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Abstract: Most existing blockchain schemes are based on the design concept “openness 
and transparency” to realize data security, which usually require transaction data to be 
presented in the form of plaintext. However, it inevitably brings the issues with respect to 
data privacy and operating performance. In this paper, we proposed a novel blockchain 
scheme called Cipherchain, which can process and maintain transaction data in the form 
of ciphertext while the characteristics of immutability and auditability are guaranteed. 
Specifically in our scheme, transactions can be encrypted locally based on a searchable 
encryption scheme called multi-user public key encryption with conjunctive keyword 
search (mPECK), and can be accessed by multiple specific participants after appended to 
the globally consistent distributed ledger. By introducing execution-consensus-update 
paradigm of transaction flow, Cipherchain cannot only make it possible for transaction 
data to exist in the form of ciphertext, but also guarantee the overall system performance 
not greatly affected by cryptographic operations and other local execution work. In 
addition, Cipherchain is a promising scheme to realize the technology combination of 
“blockchain+cloud computing” and “permissioned blockchain+public blockchain”. 
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1 Introduction 
Bitcoin was proposed as the first truly decentralized digital currency in 2008. In the past, 
digital currency schemes were mostly based on the trust of currency issuers [Chaum 
(1983); Rivest (1997); Yang and Hector (2003)], while the Bitcoin and other 
decentralized cryptocurrency schemes are based on the blockchain technology. 
Blockchain maintains a continuously growing list of ordered transactions called blocks. 
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Essentially, this emerging underlying technology is an open, transparent and distributed 
replicated database. 
Blockchain achieves the data characteristics of auditability and immutability. It has been 
proven theoretically robust with respect to data security [Garay, Kiayias and Leonardos 
(2015); Miller and LaViola Jr (2014)]. However, Bitcoin’s sensitive data is processed and 
stored in the form of plaintext, which is the same in most other public blockchain systems. 
This so-called “openness and transparency” labeled as blockchain’s advantage is at the 
expense of data being accessible to anyone. Bitcoin employs the “pseudonym pattern” to 
let users send transactions to the blockchain network with public key addresses as their 
identities, intended to eliminate the relationship between users’ real identities and 
transactions logic. However, Meiklejohn et al. [Meiklejohn, Pomarole, Jordan et al. 
(2013)] have demonstrated that the map between Bitcoin transactions and identities is 
traceable. The Bitcoin protocol recommends users create new pseudonymous public keys 
for each transaction. Nevertheless as shown in Reid et al. [Reid and Harrigan (2013)], 
transactions with multiple inputs are generally generated with the same user signature. 
What’s worse, user habits also lead to the loss of transaction privacy information. Koshy 
et al. [Koshy, Koshy and McDaniel (2014)] also demonstrate that it is possible to identify 
ownership relationships between Bitcoin addresses and IP addresses. 
In order to realize the transaction privacy protection in the blockchain system, various 
mechanisms have been proposed or applied [Karame and Androulaki (2016)]. Especially 
in the field of cryptocurrency, it can be roughly divided into three kinds of schemes: 
mixed-coin scheme [Bonneau, Narayanan, Miller et al. (2014); Duffield and Diaz (2015)], 
off-chain transaction scheme [Heilman, Alshenibr, Baldimtsi et al. (2017); Green and 
Miers (2017)] and cryptography scheme [Miers, Garman, Green et al. (2013); Sasson, 
Chiesa, Garman et al. (2014)]. Most schemes intend to achieve unlinkability of multiple 
inputs and outputs of transaction against the Unspent Transaction Outputs (UTXO) 
model. These solutions are feasible for a cryptocurrency system with a simple payment 
transfer function. However, in order to achieve the expansion of the blockchain function 
rather than just limited to digital currency applications, the transaction data type and 
execution logic will be more diverse and complicated. The amount of information 
brought will make the transaction inputs and outputs have a stronger correlation. This 
may lead to more complicated improvement schemes, and make system performance and 
even privacy or security not guaranteed. In addition, permissioned blockchains typically 
remove digital currency attributes for consideration of policies or applications. The 
scheme that can be applied to previous public blockchains may not be able to compete in 
the permissioned blockchains without digital currency [Vukolić (2017)]. 
With the advent of consortium blockchain (as a category of permissioned blockchains), 
transaction privacy has become a more significant issue to be addressed. Therefore, we 
have witnessed some novel improvement schemes employed out of the consideration of 
engineering implementation and operating efficiency. Multi-channel technology is 
adopted in Hyperledger Fabric v1.0 [Androulaki, Barger, Bortnikov et al. (2018)]. In R3 
Corda [Hearn (2016)], transactions will be only spread and “witnessed” between relevant 
parties. Hence, both Fabric and Corda adopt the physical isolation against distributed 
ledger to split the transaction flows of the entire blockchain network. This abandons the 
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design of distributed general ledger, where system reaches global consensus on 
transactions and store them in the same ledgers. This seems to have lost the concept and 
characteristics of the “original” blockchain. The security feature require that transaction 
cannot be tampered and forged once it is packed into the block structure. However, if 
blockchain systems adopts physical isolation scheme, transaction will be agreed upon 
only in a limited node group, which is still questionable in terms of security compared 
with previous public blockchains [Gervais, Karame, Wüst et al. (2016)]. 
In this paper, we propose a novel ciphertext blockchain scheme called Cipherchain. In 
Cipherchain, we retain the design of the distributed ledger technology (DLT) generally 
used in the public blockchain. All newly generated transactions need to go through the 
same consensus process and eventually be stored on a globally consistent distributed 
ledger. The biggest difference between Cipherchain and the previous blockchain schemes 
is that newly generated transactions need to be encrypted and then appended in the form 
of ciphertext to the ledger. Specifically, the mPECK technology [Hwang and Lee (2007)] 
is employed to process transaction data. 
We reinterpreted the concept “openness and transparency”, which is generally used to 
describe the basic properties of blockchain technology. Furthermore, Cipherchain can 
serve as an immutable and consistent ledger, even if transaction data is presented not in 
the form of plaintext. It can perform auditing, verification, sharing, etc. over transaction 
ciphertext between authorized participants.  
Unlike all previous blockchain systems following the order-execute architecture, 
Hyperledger Fabric v1.0 [Androulaki, Barger, Bortnikov et al. (2018)] creates a novel 
execute-order-validate paradigm. Previous blockchain systems cannot implement the data 
presented directly in the form of ciphertext. All nodes play the same role in executing and 
ordering transactions. Hence while receiving a transaction in the form of ciphertext, 
nodes cannot verify whether the transaction is legitimate. Thus in Cipherchain, we 
followed the design idea of Fabric and some adjustments were made in accordance with 
the special requirements of our scheme. We call Cipherchain the execution-consensus-
update architecture, which allows the transaction data to be encrypted after it is executed, 
then reached global consensus and eventually updated to the general distributed ledger. 
Furthermore, local cryptographic computation overhead does not have much impact on 
system performance because of the modular design. 
Cipherchain leverages both advantages of the public and the permissioned blockchains to 
serve our consideration of security and efficiency. The main contributions of our work 
can be summarized as follows: 
• We proposed the first ciphertext blockchain scheme that can realize the privacy 

protection of transaction data directly. By introducing mPECK technology, our scheme 
can realize the transaction data in the form of ciphertext, making the transaction data 
and execution logic only shared between authorized participants while retaining the 
original attributes of previous Bitcoin-like blockchains. 

• We adopt newly execution-consensus-update paradigm and two-level state database 
scheme. These make the independent consensus module affecting overall system 
performance be implemented efficiently. 
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• Our scheme can achieve the technology combination of “blockchain+cloud 
computing”. Specifically, it takes advantage of cloud computing in data retrieval and 
storage to address the issue of data explosion that most blockchains may face. The 
process is illustrated in Fig. 1. 

The remaining of the paper is organized as follows: We begin by introducing background 
and related work in Section 2, preliminary and assumption in Section 3. Section 4 
provides an overview about the architecture design of Cipherchain. The detailed 
architecture design is described in Section 5 and necessary evaluation is showed in 
Section 6. Besides, some promising applications are described in Section 7. Finally, 
Section 8 concludes. 

 

Figure 1: Cipherchain network composed of “cloud computing+permissioned blockchain” 

2 Background and related work 
2.1 Blockchain 
In 2008, Nakamoto first proposed the blockchain in the Bitcoin White Paper [Nakamoto 
(2008)]. The miners in the blockchain network run the Proof of Work (PoW) consensus 
mechanism with their strong computing power. This maintains the normal operation and 
security of the system [Garay, Kiayias and Leonardos (2015)]. 
In recent years, many novel blockchain projects have emerged. The smart contract is 
added to blockchain while Ethereum [Buterin (2014)] came online. Blockchain 
technology is also moving towards commercial applications, which has ignited the rise of 
the consortium blockchain. In 2015, the Linux Foundation launched the open source 
project Hyperledger. Corda is the blockchain platform developed by R3 [Hearn (2016)], 
one of the leading blockchain consortiums. Unlike other blockchain schemes, Corda set 
“notary” nodes to maintain and update the ledger. 
In most blockchain schemes (here we take Bitcoin as a reference), nodes are required to 
perform the same programs, including transaction execution, verification, consensus and 
storage. However, its shortcomings are also obvious: 
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Performance. Bitcoin-like schemes adopt the PoW mechanism or other similar ones. 
Although PoW is different from the previous consensus mechanisms such as Paxos 
[Lamport (1978)] and BFT, its idea is to select a qualified “leader” as well. However, 
leader is selected in the Byzantine environment [Lamport, Shostak and Pease (1982)], 
while the generation of valid blocks faces various complex network environments. At the 
same time, considering that the blockchain may face high transmission latency under the 
premise that the network quality cannot be guaranteed, the public blockchain protocols 
require the distributed data to reach the eventual consistency. Therefore, the blockchain 
system suspends the processing of newly generated transactions during the consensus 
phase. The result is that such a system cannot process the verification, consensus, and 
execution of transactions in parallel, which has become a bottleneck affecting the overall 
performance of the blockchain system. 
After the advent of Ethereum [Wood (2014)], the smart contract was realized. However, 
the execution of smart contract make performance issues even more critical. A node may 
execute a long or even infinite loop of contract code while the program cannot 
automatically terminate, the system performance definitely drops dramatically. To 
address this issue, Ethereum adopted the “gas” mechanism based on its cryptocurrency. 
The amount of code executed is proportional to the amount of cryptocurrency that needs 
to be spent. Obviously, this mechanism is not adequate for the permissioned blockchain 
not based on cryptocurrency. 
Privacy. In most public blockchains, data is exposed to all participants and stored in the 
form of plaintext. Since each transaction needs to be executed at all nodes, transaction 
logic and state update (if necessary) are transparent to them [Vukolić (2017)]. 
Consequently, analysis of transactions may yield useful information. Many of the privacy 
protection schemes mentioned above are based on the concept of “openness and 
transparency”. They attempt to weaken the correlation between inputs and outputs, or 
between inputs (outputs) and transaction participants. However, the privacy protection 
cannot be guaranteed under the premise of the data presented in plaintext, according to 
the conclusions in [Meiklejohn, Pomarole, Jordan et al. (2013); Reid and Harrigan (2013); 
Koshy, Koshy and McDaniel (2014)] mentioned above. Besides, the inputs and outputs 
of the previous public blockchains are simply currency values. In the process of 
extending the blockchain function, it may be necessary to introduce multiple parameters 
into the input or output fields of the transaction as the logic becomes more complex. 

2.2 Hyperledger fabric 
As a consortium blockchain project, Hyperledger Fabric aims to promote the commercial 
application of blockchain across industries. Fabric system innovatively employs execute-
order-validate mode [Androulaki, Barger, Bortnikov et al. (2018)], rather than the order-
execute mode used by most public blockchains. 
In Fabric, it can be divided into three kinds of blockchain nodes by function: endorsers, 
orderers, and committers. The endorser completes the simulation and endorsement of 
transaction proposals; the orderer packs and orders transactions according to a certain 
consensus strategy; the committer maintains and updates the ledger on a per-channel 
basis. The endorser and the committer are usually on the same physical server. 
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The transaction proposal is generated by a client with execution logic (chaincode), which 
is then broadcast to the blockchain network. Unlike previous broadcasts to all nodes, 
Fabric employs a multi-channel design, where the transaction is sent to a specific 
endorser group according to the endorsement policy determined by the chaincode and 
chaincode itself. For endorsers and other types of nodes that are not in the channel, it is 
impossible to receive or access the transaction. When specified endorsers receive the 
transaction in the channel, they simulate the proposal according to the transaction logic of 
the chaincode, and signs the valid transaction, thereby completing endorsement function. 
After completing the above operation, the endorsers will return the execution results and 
signatures to the client. While the client collects “sufficient” signatures from endorsers, it 
will submit the executed transaction and signatures to orderers. The orderers then order 
received transactions and pack them into blocks, which then will be sent to committers. 
The committers evaluate endorsement policy and check read-write conflict of each 
transaction, which is eventually appended to the local ledger. 
As can be seen from the execution of the transaction flow, Fabric adopted a storage 
isolation strategy. The transaction data and execution logic will only be accessed by 
specific nodes. In summary, Fabric is based on the trust of the endorsers, more precisely 
in the premise of trusting the endorsement policy, to achieve the privacy and security 
attributes of system. Due to the multi-channel design, Fabric is usually a multi-chain 
system-that is, one channel corresponds to one blockchain structure. 
Different from the design of Fabric, we still apply the global consensus mechanism 
commonly used in previous public blockchains to Cipherchain, as well as the global 
distributed ledger. 

2.3 Searchable encryption 
Traditional information retrieval methods are based on the plaintext system, where the 
server is fully aware of stored information. Searchable encryption is a secure search 
technology that provides ciphertext retrieval on semi-honest or malicious servers.  
The searchable encryption was first proposed by Song et al. [Song, Wagner and Perrig 
(2000)], who established the first symmetric searchable encryption scheme. While 
symmetric searchable encryption is limited to single-user scenarios, public key 
searchable encryption addresses the whole issues well, and realizes the data sharing 
among multiple participants. Then in 2004, Boneh et al. [Boneh, Di Crescenzo, 
Ostrovsky et al. (2004)] proposed the first public-key encryption with keyword Search 
(PEKS), and gave a PEKS construction scheme based on anonymous IBE. This solution 
is suitable for implementing mail routing in an untrusted mail system.  
The above scheme is mainly for single keyword search. Yet, in practical applications, this 
cannot cope with the case where a specific file is accurately located when the file data is 
large. Then conjunctive keyword search technology came into being. In 2005, Golle et al. 
[Golle, Staddon, Waters et al. (2004)] first proposed a searchable encryption scheme 
based on conjunctive keyword. Park et al. [Park, Kim and Lee (2004)] proposed a public 
key encryption with conjunctive field keyword search (PECK), and presented two 
construction schemes. Boneh et al. [Boneh and Waters (2007)] also proposed a scheme 
for conjunctive keyword search over encrypted data in 2007. In the blockchain 
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application scenario based on the account model, the data-sharing mode is often one-to-
many. That is, a single data owner publishes data, and multiple participants share, verify, 
or audit transaction data. The first one-to-many mode searchable encryption was 
constructed by Curtmola et al. [Curtmola, Garay, Kamara et al. (2011)] in 2006 based on 
Naor’s broadcast encryption technology. The privacy protection mechanism of 
blockchain transaction employed in Cipherchain is based on the multi-user PECK scheme 
proposed by Hwang et al. [Hwang and Lee (2007)]. The idea is to use multi-receiver PKE 
[Baudron, Pointcheval and Stern (2000)] and randomness reuse [Kurosawa (2002)] to 
reduce the communication and computation cost in multi-user scenarios. Besides, it does 
not need a trusted third party. 

3 Preliminary and assumption 
3.1 Bilinear maps 
We assume that 1G  and 2G  are the two multiplicative cyclic groups of order p , which is 
a certain large prime. The bilinear map 1 1 2:e G G G× →  is between these two groups. The 
bilinear map should be satisfied the following properties: 

Bilinear: A map 1 1 2:e G G G× →  is bilinear if ( ) ( ), , xyx ye u v e u v=  for all 1,u v G∈  and 

any *, px y Z∈ .  

Non-degenerate: The map e does not send all pairs in 1 1G G×  to the identity in 2G . If g  is 
a generator of 1G  then ( ),e g g is a generator of 2G . 

Computable: There is an efficient algorithm to compute ( )  ,e u v  for any 1,u v G∈  

3.2 Assumption 
To facilitate the description of the scheme and simplify the details, we will make the 
following premise or assumptions: 
1) Assume that after each transaction is generated, there are l fixed keyword fields 
without two identical ones. 
2) The certificate authority (CA) is a fully trusted party, and all blockchain participants 
have been registered with the CA. 

4 Overview 
In this section, we will give an overview of the architecture design and explain the 
operation of the transaction flow. Here, we refer to the transaction data ciphertext and 
keyword set ciphertext mentioned later as the transaction ciphertext.  
In Cipherchain, blockchain entities can generally be divided into four parts {Tx, CA, N, U}, 
where Tx is the transactions data. The CA authorize operations such as registration, 
authorization, or cancellation of all nodes and users. N is a set of blockchain nodes 
performing different programs and tasks, while U represents the participating users who 
generate transaction proposals. To facilitate the following description, we collectively refer 
to the users and associated endorsement nodes as part of N, as the transaction participants.  
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The blockchain system is operated and maintained by participating nodes. The formation 
and transmission of transaction flow require these nodes with different tasks for full 
participation. In Cipherchain, blockchain nodes can be divided into the following three 
categories according to processing manner of transaction flow: 
Endorsement node. These nodes are responsible for executing transaction proposals 
submitted by senders, verifying the validity of the transactions, and the core mission is to 
sign them for endorsement. That is, only transactions that meet the endorsement policies 
specified in the smart contracts will be considered valid. In addition, there is an 
endorsement node among partial nodes called proxy node, which is additionally 
responsible for collecting the transaction execution results and signatures of other 
endorsement nodes. Then it broadcasts valid transactions to consensus nodes. 
Consensus node. The function performed by the consensus nodes is relatively not 
complicated, but it is a core factor affecting the transaction throughput of system. All 
nodes are required to collect newly received transaction ciphertext and run the same 
consensus mechanism. 
Storage node. The storage nodes are responsible for receiving the block after consensus 
phase and maintaining full ledger data. Besides, they need to respond to the demand for 
transaction retrieval.  
Physically, some types of nodes may belong to the same server. We will introduce later. 
The main process of transaction flow is illustrated in Fig. 2. 

 

Figure 2: High-level transaction flow in Cipherchain 

Different from the blockchain architecture of execute-order-validate implemented in 
Hyperledger Fabric, our proposed Cipherchain is more accurately described as execution-
consensus-update architecture. That is, the distributed ledger update can be performed 
directly by storage nodes. Since we introduce the mPECK in Cipherchain, we briefly describe 
the blockchain architecture model with several polynomial time algorithms as follows: 
1) Params: Authorized participants registered with the CA will have their own key pairs 

for transaction encryption and decryption, as well as the public key certificate 
assigned by the CA. In addition, necessary system parameters are generated. 
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2) TpEndorse: The sender generates a transaction proposal Tp and corresponding 
keyword set, broadcasts them to specific endorsement nodes. These nodes perform a 
series of operations on Tp when recognizing them as valid to generate a transaction 
Tx. Then they sign the simulation result for endorsement, which will be subsequently 
delivered along with their signatures to the proxy node. Each endorsement node has a 
local state database (mentioned later) that is used to record the state information of the 
associated transaction participants and the user contract. 

3) mPECK+TxEnc: When the valid signatures of endorsement nodes reach the required 
number, the proxy node introduces the public keys of the transaction participants, to 
perform mPECK operation on Tx and the keyword set, thus generate a transaction 
ciphertext.  

4) Consensus: The proxy node broadcasts transaction ciphertext together with the 
signatures to consensus nodes. After performing necessary validation, consensus 
nodes order and pack the received transactions into blocks, then participate in the 
consensus process of the whole blockchain network. In the consensus phase, these 
nodes do not need to know the transaction content, so there is no need to store the 
blockchain ledger. Each consensus node is built with a global state database that 
records the state information of overall endorsement nodes. 

5) Update: The valid block after consensus phase is delivered to storage nodes, which 
then perform the update operation on their respective local ledgers. The endorsement 
nodes involved and all consensus nodes need to update state databases. 

6) Trapdoor: When a member of transaction participants needs to extract a transaction 
stored in the blockchain ledger, it can use the private key of the corresponding 
transaction to act on the keyword set to generate the trapdoor and deliver it to the 
storage nodes for ciphertext retrieval. 

7) Test: The storage node executes the Test algorithm after Step 6 has been executed. 
Once the operation is successful, the transaction data ciphertext corresponding to the 
keyword set is then transmitted to the member; otherwise, the search failure message 
is returned. 

8) TxDec: After receiving the transaction data ciphertext, the authorized member 
decrypts the ciphertext with its own private key, and eventually obtains target 
transaction information.  

Obviously, the first five algorithms above describe the formation of the transaction flow, 
including the whole process from the generation of a transaction to the eventual ledger 
update. The latter three algorithms introduce a transaction search method based on 
trapdoor query. 

5 Architecture design 
In this section, we will elaborate on how Cipherchain works according to the overview in 
Section 4, and explain the details of the execution-consensus-update architecture. Before 
doing this, we introduce the concept of smart contract and state database designed in 
Cipherchain, which are mentioned frequently below. 
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Smart Contract  
The smart contract specifies the transaction logic and endorsement policy, which exists in 
the form of program code in the transaction. Generally, the transaction logic is the 
confidential data of business. Since the transaction exists in the form of ciphertext, this 
makes the smart contract more private and secure. In Cipherchain, smart contract can be 
categorized into user contract and system contract explained as follows: 
User contract (USC). User contracts are developed by users and presented in the form of 
transactions. Before sending an ordinary transaction, the user must declare which user 
contract the transaction is associated with. The transaction execution result will be 
considered valid only if it conforms to the logic of user contracts. In addition, each user 
contract points to the system contract by default at the time of initial creation, 
parameterizing the function of the endorsement policy in the system contract, specifying 
the ID, quantity, and number threshold parameters, etc. of the endorsement nodes. 
System contract (SSC). System contract is developed by the system administrator. It 
acts on all generated transactions in Cipherchain and affects the normal operation of the 
system and transaction flows. The main purpose of the system contract is to develop 
abstract endorsement policies. As can be seen from the above, each user contract must be 
associated with the system contract. If the parameterized endorsement policy in the user 
contract is not satisfied with the system contract requirements, the contract creation 
request will be rejected. 
The system contract should have been in Cipherchain at the beginning of the system 
operation. Meanwhile, before users obtain blockchain service, they must have a valid 
user contract in the ledger. Of course, user contracts may also be updated, such as 
adjusting the endorsement policy, changing the transaction logic, etc., which requires the 
transaction participants to develop or verify the new contract. 
State database  
Each node in Ethereum has a dynamic global state trie in addition to the static blockchain 
structure. The state trie is specifically implemented using “the modified Merkle Patricia 
tree (trie)” [Matthew (2017)]. It records state data for all accounts in a key-value mode. 
The nonce field in the transaction serves as part of the account state and contribute to 
prevent “double spending” attack. This makes the traditional UTXO model replaced by 
the account model. Our solution is based on the account model as well.  
The account state in Ethereum is globally consistent, that is, each node holds all the 
account information in the blockchain network. However, as the volume of transactions 
increases, the performance of Ethereum will also decline rapidly [Zhang, Jin and Cui 
(2018)]. In Cipherchain, a two-level state database scheme is proposed to conform to the 
modular design of the system. The lower level has local attributes, while the higher one is 
global consistent. 
The local state database saved by specified endorsement nodes maintains the state 
information of associated transaction participants and the user contract. The term 
“specified” above refers to the nodes encoded in the user contract, which are generally 
only a subset of overall endorsement nodes. Moreover, an endorsement node can run 
multiple different user contracts, but a corresponding state database needs to be 
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established for each user contract. Ordinary transactions drive the update of the low-level 
database, which should be synchronized between specified endorsement nodes.  
Consensus nodes maintain the global state database. This globally consistent database 
maintains state information for all endorsement nodes in the blockchain network.  
Compared with Ethereum, the design of two-level state greatly reduces the storage 
burden of blockchain nodes, and the construction is more scalable and flexible. When a 
user contract is revoked, the corresponding low-level state database can be removed from 
local memory. Besides, operations on user contracts such as invocation and inheritance 
are not described in detail here. 

5.1 Execution phase 
The execution phase is the core process of the Cipherchain, which consists of three 
algorithms: Params, TpEndorse and mPECK+TxEnc.  

Algorithm 1. ( )kParams 1 : Given the security parameter 1k , it returns parameter 

set ( )1 2 1 2, , , , ,params G G e H H g= , where g is the generator 1G . The hash 

functions { }1 10,1 logH Gω= → { }2 10,1 logH Gω= →  are related to the generation of keyword 
set ciphertext and trapdoor. The sender and the n other participants respectively generate 
random value 0 1, p

*
ns s s Z… ∈ , and compute is

it = g , that is, generate respective public-
private key pairs for data encryption and decryption. 

( ) ( ), ,pk sk t si i i i=   

It should be noted that among the n participants, there are not only the participating users, 
but also specified endorsement nodes.  
Each transaction participant usually has at least two key pairs with different functions: 
one is allocated by CA for network access and identity authentication; the other is to 
encrypt or decrypt data, usually it can be generated by the transaction participant itself or 
by the CA. We identify the key pair of the former as: 

( )ID ID
i ipk ,sk  

Write the latter as: 

( )Enc Enc
i ipk ,sk  

Remark: Since the Cipherchain is a permissioned blockchain, it is necessary to provide 
PKI-based identity management and enforce transaction management. All users and 
nodes participating in the blockchain network need to be registered with the CA specified 
by the system. In addition, unlike previous blockchains, the keyword set field in 
Cipherchain's transactions is employed to facilitate ciphertext retrieval mentioned later. 
Algorithm 2. ( )TpEndorse Tp, USC : Executed by endorsement nodes. Take as input the 
transaction proposal Tp and associated user contract, output the transaction simulation 
result Tx and specified endorsement nodes’ signature set of TxSig . The generated Tx will 
not be written to the blockchain ledger in this phase. 



 
 
68                                                                                       JQC, vol.2, no.1, pp.57-83, 2020 

The sender first needs to generate the transaction proposal Tp and fill in the keyword 
set { }1, lW w w= … . Some necessary fields of a transaction proposal is shown in Tab. 1. 

Table 1: The partial content of a transaction proposal 
Transaction 
content 

Mainly refers to the operation set of the transaction; if the 
transaction is to create a user contract, it includes the contract code. 

Keyword set The sender needs to fill in the fixed keyword set { }1W , lw w= …  
corresponding to the transaction in advance. 

Timestamp Time when the transaction proposal was generated. 
ID and  
signature 

Sender’s identity information registered in CA, and the signature 
of the proposal.  

User contract  
address 

The execution of the transaction relies on associated smart 
contracts. If the contract address is 0, it means that the 
transaction is to create a user contract. 

Nonce Identifies the transaction ID. The nonce value will be 
incremented by 1 each time after a transaction is executed. “User 
Contract Address+Nonce” constitutes the unique identifier of the 
transaction in the blockchain network. 

Since each ordinary transaction is associated with a specific user contract, a valid user 
contract needs to be created before ordinary transactions. The sender formulates a user 
contract Tp, which must be broadcast to the endorsement nodes specified in the contract. 
This special contract also specifies a proxy node as one of these endorsement nodes. The 
sender just wait for the proxy node to inform it whether the contract transaction has been 
appended to the ledger. 
We assume that the user contract has been updated into the ledger. Each Tp is also 
delivered to all specified endorsement nodes. They verify whether the timestamp is valid, 
the user’s identity is authentic and whether there is permission to submit the transaction 
based on the ID and signature provided by the sender. 
The endorsement nodes need to access the contract transaction ciphertext according to the 
contract address provided in Tp, and decrypts to obtain the contract content with its 
private key Enc

isk . As for how to obtain the ciphertext, we will explain it in Section 5.3. If 
the ciphertext cannot be obtained, or the decryption fails, it indicates that the contract 
address provided is invalid, or the endorsement nodes are not specified by the contract. 
Then the endorsement nodes will return an error message to the proxy node. Next, the 
endorsement nodes will check whether the keyword set meets the specification of the 
keyword format. 
The Tp submitted will be executed respectively according to the transaction logic on each 
specified endorsement node. After the execution is completed, the endorsement nodes 
generate a well-formed transaction structure Tx, and sign the result, then deliver the 
signature information TxSig  to the proxy node. During the execution phase, the 
endorsement nodes should retain the context of the execution results and not update the 
account state until Tx is eventually appended to the ledger. Generally, the hashes of 
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transaction structures received by the proxy node are the same, which indicates that the 
Tp generated by the sender is “correct”. This “correct” indicates that the execution 
process and results of the code are unambiguous. 
The formation of a user contract is not explained in detail above, so we briefly describe it 
here. The sender creates a user contract Tp and sends it to specified endorsement nodes, 
which will do the following additional work: 
1) Check if the sender has permission to create a contract with a certain type. 
2) Check whether the user contract meets the endorsement policies in the system contract. 
3) Check the authenticity and authority of user contract creators’ identities specified in 

the contract (optional). 
4) Verify that the contract transaction logic satisfies the system contract specifications. 
Here we will explain the Step 3 above. Due to the diversity of business types, the 
initiation of a user contract transaction may be actively performed by a single sender or 
multiple parties together. If the individual has permission to create an ordinary 
transaction, the endorsement nodes only need to verify the identity information of the 
sender. While multiple parties participate together, each endorsement node will wait for 
receiving all users’ signatures. 
A user contract is eventually considered valid only if overall endorsement nodes specified 
in the contract (including the proxy node) endorse the contract. Then each specified 
endorsement node creates an initial state database locally that maps to the contract. 
Remark: If the smart contract in Cipherchain is written in a similar way to the Ethereum 
programming language, each proxy node always receive the same transaction execution 
results. While writing code in a more flexible programming language other than Solidity, 
this makes transaction logic more powerful and decentralized applications more scalable. 
However, programming languages like C/C++ or Java may bring result uncertainty, 
which in turn destroys the consistency of both the transaction results and the account state 
with respect to most blockchains. In Cipherchain, the proxy node is selected to play a 
critical role in transaction execution. It compare the results of asynchronous execution to 
obtain sufficient matching responses from fixed endorsement nodes. In the worst case, 
the user need to resubmits a new Tp. According to the description of Fabric's future 
solutions, it may introduce CRDTs [Shapiro, Preguiça, Baquero et al. (2011)] to enhance 
the liveness semantics under contention. 
Algorithm 3. TxEnc (y0, y1 … yn, Tx)+Mpeck (y0, y1, … yn, W): Executed by the proxy 
node. Take as input the public keys Enc

ipk of transaction participants, the transaction 
plaintext Tx, and the keyword set { }1, lW w w= … , and output the transaction ciphertext TxC . 
For simplicity, here iy  is used instead of Enc

ipk  in the certain equations later. 

When the proxy node verifies the Tx structures and signatures set of TxSig  are valid, and 
the number or proportion of the same result meets the endorsement policy, the Tx is 
recognized as valid.  
Here we assume that all specified endorsement nodes correctly execute the Tp; 
meanwhile, they deliver the execution results to the proxy node. A secure multi-receiver 
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public key encryption scheme [ElGamal (1985)] is employed to generate transaction data 
ciphertext TxE . The proxy node selects two random values *

1 2, pr r Z∈ :    

( ) 1 2( , r r
TxE H e g g Tx= )⊕                            (1) 

Here ( )H ⋅ is a collision-resistance hash function. 

The generation process of the keyword set ciphertext WE is: 
2 1 21

1

,

i , n

,

0

, r r rr
j j i i iA g B y C h f

j

= = =

≤ ≤ ≤ ≤

              (2) 

Where ( ) ( )1 2,i i i ih H w f H w= = . Then the complete transaction ciphertext is presented 
below: 

( )
( )0 1

,,

, , , ,
Tx Tx W

w n l

C E E

E A B B C C

=

= … …
              (3) 

Then, the data structure before and after the Tx is encrypted, is as follows: 
( ) ( )
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
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              (4) 

Subsequently, the proxy node broadcasts TxC  and signatures to consensus nodes. 
Ideally, the proxy node receives messages from all specified endorsement nodes, which 
create consistent execution results against Tp. However, the proxy node may not receive 
response from a minority of nodes (failure, offline, etc.), or the received results are wrong 
by comparison. The public keys Enc

ipk of these nodes will not be used as input parameters 
for the algorithm 3. 
In some cases, none of the execution results against Tp reaches a dominant ratio that is 
declared in the user contract; or the number of endorsement nodes does not reach the 
specified threshold. If so, the proxy node returns execution failure message to the sender, 
clears the execution context of Tp, and the local state database does not change. 
Remark: Mostly, transaction data is generated by one initiator, while multiple 
participants share the result of transaction execution. Once transactions are created for 
recipients multiple times by employing traditional encryption technology, obviously the 
communication and storage overhead will increase linearly. This is unacceptable for 
blockchain systems where data capacity is severely limited. Thus in Cipherchain, the 
multi-receiver public key encryption scheme of ElGamal [ElGamal (1985)] type can 
process Tx in the context of multi-users. The cryptographic operations do not affect the 
overall performance of the blockchain system. 
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5.2 Consensus phase 
In the consensus phase, since there is no need to execute the transaction logic, the core is 
to run a consensus algorithm to ensure the consistency of the blockchain ledger, which 
makes it possible for transactions to be presented in the form of ciphertext. 
Algorithm 4. ( )TxConsensus C : Executed by consensus nodes. Take as input the 
transaction ciphertext ( ),Tx WE E  and signature set of TxSig , output the block structure BT. 
Proxy nodes in the blockchain network broadcast TxC  to the consensus nodes. 
The evaluation that the consensus nodes need to perform are relatively simple, namely: 
1) Check if the TxC is within the limited capacity. 

Each transaction is created with a capacity limit, which ensures that a block with the 
same capacity cap can accommodate enough transactions. On other hand, a block 
containing too few transactions will significantly affect system performance. In 
Cipherchain, each TxC contains an additional keyword set ciphertext. Therefore, it is 
necessary to consider various factors such as consensus mechanism and network 
bandwidth to set these parameters. 

2) Check if the timestamp of TxC is within a specific period. 
The proxy node attaches a timestamp to a transaction before sending it, indicating 
when the transaction was sent. There is also a timestamp in the transaction structure, 
but it indicates the generation time of Tp, not perceived by consensus nodes. The 
consensus nodes detect whether the timestamp attached satisfies within a specific 
period. If so, proceed to the next step. 

3) Check if the identities of the endorsement nodes the transaction associated with are valid. 
The proxy node sends the identity information of all endorsement nodes that have 
performed endorsement operation. Then consensus nodes will check whether these 
digital identities are valid and whether they have the authority to endorse. 

4) Check if the transaction hashes signed by all endorsement nodes are the same. 
Consensus nodes decrypt the signatures with the public keys ID

ipk of endorsement 
nodes. If hashes of the decrypted transaction are all the same, this indicates that the 
results of the transaction execution are consistent. 

5) Check if there are duplicate transactions. 
Even if the first four steps are verified successfully, there is no guarantee that the 
transaction is valid. Consensus nodes may collect multiple duplicate transactions from a 
certain proxy node. Therefore, they need to identify duplicate transactions to prevent 
“double spending”. The easiest way is to keep the transaction hashes processed within 
several specific rounds of consensus and to compare with each newly received transaction. 

There will still be some special cases where the transaction is repeatedly appended to 
Cipherchain. The proxy nodes may mistakenly consider that a transaction has not been 
successfully updated to the Cipherchain for some reason. Therefore, they may resend a 
transaction with a new timestamp. This usually happens when consensus nodes have 
cleared local transaction history. To address these threats, the state information of all 
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endorsement nodes in the blockchain network can be recorded by creating a global state 
database in the consensus nodes, and this measure does not reveal valuable information 
with respect to transactions and users. Then consensus nodes will then run a consensus 
algorithm against newly generated blocks.  
Remark: Since the transactions are submitted to the consensus nodes in the form of 
ciphertext, consensus nodes do not participate in the verification and execution of the 
transaction content themselves. This is in line with the premise that the consensus nodes 
do not need to establish a trust model against transaction. In Cipherchain, we adopt a 
modular design approach; hence, the consensus module is pluggable. We can update the 
consensus module since it is independent of other processing modules of transaction flow. 
The system can adopt a variety of consensus mechanisms, such as PoW, POS, POA, 
PBFT, etc. Besides, this also greatly reduces the computation overhead, so that consensus 
nodes can focus on the operation of the consensus algorithm. In addition, Cipherchain as 
a permissioned blockchain can usually be run and maintained by one or more known 
service providers. Compared with public blockchain schemes, it can obtain better 
communication bandwidth and quality of service. Therefore, Cipherchain can achieve 
faster distributed consensus, which contributes to higher transaction throughput. 
The eventual block structure, including Tx and TxSig , generated after consensus phase is 
shown in Fig. 3.  

 

Figure 3: Data structure of block and transactions in Cipherchain 
The block consists of three parts: block header, block body, and appendix. Only the block 
headers and appendix in the form of plaintext can be accessed. The shaded part consists 
of Tx and keyword set W, which are used as input to algorithm 3 to generate TxC . Some 
fields of the block structure are briefly explained below: 
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Keyword Hash: All WE in a block are hashed in a Merkle Tree [Merkle (1980)], with 
only the root called KeywordHash included in the block header. 
USC address and USC call: If it is a user contract transaction, set the address to 0, call 
certain functions of the system contract, and USC code must be filled in; otherwise, this 
field specifies the user contract address associated with the transaction and calls the user 
contract function.  
InitialType: It is related to USC address. If a user contract transaction is to be created, the 
field indicates how the transaction is initiated. Moreover, the following USC creators’ 
identities field must be filled in. 
Appendix: This part contains the signature set of endorsement nodes associated with each 
transaction. Appendix serves as an important way to verify the validity of each transaction 
for the consensus nodes in Section 5.2. 
Obviously, the transaction structure of the shaded part is generated and encrypted by the 
proxy node in the execution phase. Each proxy node broadcasts encrypted transactions 
along with corresponding Appendix to the consensus nodes. 

5.3 Update phase 
In the update phase, the update operation on the global distributed ledger are to be 
performed; meanwhile the state databases maintained by certain endorsement nodes and 
all consensus nodes will be updated as well. 
Algorithm 5. ( )TUpdate B : Executed by the storage nodes. Take as input a valid block BT 
generated after the consensus phase, and output a series of update operations on the 
blockchain ledger and related state databases. 
The endorsement node and the storage node are logically divided by function. They may 
belong to the same server physically, or each may run on different servers, hence the 
update operation may have some differences. 
We first discuss the case where the endorsement node and the storage node are the same 
physical server. Here we refer to this type of physical node as peer. The consensus nodes 
send a BT to all peers, which then append it to local ledgers after some necessary 
validation operations. Some peers may have submitted transactions in advance and then 
check if these transactions exists in the local ledger. If it exceeds a specific period (such 
as several rounds of consensus), and there is still no target transaction in the ledger, users 
will be returned commit failure message. In this case, the state databases do not need to 
be updated. While the update is successful, storage nodes must return commit success 
message to consensus nodes, then associated state databases of endorsement nodes and 
all consensus nodes’ database are required to update. 
Another situation is that the storage node and the endorsement node are physically 
different servers. In this case, the storage nodes only serve to maintain the blockchain. 
After consensus phase, consensus nodes send a BT to storage nodes. At the same time, 
they will also broadcast this block to the endorsement nodes that have proposed 
transactions contained in this BT in advance. 
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As mentioned earlier in the endorsement phase, some endorsement nodes may perform 
incorrect results or fail to endorse transactions. As an example, a simple endorsement 
policy can be described as operation below: 

( ):  2, 1, 2, 3Op Endorsement N N N  

That is, at least two signatures from the endorsement node N1, N2 or N3 are required. 
Here we assume that N3 failed to participate in the endorsement process. The 
endorsement nodes need to ensure that their respective state databases are synchronized 
before each single Tp is executed. Therefore, N3 needs to perform a state update as well. 
After the transaction is eventually in the ledger, the proxy node needs to inform N3 to 
update the state. The endorsement nodes can share state information with each other 
through a keep-alive instruction. As a result, the newly joined nodes (for example, after 
updating user contract) can also be quickly updated to the latest state. 
Remark: In Fabric, peers call VSCC (validation system chaincode) to perform 
endorsement policy evaluation on all transactions in a received block. If the endorsement 
fails to meet the requirements, the transaction will be marked as invalid. The VSCC 
specifically determines whether the endorsement of a transaction is from the intended 
source and whether the transaction has obtained the required number of signatures. While 
in Cipherchain, each user contract parameterizes the endorsement policies in the system 
contract, specifies the ID, quantity, and transaction logic of endorsement nodes. When a 
user sends an ordinary transaction, the endorsement nodes can determine whether the 
transaction logic and the endorsement policy are valid based on the local state database and 
the user contract. At the same time, the consensus nodes also verify the identities and 
permissions of these endorsement nodes based on the global state database. The function 
similar to VSCC is completed before the update phase. This design makes it impossible for 
the storage nodes to obtain any information about the transaction. In update phase, the 
storage nodes do not need to perform complicated computation related to transactions, 
which further modularizes the blockchain function and the storage nodes can exist 
independently. Another situation is when there are peers existing in Cipherchain. Obviously, 
each peer will just know related transactions, but not the information of other transaction. 

5.4 Search phase 
After the execution-consensus-update operation of transaction flow is performed, an 
immutable transaction history record is formed. In the search phase, since transaction 
information exists in ciphertext, special operations are usually required. Endorsement 
nodes are primarily intended to invoke a user contract to process a newly received Tp, or 
in some cases to search a historical transaction for users. Users intend to obtain the 
higher-level service of the blockchain system. According to the different schemes of 
transaction search, it can be divided into two modes: ordinary search and trapdoor query. 
The former only needs to find the transaction in the ledger according to the transaction 
address, while the latter needs to generate a trapdoor. Here we first explain the specific 
implementation of the trapdoor query. 
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Algorithm 6. ( )Enc
jTrapdoor sk , Idx : Executed by the transaction searchers. Take as 

input the searcher’s private key Enc
jsk  and the keyword set index Idx , and output the 

trapdoor jT . The searcher selects a random value *Zpr∈ , which is computed separately: 

( ) ( )1 1

/
,1 ,2 ,3, , Encsk j

m m

r rr
j j I I j I IT g T h h T f f= = … = …               (5) 

where { }11, , , , ,
mm I IIdx I I w w= … …  for m l≤ . Here iI  indicates the position of the keyword 

lIw  in the keyword set, outputs the transaction trapdoor: 

( ),1 ,2 ,3 1, , , , ,j j j j mT T T T I I= …               (6) 

The trapdoor is generated locally by the transaction participants and “passed” to the 
storage nodes. Here, “pass” is used instead of “send” because there is a case where the 
endorsement node and the storage node belong to the same server. 

Algorithm 7. ( )Enc
j w jTest pk ,E ,T : Executed by the storage nodes. Takes as input the 

keyword set ciphertext wE , the public key Enc
jpk , and the trapdoor jT  generated by a 

searcher. The output result “TRUE” indicates that the search is successful, and the 
transaction ciphertext information ( )|| ||Test Tx jE E A B= is returned back to the searcher; 
output “FALSE” indicating that search failed, and failure message is returned. 
Specifically, the storage node performs the following query operations on TxC : 

( ) ( ),1 ,2 ,3
1

, , ,
i

m
j I j j j

i
e T C e A T e B T

=

  = ⋅∏ 
 

              (7) 

If there is no WE  in the local leger satisfying this equation, the Tx is not in the ledger; 
otherwise, the searcher performs the next decryption operation. 
Remark: Since each user contract must be endorsed by all associated endorsement nodes, 
all transaction participants can search the associated user contract transactions in a 
trapdoor query manner. However, ordinary transactions may not have involved all 
associated endorsement nodes participating in the endorsement work, some endorsement 
nodes may return search failure message. Thus in order to search more efficiently and 
accurately, it is generally possible to refer to the proxy node for related operations. 

Algorithm 8. ( )Enc
TestjTxD ,Eec sk : Performed by transaction searcher for local ciphertext 

decryption. Take as input TestE  and the private key Enc
jsk  of the searcher, and output the 

result of performing an XOR operation on the TxE . Specifically, compute: 

( )1/' ,
Enc
jsk

j jE h e A B =  
 

              (8) 

'Tx E Ej= x
*

T⊕               (9) 
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If the searcher is a user as a member of the transaction participants, or an endorsement 
node who has executed the corresponding Tx correctly, then the desired transaction 
plaintext *Tx Tx=  is obtained. This is due to the equation:  

( ) ( )( )1 2
/' 1

, ,
Enc
jsk r

jj
rh e A B h e g gE  = = 

 
             (10) 

For the endorsement nodes that have not been involved in the correct execution of this Tx, 
obviously they cannot decrypt the ciphertext. 
Earlier we mentioned the difference in physical implementation between storage nodes and 
endorsement nodes. This would also result in different search methods for participants. 
First, we explain the case where the storage node and the endorsement node belong to the 
same physical server (i.e., peer). Since each peer maintains a blockchain ledger locally, it 
just processes the Tp according to the contract address. Then they decrypt it with Enc

jsk . 
Peers also need to respond to users’ request to search for a target transaction. Each user 
can obtain the desired transaction in two ways. One is that the user adopts the above 
trapdoor query method, which requires both the user and the peer to spend a certain 
amount of computation overhead. Such a mission can be performed on any peer’s server, 
even if the peer is not involved in the execution of the target transaction. This method 
does not cause any information leakage for users. The other is that the user specifies the 
transaction address, and then the peer returns specified transaction ciphertext. Obviously, 
if the user gets an unrelated transaction ciphertext, he cannot decrypt it. 
When the storage node exists independently, endorsement nodes and users can only obtain 
the target transaction ciphertext through the trapdoor query method. The endorsement node 
generates a trapdoor based on the keyword set and sends it to a certain storage node. The 
storage node runs the Test algorithm, and returns the result. Similar to the endorsement 
node, a user can send a transaction request to the endorsement node as will. 

6 Performance evaluation 
We now evaluate the performance of Cipherchain scheme in terms of computation, 
storage and communication costs. 

6.1 Computation cost 
The computation cost here refers mainly to the cryptographic operations with respect to 
transactions. Since introducing mPECK technology, the transaction flow is inevitably 
affected by these complex cryptographic operations. Fortunately, since employing our 
improved modular design scheme that was not available in previous public blockchains, 
the impact of localized time-consuming operations on the overall performance of the 
system is limited. Computation overhead is mainly divided into two situations: the 
formation of transaction flow in local hosts or servers and trapdoor query in cloud servers. 
The operations and the executing times of the formation of transaction flow used in the 
evaluation are defined in Tab. 2. The evaluations were performed on a personal computer 
(Lenovo with an I5-8300H 2.3 GHz processor, 8G bytes memory, 5400 rpm mechanical 
hard disk and Windows 10 operating system) using the JPBC library [De Caro and Iovino 
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(2011)]. In addition, our core code for cryptographic operations and performance 
evaluation was published on the website https://github.com/alanbaby/Cipherchain. 

Table 2: The computation cost of cryptographic operations 

Function Description 
User 

Number 
Keyword 
Number 

Tx 
(MB) 

Time 
(ms) 

Params 1 2 1 2( , , , , , )G G e H H g  — 501 

mPECK 
Generation of 
keyword set 

ciphertext WE  

1 

4 

— 228 

2 — 234 

4 — 258 

8 — 287 

16 — 349 

TxEnc 

Generation of 
transaction 

ciphertext TxE  

— 2 25 

— 4 35 

— 6 85 

— 8 102 

T 

 

Generation of a 
trapdoor T for 

Transaction 
retrieval 

8 4 

1 61 

2 96 

3 135 

4 178 

T1 

4 

9 

T2 80 

T3 78 

TxDec 
Decryption of 

transaction 
ciphertext TxE  

— 

2 31 

4 41 

6 50 

8 59 

 
The main computation cost of cloud servers is on the Test algorithm. The cryptography 
scheme requires three pairing operations per trapdoor. Since executing Test algorithm 
acting on each keyword set is independent of each other, and these three pairing 
operations per trapdoor can be executed independently, the scheme relies on the high 
parallel processing capability of cloud servers. In our performance evaluation experiment, 
the execution time of each Test thread related to (7) is about 28 milliseconds. Then we 
use thread pool technology to run on the PC processors, and finally we measure that it 
takes about 6 milliseconds each time to execute a Test thread.  
In addition, it should be pointed out that it may return failure message if the trapdoor 
query method is used to obtain the target transaction. This means that cloud servers need 
to spend much time retrieving all keyword ciphertext, and even this behavior can become 
an attack to deteriorate the performance of cloud servers. Therefore, cloud servers need to 
take some measures to minimize the risk of retrieval failure, such as identity and 
privilege verification, the introduction of blacklist mechanism, and so on. Alternatively, 
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the searcher can provide the search scope of ciphertext keywords and even provide a 
definite search target. 

6.2 Communication and storage cost 
Here we let 1| |G  and | |M denote the bit sizes of point in group 1G  and transaction 
plaintext, respectively. Tab. 3 shows the communication and storage of Cipherchain 
using mPECK. 

Table 3: Costs of communication and storage 
Element Size 

Enc
ipk  1| |G  

TxE  | |M  

WE  1( )| |n+l + 2 G  

jT  3 1| |G  

As shown in Tab. 3, the most significant feature is that the size of the transaction 
ciphertext does not increase when the transaction plaintext is encrypted. This is obviously 
the shortest ciphertext size compared with previous PECK schemes [Bösch, Hartel, 
Jonker et al. (2015)]. We know that the size of transactions in the blockchain structure 
has a significant impact on system performance. If the TxE  generated by a certain 
encryption scheme is too large, it is bound to be impossible to realize the ciphertext 
blockchain scheme. Therefore, the mPECK, which can be implemented in multi-user 
scenarios, is very suitable for our proposed Cipherchain out of consideration of 
communication and storage overhead. 

7 Application 
7.1 Cipherchain and cloud computing 
Currently, Bitcoin's distributed ledger has already consumed more than 200 GB. Since 
the ledgers exist in a chain structure, the data will only continue to increase. The amount 
of data in each distributed ledger will become larger and larger, so that ordinary users 
with limited storage capacity will not be able to store them. 
At present, the application of the public blockchain is mainly in the field of cryptocurrency. 
However, future blockchain scheme may be faced with logic that is more complicated or 
larger amount of data in each transaction or block. Hence, blockchain with commercial 
applications requires address the issue of data explosion to support higher transaction 
throughput, which is also what storage nodes of Cipherchain need to face. 
In our proposed scheme, we employed mPECK, a searchable encryption technology that 
addresses the privacy issue of cloud computing. The storage nodes can be physically as 
the cloud servers with huge computing power and storage capacity. The users or the 
endorsement nodes just request the cloud server to search the target transaction by 
employing the trapdoor query method. In this process, cloud service providers are unable 
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to obtain any valuable information about transactions. Compared with the most 
blockchain schemes, Cipherchain involves relatively complex cryptography operations. 
However, the execution-consensus-update mode has limited impact on the overall system 
performance. The combination of “blockchain+cloud computing” is shown in Fig. 1 
above, which may be a significant scheme to address many issues in the field of 
blockchain. The role of major cloud service providers in the blockchain network is 
similar to that of miners in Bitcoin, providing massive computing and storage services 
without additional cost of competition in computing power. This may trigger a new 
business model of cloud service.  
Since the specific operation process of proposed “blockchain+cloud computing” is essentially 
consistent with the scheme described in Section 5, we will not elaborate on it here. 

7.2 Cipherchain and public blockchain 
In Cipherchain, the consensus module is highly independent. The consensus nodes do not 
participate in the verification and execution process of the transaction flow and their 
mission is simplified to run the consensus mechanism. The modularization of system 
brings significant advantages in performance and updateability. In the consensus phase, 
the transaction is presented in the form of ciphertext. Except for the users themselves and 
associated endorsement nodes, no entity can obtain the transaction content. For the above 
features, Cipherchain, as a type of permissioned blockchain, can even “outsource” 
consensus function to the existing public blockchains. 
In the case of Bitcoin, the miners run the PoW mechanism. We know that most existing 
blockchains adopt PoW mechanism, which currently accounts for more than 90% of the 
total market capitalization of existing digital currencies [Gervais, Karame, Wüst et al. 
(2016)]. At the time of writing this article, the hashrate representing Bitcoin's total 
network computing power is 40 EH/S, while the Ethereum’s has also reached more than 
140 TH/S. The enormous computing power of the public blockchain maintains the 
normal operation of the decentralized system, and its transactions or blocks after 
consensus can hardly be tampered. Although Cipherchain can use the non-incentive 
consensus algorithms such as PBFT or Raft, we assume that the consensus mechanism 
adopted by the public blockchain (here specifically, PoW) can serve this permissioned 
blockchain. Such design can take the advantages of both the permissioned blockchain’s 
and the public blockchain’s respective features. The operations (verification, execution, 
and endorsement) related to the transaction flow itself during the execution phase are 
performed by the endorsement nodes. Moreover, the work in the consensus and update 
phases are handed over to the miners in the public blockchain network. 
In this proposal, each miner needs to establish a global state database to maintain state 
information for all endorsement nodes. Naturally, it requires necessary interaction 
between the miners and the CA. The miners receive the well-formed transaction 
ciphertext, since the correctness of the transaction execution result is guaranteed by the 
endorsement nodes, which bear the corresponding responsibility. The main operations 
that miners need to perform are: (1) verifying the signature of the sender (a proxy node) 
on the transaction ciphertext; and (2) verifying the account states of all participating 
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endorsement nodes. The verification operations that miners need to perform are similar to 
the consensus nodes in Section 5.2. 
After the transaction ciphertext is considered valid, the miners’ consensus process is 
similar to the Bitcoin, implementing the PoW consensus mechanism. Finally, the block 
produced by a miner is accepted by the whole public blockchain network, and the block 
containing multiple transaction ciphertexts is appended to the ledger. Therefore, each 
miner also plays the role of a storage node. When transaction participants search for 
specific transactions on miners’ local ledgers, they usually need to pay some fees for 
additional computation overhead. Since public blockchains usually require incentive 
mechanism to inspire miners, we will not go into details here. 

8 Conclusion 
We present Cipherchain, the first ciphertext blockchain scheme, where data can be 
processed and maintained in the form of ciphertext to realize the privacy protection of 
transaction. We describe in detail the several algorithms related to the formation of 
transaction flows and retrieval methods for ciphertext transactions. Since introducing the 
execution-consensus-update paradigm of transaction flow, transactions are simulated and 
encrypted based on the mPECK scheme by specified endorsement nodes, while consensus 
and update operations with respect to ciphertext transaction are globally executed. Such a 
modular design also makes the overall performance of Cipherchain not greatly affected by 
cryptographic operations and other necessary computation work, which makes the system 
performance run efficiently. Then necessary performance evaluation is performed to 
demonstrate the feasibility of the cryptographic operations acting on Cipherchain. We also 
make it possible to implement the future application of technology combination of 
“blockchain +cloud computing” and “Cipherchain+public blockchain”. 
Our work does not only describe a novel ciphertext blockchain scheme designed for the 
sake of both privacy and efficiency, but also indicates that both the security model and 
the design concept “openness and transparency” based on previous Bitcoin-like 
architecture can be retained in permissioned blockchains, while without the compromise 
of performance or privacy. 
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