high order EHB model proposed in this
paper can track the target within 0.25 s, and the mean observed error is less than 1.2 bar. Therefore,
this research shows that the strategy designed has the advantages of faster response and less
overshoot, which can be considered as a theory reference for further hydraulic pressure control
research of EHB.

In the near future, there are some works left to be researched further, which are stated below.

1. The research physical model needs to be expanded into an integrated system. Therefore, at least, a detailed
oil supply system and a specific actuator for the spool of servo sliding valve should be designed and
verified, and which then should be added to the current model.

2. Some other typical aim pressure signals and relevant requirements of regulations should be added in the
part of simulation and verification to prove the control method flexible and its robustness in the further.
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