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Abstract: Nowadays cloud architecture is widely applied on the internet. New malware 
aiming at the privacy data stealing or crypto currency mining is threatening the security of 
cloud platforms. In view of the problems with existing application behavior monitoring 
methods such as coarse-grained analysis, high performance overhead and lack of 
applicability, this paper proposes a new fine-grained binary program monitoring and 
analysis method based on multiple system level components, which is used to detect the 
possible privacy leakage of applications installed on cloud platforms. It can be used online 
in cloud platform environments for fine-grained automated analysis of target programs, 
ensuring the stability and continuity of program execution. We combine the external 
interception and internal instrumentation and design a variety of optimization schemes to 
further reduce the impact of fine-grained analysis on the performance of target programs, 
enabling it to be employed in actual environments. The experimental results show that the 
proposed method is feasible and can achieve the acceptable analysis performance while 
consuming a small amount of system resources. The optimization schemes can go beyond 
traditional dynamic instrumentation methods with better analytical performance and can 
be more applicable to online analysis on cloud platforms.  
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1 Introduction 
Cloud computing technology has been widely used in various areas, such as cloud storage, 
cloud server and website hosting [Liu, Liang, Susilo et al. (2016); Patel, Taghavi, 
Bakhtiyari et al. (2013)]. Meanwhile, as most cloud platforms are deployed in public 
network environments, security challenges have also been highly concerned and studied, 
such as data storage protection, access control, identification authentication and the running 
status monitoring [Liu, Liang, Susilo et al. (2016); Liu and Xia (2019); Rocha, Gross and 
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Moorsel (2013)]. 
In most cases, cloud platforms are built using virtualization technology, that is, clients 
provided to users exist in the form of virtual machines (VMs). Multiple separated virtual 
machines share the same hardware resources of host machine, which are all supervised by 
the hypervisor or virtual machine monitor (VMM). In this situation, The more common 
threat is that malicious code existing in the virtual machine leads to user data stealing or 
turns the virtual machine into a mining node [Korkin and Tanda (2017); Patel, Taghavi, 
Bakhtiyari et al. (2013)]. Similarly, some normal cloud applications in virtual machines 
can also be infected or misconfigured, thus causing abnormal operation or information 
leakage. In view of this situation, the existing methods mostly focus on monitoring the 
behavior of programs, such as access operations related to processes, files and networks, 
including monitoring the inside and outside of virtual machines [Bauman, Ayoade and Lin 
(2015); Gupta and Kumar (2015); Han, Hao and Cui (2016); Mishraa, Pillia, Varadharajanb 
et al. (2017)]. However, it is difficult to detect and find more detailed abnormal operation 
of programs in real time. On the basis of previous research work, this paper proposes a 
real-time program monitoring and analysis method at instruction level to detect the possible 
data leakage in time. 
There are some mature representative methods and tools in the field of traditional binary 
analysis, such as Pin [Luk, Cohn and Muth (2005)], but these methods or tools are not 
suitable for the analysis of running program or online monitoring on cloud platforms. In 
addition, although some research works based on virtual machines implement a system-
wide program analysis system [Henderson, Prakash, Yan et al. (2017); Lengyel, Maresca, 
Payne et al. (2014)], including the fine-grained analysis, most involve static semantic 
analysis and depend on the instruction interpretation, and there are also challenges related 
to analysis granularity, efficiency, and deployment on cloud platforms. 
To develop more applicable and lightweight analysis methods for the cloud applications, 
based on the previous research work, this paper proposes a new automatic privacy leakage 
monitoring method on cloud platforms, named as FBAC, which can perform online fine-
grained binary analysis and reduce the performance impact on target programs. The method 
continues to employ the new features of virtualization technology, combines the extended 
page table (EPT) and virtualization exception (#VE) mechanisms to externally intercept 
the execution of target program with low performance overhead, this solution can also be 
feasible on the cloud architecture. Based on program behavior interception and fine-
grained execution interception, all execution instructions of the target program are 
analyzed. Moreover, we propose the corresponding analysis optimizations to further reduce 
the performance overhead, which can meet the requirements of different analysis scenarios. 
So the proposed analysis method can be used to conduct dynamic taint analysis on target 
programs online to track the sensitive data propagations on cloud platforms. 
Compared with other methods, the proposed method adopts online analysis at instruction 
level and is oriented to the whole program execution process. And by introducing more 
system level components based on the traditional hypervisor to improve analysis efficiency, 
which can also aid to accurately acquire the program semantic information. Moreover, 
along with internal binary instrumentation, optimization measures are proposed to 
overcome the performance bottleneck of automatic analysis in traditional pure 
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virtualization mode. In addition, it leads to the lower impact on the target program and 
achieves the better performance. It can also accomplish the analysis that traditional 
instrumentation methods are difficult to be applied on cloud platforms. The contributions 
of this work are presented as follows: 
Firstly, we propose a new online privacy data leakage detection method on cloud platforms, 
which can perform fine-grained automatic binary analysis. It can online monitor and analyze 
the suspicious program stably and efficiently based on multiple underlying components. 
Secondly, we integrate the external execution interception with the internal instruction 
instrumentation and propose the corresponding analysis optimizations to further reduce the 
performance overhead caused by virtualization technology. Thus it enables real-time 
dynamic data flow analysis of target programs. 
Finally, a prototype is implemented on the Windows and Intel platform, and multiple types 
of programs in actual environments, especially some network applications, are used to 
measure the performance and functionality. The results show that the method can be 
applied to online privacy leakage detection on cloud platforms. 

2 Related works 
There has been much research work related to cloud computing security, most focusing on 
data encryption protection, access control and operation resource monitoring [Liu, Liang, 
Susilo et al. (2016); Mishraa, Pillia, Varadharajanb et al. (2017)]. For example, Zhang et 
al. proposed the flexible monitoring framework for security status of virtual machine 
[Zhang and Lee (2018)], which provides a new VM security verification method and can 
automatically prevent violations of security rules. Fu et al. designed a distributed cloud 
application anomaly detection system FlowBox [Fu, Kim and Prior (2015)], which detects 
the performance anomaly behavior of cloud applications by collecting traffic information 
of multiple components. Rocha et al. proposes an attack model towards Xen platform 
[Rocha, Gross and Moorsel (2013)], which can break through the memory isolation and 
the corresponding protection model was also proposed. Lee et al. designed the protection 
system against the ransomware, which deployed the cloud system to collect and analyze 
all kinds of information for in-depth protection [Lee, Moon and Park (2017)]. Chung et al. 
[Chung, Khatkar, Xing et al. (2013)] proposed the new intrusion detection system for the 
cloud platform NICE, which can improve the detection capability by reconfiguring the 
virtual network structure. Most of the above studies protect the security of cloud platforms 
at macro level. 
Researches regarding VM security monitoring are mainly based on hardware characteristics 
and VM introspection technology [Deng, Zhang and Xu (2013); Dinaburg, Royal, Sharif et 
al. (2008); Gupta and Kumar (2015); Mishraa, Pillia, Varadharajanb et al. (2017); Vogl and 
Eckert (2012); Willems, Hund, Fobian et al. (2012)]. However, some of the above researches 
are difficult to be deployed on cloud platforms, most of which are coarse-grained analysis 
work, or fail to realize efficient automatic analysis of the whole program, and may confront 
serious performance challenges during real-time online analysis on a large number of codes 
of the program. Besides, the binary analysis method at instrumentation level has been 
extensively studied [Jee, Kemerlis, Keromytis et al. (2013); Kemerlis, Portokalidis, Jee et al. 
(2012); Ming, Wu, Xiao et al. (2015); Schwartz, Avgerinos and Brumley (2010)]. Most of 
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these synchronous researches involve modification and interpretation of target codes, which 
are difficult to be directly applied to online monitoring and analysis in cloud computing 
environments. However, the ideas involved in these researches are conducive to instruction-
level program analysis on cloud platforms.  

3 Method description 
The overall architecture of the proposed method is shown as Fig. 1. It intercepts all memory 
accesses of the target running program first, including data acquisition and instruction 
fetching, and analyzes all the instructions that have been executed in the meanwhile. The 
scheduler component located in the hypervisor is responsible for controlling the code 
coverage and time duration of the analysis. The main components involved in each VM 
are system monitor and target program execution analysis component. The former monitors 
multiple types of program behaviors such as reading files and sending network data through 
system exported functions or function hooks. With this help, we can recognize the 
suspicious programs, mark the sensitive data in memory and detect the possible privacy 
leakage in the network traffic. Further the fine-grained analysis can be performed to 
determine if there exists the privacy data leakage, which is mostly conducted by the taint 
analysis engine. The execution analyzer traces and performs all kinds of analysis at the 
instruction level, also interacts with other components. 
In virtualization mode, the virtual address and memory management mechanism of guest 
operating systems and applications will not be affected because EPT is used to translate 
the physical address of VM to real physical memory. Since EPT exceptions are only related 
to the current processor core, analysis among multiple clients will not affect each other. In 
addition, the fine-grained analysis can be launched timely and the code coverage can be 
dynamically adjusted, making the method more flexible. In the process of monitoring the 
client, the interception engine starts performing the coarse-grained monitoring functions, 
for example, obtaining the process list of target system, monitoring the use of system 
resources, intercepting the execution of critical system calls. Then fine-grained analysis is 
conducted for suspicious targets. Once the analysis is completed, fine-grained analysis 
should be closed in time to reduce the impact on the performance of the target system. 
Periodic fine-grained monitoring and analysis can also be directly carried out for the preset 
monitoring target. The execution state of target programs in the analysis and native state 
can be quickly and safely switched by changing the EPT pointer, and the state transition 
can be performed step by step by adjusting the permissions in the EPT table. 

3.1 Design of key components 
Two main parts are located in the guest OS kernel and hypervisor respectively. There is an 
analysis agent module in the kernel of each guest system. Since our main target is the code 
running in user mode, the analysis would mostly occur in kernel space, thus improving 
analysis efficiency. In kernel space of guest OS, a plurality of target system behavior monitors 
are constructed in the kernel module for monitoring program behaviors at the function level, 
which also interact with the component in charge of fine-grained data flow analysis. The 
components in the hypervisor schedule the analysis tasks, communicate with modules in the 
guest VM, construct the EPT structures and process the special VM exit events. 
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Figure 1: Overall architecture of FBAC 

For each guest VM, multiple EPT tables need to be pre-constructed and shared by all 
processors of the VM. Each EPT table will be loaded in different analysis scenarios. For 
example, intercepting the program to be analyzed, or aiding to trace the executed 
instructions. The interception engine conducts the specific analysis, intercepts the 
execution of target program by setting access permissions of EPT entries, and also injects 
extra code into the guest machine according to the analysis requirement. It also schedules 
multiple analysis tasks in different guest VMs. EPT has supported EPT pointer (EPTP) 
switching mechanism since 6th Generation Intel Processor architecture Skylake, allowing 
to switch the EPT pointer of current processor in the guest VM without causing any VM 
exit. This new mechanism can help us to build more efficient interception solution [Pan, 
Zhuang and Sun (2020)].  
The interception scheme should maintain the control of target program execution in the 
automated analysis, so during the handling of each EPT violation, also called EPT fault in 
this paper, we can directly emulator the memory access operation in kernel mode for most 
simply instructions, and the security check should be prior. For the instruction that is hard 
to be emulated, it can be executed in single-step mode as an option, then the execution will 
be intercepted in the subsequent debug exception handler. For the consideration of 
efficiency, new monitor trap flag is not used here which still causes the VM exit. In 
addition, the execution of target program generating #VE violation or exception will be 
profiled at the same time, as a guide for subsequent optimizations. In the optimization, the 
original code page will be rewritten and its subsequent execution will be redirected, so the 
interception of the code execution will be conducted in the inline form. 
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3.2 Instruction analysis 
When abnormal behaviors of target programs are detected, then the monitoring of the 
program will shift to fine-grained mode, which means that the instruction level analysis 
will be performed on target programs. In this situation, we should trace and analyze all the 
instructions have been executed by the program to obtain the sensitive data propagation 
information and detect the possible privacy leakage before the entry points of important 
system calls. Because the read and write operations in memory of target programs are 
intercepted, the accessed memory addresses and corresponding memory values can be 
obtained, and other non-access memory instructions of the current thread can be analyzed 
through instant backtracking. For these instructions that access memory can be directly 
analyzed while handling the EPT fault. For other instructions, the runtime information and 
actual execution path can be further obtained by backtracking analysis, as shown in Fig. 2. 
Meanwhile the inline data flow analysis is also performed. Actually, for simple taint 
analysis, the inline analysis code only propagates the taint state between different memory 
addresses that store the analysis state of registers in the thread context. 

 
Figure 2: Example of tracing the instructions executed 

Definition 1. Basic Analysis Block. It is a sequence of instructions in a program. As the 
traditional program basic block, any execution of the sequence starts from the first instruction 
of that and exits at the last. But the difference is that the first or the last instruction of basic 
analysis block can also be the one generating the EPT fault or exception. For the basic 
analysis block 𝐵𝐵 = {𝑐𝑐1, … , 𝑐𝑐𝑘𝑘},𝑘𝑘 > 0 , it contains 𝑘𝑘  instructions, where 𝑐𝑐1  is the first 
instruction of traditional basic block or an instruction generating the fault, similarly, 𝑐𝑐𝑘𝑘 is a 
branch instruction or also the instruction generating the fault. Moreover, one traditional basic 
block can include several basic analysis blocks, such as 𝐵𝐵1 and 𝐵𝐵2 shown in Fig. 2. 
Definition 2. Local Analysis Path. It is a non-empty ordered set composed of basic 
analysis blocks, including all the instructions to be analyzed when the EPT fault occurs. 
The union of local analysis paths contains all the instructions executed by the program. For 
path 𝑃𝑃 = {𝐵𝐵1,𝐵𝐵2, … ,𝐵𝐵𝑘𝑘},𝑘𝑘 > 0 , its length is 𝑘𝑘 , where 𝐵𝐵1  contains the instruction 
generating the last fault and 𝐵𝐵k contains the one that generates the fault this time. The 
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execution of instructions contained in ⋃ 𝐵𝐵𝑖𝑖𝑘𝑘−1
𝑖𝑖=2 ,𝑘𝑘 > 2 do not cause any fault. 

During the execution and analysis of target program, if addresses of two instructions that 
generate the consecutive EPT violations are the same or adjacent, there is no need for 
additional analysis of other executed instructions. Otherwise, if two instructions are located 
in the same basic analysis block, then it only needs to simply analyze the instructions 
between them, as the segment 𝐵𝐵1 shown in Fig. 2. 
If the instructions generating the exceptions for two consecutive times are not in the same 
basic analysis block, as shown in Fig. 2, 𝐵𝐵2  and 𝐵𝐵3  compose a local analysis path at the 
moment that the instruction “mov ecx, [esp + 10h]” is executed. In this situation, the branch 
information of program execution is needed to determine the accurate local analysis path. 
Therefore, we perform the fine-grained analysis and local re-execution synchronously to 
determine the actual analysis path between the last two faults. Since the instructions involving 
memory accesses have been directly intercepted, and the re-execution mainly involves register 
operations. In addition, when each exception occurs, the context information of the current 
thread is simultaneously saved for the initial environment during the next analysis, which can 
ensure the accuracy of the whole process and reduce error accumulation. 
In the backtracking analysis, we progressively construct and cache the information of basic 
analysis blocks first. For the sake of simplicity, we adopt a two-level mapping structure to 
map the start address of each analysis block to its parsed information. For the 32-bit address 
in user mode, high 20 bits will serve as the index of the first-level mapping, so 2 MB of 
memory is required to store the mapping structures. The memory occupied by the second-
level mapping depends on the number of code pages loaded by the running program, where 
each code page contains 4 K addresses and needs 16 KB additional memory space to store 
mapping structures. Subsequently, for each thread, we analyze the instructions of basic 
analysis block in the inline form, and decide whether to proceed to the analysis of next 
basic analysis block according to the analysis result, as shown in Fig. 3. Actually, the 
runtime values of registers are not needed for the instructions that do not involve memory 
accesses for traditional dynamic taint analysis. In this case, the re-execution with inline 
analysis for these instructions are also simple and efficient. During the construction of basic 
analysis block, the code is disassembled and parsed until encountering a branch instruction 
or memory accessing instruction, this procedure is implemented in the function 
QueryBuildAnalysisBlock in Fig. 3, the detail is omitted here for simplicity. In addition, 
instructions related with system calls or privilege transitions are also regarded as the normal 
end of basic analysis block, because the current analysis aims at the execution in user mode 
and the EPT fault will occur again when the system call returns from kernel due to the stack 
memory read, thus keeping the analysis process continuous. 
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Figure 3:  Algorithm of execution tracing and instruction analysis 

3.3 Analysis optimizations 
Because some programs involve a great deal of memory accesses during the execution such 
as encryption and compression, which would generate a large number of exceptions by 
EPT violations in a short time. Then it will consume a lot of processor resources and affect 
the normal execution of target program. Therefore, to further improve the analysis 
performance, we should reduce the number of EPT faults while remaining the effectiveness 
of the interception, which is important on cloud platforms. For this purpose, we continue 
to propose the following optimizations based on the aforementioned method. 
While handling the virtualization exception due to the EPT violation, we also profile the 
execution of code generating EPT faults. The execution profiler counts the number of faults 
generated by each code page to discover the one that contains instructions executed very 
frequently. We call these code pages as hot code, such as the loop code. The hot code may 
generate a large amount of EPT faults in a very short period, which will lead to the drastic 
performance reduction of the target program. Therefore, for these pages, we rewrite the 
original code in the new memory space and redirect the program execution, then the 
subsequent interception and analysis of the code page will be performed in the inline form 
to further improve the analysis performance. It is similar to the traditional dynamic 
instrumentation, we also construct the hybrid executable code that includes the fine-grained 
analysis code and original instructions of target program, but the difference is that only 
those instructions involving memory accesses will be intercepted and modified in real time. 
As shown in Fig. 4, the middle code page is rewritten, when the execution enters the current 
code segment and triggers exceptions, the subsequent execution will be redirected to the 
new code, and the interception and analysis will be completed in inline mode, including 
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internal jump instructions, without generating EPT exceptions.  

 
Figure 4: Example of code rewriting and execution 

On this basis, various interception functions can be implemented more flexibly and efficiently, 
such as obtaining function call sequences. The disadvantage is that it will modify part of 
execution code of target programs and consume more memory address space. However, 
because the analysis method is in super mode, the kernel address space can be used to construct 
the redirection code to be executed, thus reducing the interference in the user space. 
In addition, in rewriting code, the original virtual address to be accessed needs to be 
redirected to bypass the existing EPT access control during subsequent execution, thus 
conducting interception in inline mode. As shown in Fig. 4, both B_ADDR1 and B_ADDR2 
are redirected addresses. To achieve this, it is necessary to establish a mirror page for each 
guest physical page allocated by the target program in the guest VM, and map the guest 
physical address of mirror page to the same host physical address of the mirrored guest 
physical page. Actually, even the consumption of guest physical addresses is twice as 
before for the target program, but the addresses in kernel mode can also be used instead. 
As shown in Fig. 5, when an instruction accesses the virtual address 0×471260, the actual 
target will be redirected to the virtual address 0×1A2260, and both of them are mapped to 
the same host physical address 0×595000 through EPT translations. Consequently, the 
memory access will not generate any EPT violation. In addition, the target program often 
contains lots of shared code, such as dynamic link library, which shares the same physical 
pages. In this case, when code rewriting is performed, we could make a copy of the physical 
page first to avoid the impact on other programs.  
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Figure 5: Memory access for bypassing EPT violations 

4 Implementation and experiments 
The prototype system of this method is implemented on a 32-bit Windows platform. In 
order to highlight the emphasis and simplify the development, the VM infrastructure code 
is further developed based on the HyperPlatform released on Github. Therefore, after the 
hypervisor is loaded and run, the original Windows system will run as a guest virtual 
machine, similar to Hyper-V technology, thus realizing the virtualization architecture of 
cloud platforms. The whole analysis code is included in the kernel driver, including VM 
infrastructure, analysis module and other auxiliary modules. Another tool udis86 is used as 
the disassembly engine to parse the target instructions. 
The main experimental environment of this paper is a common desktop terminal, on which 
a virtualization environment similar to cloud platforms is built. The hardware configuration 
is Intel i5-7500 @ 3.40 GHz 4 core CPU, 4 GB memory, 120 GB solid-state system disk 
and 500 GB data disk (7200 revolutions), and a 32-bit Windows 10 (10240) operating 
system is installed. 

4.1 Performance evaluation and analysis 
First, we evaluate the performance impact and check the feasibility by analyzing multiple 
types of common programs with the base analysis method without optimizations. The list 
of programs is shown as Fig. 6. Some of the programs are system applications, which use 
file download functions supported by the built-in programs such as certutil, regsvr32 and 
cscript to download 1 MB files from a local server. This trick is adopted in many malicious 
codes at present. Then two third-party network tools aria2c(1.34) and curl(7.61) are also 
used to download the same file respectively. In the above test scenarios, https protocol is 
enabled for aria2, and the gzip transfer encoding is also tested for curl. Similarly, the 
qqmusicup(v16.20) program, a legitimate application component, will also connect to the 
network and communicate. Additionally, we test the startup and exit process of the built-
in graphical program xpsrchvw. To make comparisons, we also use Pin to instrument and 
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analyze the programs in above scenarios, trace the instructions with memory accesses and 
all instructions have been executed, respectively denoted as PIN_M and PIN_T in Fig. 6. 
Correspondingly, FBAC_I represents the interception execution process while FBAC_A 
represents the tracing and analyzing all the executed instructions. In the experiments, the 
execution time of programs under each test scenario is recorded separately. In fact, the time 
consumption of native execution is less than 1 s for most of the test programs. Repeat each 
experiment 10 times and average out the results as shown in Fig. 6. 
In most cases, the analysis performance of this method is equivalent to that of binary 
analysis in traditional environments, and on some programs the former is better than the 
latter. Because for traditional analysis, the analysis code is embedded in the native code 
and executed directly by the program, which leads to the low runtime performance 
overhead in the repeated execution. But our method works better for the interception and 
analysis of new allocated code in the execution of target program. In addition, for network-
related applications, better analysis performance can be achieved, which is also the focus 
of this paper, because privacy disclosure behavior is mostly related to network activities. 
In the experiments, the data flow propagations between local files and network packets can 
also be correctly detected for these network programs. 

 
Figure 6: Performance overhead of the base analysis and comparisons 

For programs involving plenty of compression and encryption operations, the analysis 
performance is poor when not optimized, mainly due to the continuous EPT violations 
generated by a large number of memory accesses which will consume much processor 
time, as shown in Tab. 1. In fact, the number of faults generated by consecutive instruction 
addresses account for about 40% of the total in average, which should be optimized. As 
seen from Tab. 1, lots of violations occur at the same instruction address, so the cached 
code of basic analysis blocks can help to improve the analysis efficiency. Moreover, most 
of execution paths to be analyzed between two exceptions are not complicated, avoiding a 
large number of intermediate execution operations during the analysis, and the slowdown 
caused by FBAC_A does not change drastically compared with FBAC_I. 
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Table 1: Other statistics under the base analysis 

Program Number of 
EPT faults 
(million) 

Number of loaded 
code pages causing 

faults 

Number of unduplicated 
fault addresses 

(k) 
aria2c 11 1028 71.6 
certutil 18.1 1382 233 

coreinfo 3.9 458 28.5 
curl 4.9 527 68.6 

curl_z 13.1 531 81.7 
regsvr32 11.2 1128 116.7 

xps 15.8 1525 150.2 
qqmusicup 10.5 1045 55.5 

cscript 13.4 1517 155.7 

In addition, the processor usage increases in the analysis as similar to the traditional 
method, due to the execution of additional analysis instructions, which depends on the 
usage of target programs in the native execution as well as the duration of the analysis. 
Judging from the results, it borders on the complete occupation of a core. Therefore, while 
controlling fine-grained analysis in practical applications, each target machine can be 
allocated an extra core for auxiliary analysis. Besides, through the additional experiments 
we also obtain that the capability of address translation and interrupt response will increase 
when the hardware is upgraded. 

4.2 Evaluation of optimizations 
Then we analyze and evaluate the analysis performance adopting the optimization of hot 
code rewriting. Among the above programs, some with more memory accesses at runtime 
are chosen, which are openssl (1.0.2n), 7zip (18.05), ffmpeg (4.0.2), pscp (0.70) and the 
network application curl. The test scenarios stay the same as the above. When the number 
of EPT faults generated by the instruction reaches the preset threshold, we rewrite the entire 
code page where it is located. The subsequent interception of the code execution is then 
performed in the inline form, here we only demonstrate the effect of interception without 
analyzing all executed instructions. The experimental results are shown as Fig. 7, where 
FBAC_OPT_C1 indicates that when the hot spot code generates the exception 10,000 
times, carry out instrumentation interception, while FBAC_OPT_C2 indicates that the 
trigger threshold is 1,000 times. As shown in Fig. 7, it is clear that when the interception 
method for hot spot code segments that are partially repeatedly executed is modified, the 
interception analysis performance of target programs will be greatly improved, and the test 
result at FBAC_OPT_C2 is already better than that at PIN_M. 
According to Tab. 2 and Fig. 8, the proportion of redirected code pages is not high, and 
will lead to a sharp drop in the number of EPT exceptions. This affects the performance of 
different programs differently, mainly due to the density difference of memory access 
instruction distribution. For example, memory access instructions are mostly located in 
adjacent positions for 7zip, so the improvement of analysis performance is not obvious at 
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the two thresholds, and its analysis performance is affected by code expansion caused by 
instrumentation. In the current experiment, the instrumentation code has not been 
optimized yet. In fact, there are many studies that can be referenced. 

 
Figure 7: Analysis performance with rewriting of hot code pages 

5 Discussion 
For the online analysis on cloud platforms, performance is more important than 
concealment, because excessive overhead may affect the normal execution of target 
program. Therefore, more system level components are introduced here based on the 
hypervisor which can improve the analysis performance and reduce the difficulty of 
acquiring system semantics, it is still stealthy for the user mode analysis. 
The proposed method can take over and analyze the target program at any time, and the 
analysis can also be securely cancelled during the execution. Rewriting hot code involves 
a small amount of modifications to the target code, but kernel space can be used to reduce 
the impact. In actual deployment, fine-grained analysis should be turned on and off in due 
time, and interception scope should be flexibly controlled. In this situation, optimizations 
can be made according to the characteristics of specific target programs.  
The experiments are also confined to the current test environment, but the absolute value of 
analysis performance can be improved through better hardware. Currently, the analysis of 
user-level binary programs can also be further expanded to increase support for kernel-mode 
code. In addition, further experimental analysis is needed for multiple virtual machines 
environment, other open-source cloud platforms and processor isolation environments. 
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Figure 8: Proportion of hot code and EPT faults to the non-optimized analysis 

Table 2: Statistics of hot code rewriting for the test programs 
Program Triggering 

threshold (k) 
Counts of rewritten 

code pages 
Counts of EPT faults 

(million) 

openssl 1 87 3.0 
10 27 11.1 

7zip 1 236 0.2 
10 13 4.5 

ffmpeg 1 375 6.3 
10 56 24.1 

curl 1 53 1.7 
10 12 4.3 

pscp 1 64 3.3 
10 23 9.1 

6 Conclusion 
This paper proposes a new fine-grained monitoring method for privacy leakage detection 
on cloud platforms. The method can intercept the execution of target programs in real time 
with the help of multiple underlying components, and perform online dynamic data flow 
analysis to the possible privacy leakage and program misconfigurations. We also propose 
the analysis optimizations to further reduce the runtime performance overhead, and 
perform the efficient analysis according to the analysis scenarios. 
Experiments in real environments show that the proposed method and optimizations can 
be applied for the program monitoring and analysis on cloud platforms, which also have 
advantages in the analysis of programs with network activities. Further research should be 
done on optimization methods to improve analysis performance and stability. 
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