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Abstract: Software defect prediction is a research hotspot in the field of software 
engineering. However, due to the limitations of current machine learning algorithms, we 
can’t achieve good effect for defect prediction by only using machine learning algorithms. 
In previous studies, some researchers used extreme learning machine (ELM) to conduct 
defect prediction. However, the initial weights and biases of the ELM are determined 
randomly, which reduces the prediction performance of ELM. Motivated by the idea of 
search based software engineering, we propose a novel software defect prediction model 
named KAEA based on kernel principal component analysis (KPCA), adaptive genetic 
algorithm, extreme learning machine and Adaboost algorithm, which has three main 
advantages: (1) KPCA can extract optimal representative features by leveraging a nonlinear 
mapping function; (2) We leverage adaptive genetic algorithm to optimize the initial 
weights and biases of ELM, so as to improve the generalization ability and prediction 
capacity of ELM; (3) We use the Adaboost algorithm to integrate multiple ELM basic 
predictors optimized by adaptive genetic algorithm into a strong predictor, which can 
further improve the effect of defect prediction. To effectively evaluate the performance of 
KAEA, we use eleven datasets from large open source projects, and compare the KAEA 
with four machine learning basic classifiers, ELM and its three variants. The experimental 
results show that KAEA is superior to these baseline models in most cases.  
 
Keywords: Software defect prediction, KPCA, adaptive genetic algorithm, extreme 
learning machine, Adaboost.  

1 Introduction 
As the software scale and complexity increase, the number of generated defects also 
increases dramatically, which has a major impact on software maintenance [Liu, Musial 
and Chen (2011)]. Therefore, how to quickly and accurately predict the defects hidden in 
the software in advance has become a tough challenge for software developers. To solve 
this problem, some researchers propose software defect prediction technology, which is to 
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mine and extract historical information and code information in the process of software 
development, and establish a specific prediction model by mathematical statistics, machine 
learning algorithms and other methods to predict the software defects. Software defect 
prediction technology can not only help developers determine the priority of software 
testing and debugging, but also recommend software components that may be defective. 
Previous studies mainly used the following two methods to conduct software defect 
prediction: (1) Combining traditional features or manually designing new features. 
Traditional features can be divided into two categories: static code features and process 
features. Static code features, such as Halstead scientific metrics [Maurice (1977)] and 
Mc-Cabe loop complexity [McCabe (1976)]; process features, such as developer personal 
features [Jiang, Tan and Kim (2013); Ostrand, Weyuker and Bell (2010)] and 
cooperation between developers [Lee, Nam, Han et al. (2011); Menzies, Milton, Turhan 
et al. (2010); Pinzger, Nagappan and Murphy (2008); Weyuker, Ostrand and Bell 
(2007)]. (2) Machine learning-based methods, including various tasks of data processing 
and modeling. Many machine learning algorithms are designed to support these tasks, 
and each algorithm has its own data requirement and different complexity. For example, 
Lessmann et al. [Lessmann, Baesens, Mues et al. (2008)] systematically compare 22 
different machine learning methods, which are mainly divided into six categories: 
statistical method, k-nearest neighbor, neural network, support vector machine, decision 
tree and integration algorithm. In this paper, we propose a novel method that combines 
intelligent algorithm (adaptive genetic algorithm) and machine learning algorithms 
(KPCA, extreme learning machine, Adaboost) to conduct software defect prediction. 
Since irrelevant and redundant features in the software defect may degrade the 
performance of the prediction model, we need to extract optimal features to reveal the 
intrinsic structure of the defect data, which is crucial to construct effective defect 
prediction model. In this paper, we leverage KPCA [Schölkopf, Smola and Müller 
(1997)], a non-linear extension of PCA, to project the original data into a latent high-
dimensional feature space in which the mapped features can properly characterize the 
complex defect data structures and increase the probability of linear separability of the 
defect data. The literature [Xu, Liu, Luo et al. (2019)] has proved that KPCA is a very 
advanced feature extraction method. 
The ELM randomly generates the connection weights between the input layer and the 
hidden layer and the biases of the hidden layer neurons, and does not need to be adjusted 
during the training process. Moreover, the ELM only needs to set the number of neurons 
in the hidden layer to obtain the unique optimal solution. Compared with traditional 
training methods, the ELM has the advantages of fast learning rate and good 
generalization performance. However, the selection of initial connection weights and 
biases has a great impact on network prediction error, but we cannot obtain them 
accurately. Therefore, for this shortcoming of ELM, we leverage adaptive genetic 
algorithm to determine the optimal initial weights and biases of ELM in order to 
minimize prediction error. Firstly, the individual of adaptive genetic algorithm represents 
the initial weights and biases of ELM, and the test error of ELM is used as the fitness 
function to calculate the fitness value of the individual. Then we can find the individual 
with the minimum error through the selection, crossover and mutation operations, which 
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is the optimal initial weights and biases of the extreme learning machine. 
In addition, we also use the Adaboost algorithm to integrate multiple ELM basic 
predictors optimized by adaptive genetic algorithm into a strong predictor, which can 
further improve the effect of defect prediction. 
Based on the above analysis, we propose a novel software defect prediction model named 
KAEA (KPCA-Adaptive Genetic Algorithm-Extreme Learning Machine-Adaboost) 
based on KPCA, adaptive genetic algorithm, extreme learning machine and Adaboost 
algorithm in this paper. 
The main contributions of this paper are as follows: 
(1) In this paper, we propose a novel defect prediction model named KAEA, which 
leverages an advanced feature extraction method-KPCA to extract optimal features that 
revealed the intrinsic structure of the defect data.  
(2) We adopt adaptive genetic algorithm to optimize initial weights and biases of extreme 
learning machine, thereby boosting the generalization capacity and and prediction 
performance of ELM. 
(3) We also use Adaboost algorithm to integrate multiple ELM basic predictors 
optimized by the adaptive genetic algorithm into a strong predictor. 
(4) We conduct a large number of defect prediction experiments on eleven datasets from 
large open source projects, and compare the KAEA with four machine learning basic 
classifiers, ELM and its three variants. The experimental results verify that our KAEA 
model can achieve better results than baseline models in most cases. 
The rest of this paper is organized as follows. Section 2 describes the background and 
related work. Section 3 introduces data preprocessing. Section 4 details our proposed 
KAEA model. Section 5 shows experimental setup, including datasets, evaluation 
metrics, baseline models and parameter setup. Section 6 evaluates the performance of our 
KAEA model. Section 7 provides a discussion about the proposed method. Section 8 
describes the threats to our work. We conclude this paper and describe future work in 
Section 9. 

2 Background & related work 
2.1 Extreme learning machine 
Extreme learning machine is first proposed by Huang et al. [Huang, Zhu and Siew 
(2006); Huang, Chen and Siew (2006)], which is a single hidden-layer feedforward 
neural network (SLFN). The initial weights and hidden layer biases are randomly 
assigned at first. The basic network structure of ELM is as shown in Fig. 1. ELM is a 
three-layer neural network that contains input layer, hidden layer and output layer.    
Given N training samples {(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑁𝑁 , where 𝑥𝑥𝑖𝑖 = [𝑥𝑥𝑖𝑖1,𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑖𝑖]𝑇𝑇 ∈ 𝑅𝑅𝑖𝑖  (m is the 
number of the input neurons which is equal to the number of the input features) and 𝑦𝑦𝑖𝑖 =
[𝑦𝑦𝑖𝑖1,𝑦𝑦𝑖𝑖2, … ,𝑦𝑦𝑖𝑖𝑖𝑖]𝑇𝑇 ∈ 𝑅𝑅𝑖𝑖 (n is the number of the output neurons which is equal to the number 
of classes). The input weight matrix is represented by 𝑤𝑤𝑗𝑗 = [𝑤𝑤𝑗𝑗1,𝑤𝑤𝑗𝑗2, … ,𝑤𝑤𝑗𝑗𝑖𝑖]𝑇𝑇 , 𝜃𝜃𝑗𝑗 =
[𝜃𝜃𝑗𝑗1,𝜃𝜃𝑗𝑗2, … ,𝜃𝜃𝑗𝑗𝑖𝑖]𝑇𝑇 is the weight vector connecting the ith hidden node with output neurons, 
𝑏𝑏𝑗𝑗 is the bias of the jth hidden neuron. ELM can be mathematically formulated as follows: 
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∑ 𝜃𝜃𝑗𝑗𝑔𝑔�𝑤𝑤𝑗𝑗 ∙ 𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗� = 𝜊𝜊𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑁𝑁Ñ
𝑗𝑗=1  ，                                                                 (1) 

where Ñ denotes the number of hidden nodes, g(.) denotes the activation function, 𝜊𝜊𝑖𝑖 
denotes the final output label of the instance 𝑥𝑥𝑖𝑖. 

 
Figure 1: The basic network structure of ELM 

The Eq. (1) can be written compactly as: 
Gθ = Ο,                                                                                                                              (2) 
where the output of the hidden layer for all the training instances is represented by G, 
which is shown in the following Eq. (3): 

G = �
𝑔𝑔(𝑤𝑤1 ∙ 𝑥𝑥1 + 𝑏𝑏1) ⋯ 𝑔𝑔(𝑤𝑤~

𝑁𝑁
∙ 𝑥𝑥1 + 𝑏𝑏Ñ)

⋮ ⋱ ⋮
𝑔𝑔(𝑤𝑤1 ∙ 𝑥𝑥𝑁𝑁 + 𝑏𝑏1) ⋯ 𝑔𝑔(𝑤𝑤~

𝑁𝑁
∙ 𝑥𝑥𝑁𝑁 + 𝑏𝑏Ñ)

�

𝑁𝑁×𝑁𝑁
~

                                                         (3)   

θ is shown in the following Eq. (4): 

θ = �
𝜃𝜃11 ⋯ 𝜃𝜃1𝑖𝑖
⋮ ⋱ ⋮
𝜃𝜃 1𝑁𝑁

~ ⋯ 𝜃𝜃 𝑖𝑖𝑁𝑁
~
�

×𝑖𝑖𝑁𝑁
~

                                                                                                   (4)                                                                                                 

O is shown in the following Eq. (5):  

Ο = �
𝜊𝜊11 ⋯ 𝜊𝜊1𝑖𝑖
⋮ ⋱ ⋮
𝜊𝜊𝑁𝑁1 ⋯ 𝜊𝜊𝑁𝑁𝑖𝑖

�
𝑁𝑁×𝑖𝑖

                                                                                                   (5) 

The standard SLFNs can approximate these N instances with zero error. The error of 
ELM is ∑ ||𝑜𝑜𝑖𝑖 − 𝑦𝑦𝑖𝑖||𝑁𝑁

𝑖𝑖=1 = 0 and there exist 𝜃𝜃𝑗𝑗 , 𝑤𝑤𝑗𝑗  and 𝑏𝑏𝑗𝑗  such that ∑ 𝜃𝜃𝑗𝑗𝑔𝑔�𝑤𝑤𝑗𝑗 ∙ 𝑥𝑥𝑖𝑖 +Ñ
𝑗𝑗=1

𝑏𝑏𝑗𝑗� = 𝑦𝑦𝑖𝑖. 
Then, we need to solve the following formula: 
Gθ = Y,                                                                                                                                 (6) 
where Y denotes the target output matrix. 
It is clear that only 𝜃𝜃 is unknown in Eq. (6), and we can adopt the least square algorithm 
to acquire its solution, which could be described as follows: 
θ� = G+Y,                                                                                                                            (7) 
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where 𝐺𝐺+ denotes the Moore-Penrose generalized inverse of the hidden layer output matrix 
G, which can guarantee that the solution is the least-norm least-square solution of Eq. (6). 
Finally, we get the classification function of ELM, as shown in Eq. (8):  
f(x) = g(x)θ� = g(x)G+Y.                                                                                                 (8) 
Some researchers have applied ELM to process various tasks. Zhang et al. [Zhang and 
Zhang (2015)] propose a domain adaptation ELM to solve the sensor drift problem in the 
E-nose system. Moreover, the transfer learning ELM has also been proposed, which 
regularizes the difference of the source parameters and target parameters [Chen, Jiang and 
Jin (2018)].  According to M-estimation theory, Kai et al. [Kai, Qi, Yao et al. (2016)] 
further propose a unified robust ELM framework, and leverage l1-norm and l2-norm 
regularized terms respectively to avoid overfitting, as well as four kinds of loss functions to 
improve noise insensitivity of ELM. Liu et al. [Liu, Zhang, Deng et al. (2017)] propose a 
unified subspace transfer framework based on ELM, which learns a subspace that jointly 
minimizes the mean distribution discrepancy (MMD) and maximums margin criterion 
(MMC). Zhang et al. [Zhang and Zhang (2016)] propose an ELM-based domain adaptation 
(EDA) for visual knowledge transfer and extend the EDA to multi-view learning. 

2.2 Feature selection and extraction 
Recently, feature extraction or selection techniques have been introduced into the field of 
software defect prediction, which can solve high dimensionality problem of the software 
defect dataset by eliminating irrelevant and redundant features [Kondo, Bezemer, Kamei 
et al. (2019); Xu, Liu, Yang et al. (2016)]. Feature selection techniques decrease the 
number of features in a model by selecting the most important, representative features, 
while feature extraction techniques reduce the number of features by creating new, 
combined features from the original defect features. 
Most previous studies use feature selection techniques to conduct software defect 
prediction [Menzies, Greenwald and Frank (2007); Ghotra, Mcintosh, Hassan et al. 
(2017)]. Menzies et al. leverage the information gain technique to rank features based on 
their importance in a defect prediction model. The experimental result shows that the 
performance of the prediction model only depends on a small set of features. Xu et al. 
[Xu, Liu, Yang et al. (2016)] investigate the impact of feature selection techniques on the 
performance of the prediction model. The experimental results show that the prediction 
performance of different feature selection techniques varies significantly on all the 
datasets. Ghotra et al. [Ghotra, Mcintosh, Hassan et al. (2017)] also summary the impact 
of feature selection techniques for defect prediction. They observe that correlation-based 
feature selection outperforms other feature selection techniques. Yu et al. [Yu, Ma, Ma et 
al. (2017)] propose a feature selection method based on Feature Spectral Clustering and 
feature Ranking (FSCR) to predict the number of software defects. 
Feature extraction techniques have not been studied as extensively for software defect 
prediction. Most researchers use principal component analysis (PCA) to conduct software 
defect prediction [D’Ambros, Lanza and Robbes (2010); Nagappan, Ball and Zeller 
(2006)]. For instance, D’Ambros et al. [D’Ambros, Lanza and Robbes (2010)] utilize 
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PCA to avoid the problem of multicollinearity [Farrar and Glauber (1967)] among the 
independent variables in software defect prediction. 
Different from previous studies, we leverage an advanced feature extraction method- 
kernel principal component analysis (KPCA) to extract optimal features that revealed the 
intrinsic structure of the defect data in this paper. 

2.3 Software defect prediction 
Software defect prediction is a research hotspot in the field of software engineering. 
Previous researchers have proposed some software defect prediction technologies [Jiang, 
Tan and Kim (2013); Lee, Nam, Han et al. (2011); Rahman and Devanbu (2013)], which 
are used to discover and predict software defects in advance, so as to improve software 
product quality and allocate test resources reasonably. 
Some researchers extract features from the software history repository to construct defect 
prediction classifier based on machine learning algorithm, including bayesian belief 
networks [Amasaki, Takagi, Mizuno et al. (2003)], support vector machine (SVM) [Elish 
and Elish (2008)], decision tree (DT) [Khoshgoftaar and Seliya (2002); Wang, Shen and 
Chen (2012)], neural network (NN) [Paikari, Richter and Ruhe (2012); Thwin and Quah 
(2005)]. Wang et al. [Wang, Shen and Chen (2012)] and Khoshgoftaar et al. [Khoshgoftaar 
and Seliya (2002)] study tree-based machine learning algorithm. The experimental results 
show that tree-based algorithm can improve the performance of defect prediction. Lu et al. 
[Lu, Cukic and Culp (2014); Lu, Kocaguneli and Cukic (2014)] construct a defect 
prediction model based on active learning, and further improve the performance of the 
defect prediction model by means of dimension reduction and feature subset selection. 
Lessmann et al. [Lessmann, Baesens, Mues et al. (2008)] compare 22 kinds of supervised 
learning algorithms and find that the optimal learning algorithms are different for different 
projects, and the performance gap between the optimal 17 machine learning algorithms is 
not significant. Tantithamthavorn et al. [Tantithamthavorn, McIntosh, Hassan et al. (2016)] 
further analyze the effect of parameter values for different machine learning methods. They 
believe that the setup of optimal parameter values would have a great impact on the 
performance of the final defect prediction model. Guo et al. [Guo, Ma, Cukic et al. (2004)] 
apply random forest to defect prediction and find that its prediction performance is superior 
to that of traditional statistical-based algorithms. Yang et al. [Yang, Yin, Xu et al. (2008)] 
use AP (Affinity Propagation) clustering algorithm to predict the files that may contain 
defects, and achieve good prediction results. Li et al. [Li, Zhang, Wu et al. (2012)] propose 
a two-stage semi-supervised ensemble learning software defect prediction method. The 
results show that the method has better prediction capacity for unbalanced data compare 
with the classical machine learning methods. 
Some researchers apply deep learning to software defect prediction. Yang et al. [Yang, Lo, 
Xia et al. (2015)] combine 14 change-level features through a deep belief network (DBN) 
to generate new features for change-level defect prediction. Wang et al. [Wang, Liu and 
Tan (2016)] propose the DBN-CP method, which shows that the semantic features 
generated based on representation learning could better capture the common defect features 
and apply these features to cross-project defect prediction. Wang et al. [Wang, Zhang, Jing 
et al. (2016)] propose a SemiBoost software defect prediction method-NSSB based on non-
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negative sparse graphs, and use Adaboost algorithm to improve the performance of the 
model. The experimental results show that the NSSB method can effectively solve the class 
imbalance problem and label instances insufficiency problem. 

3 Data preprocessing 
For software defect datasets, data preprocessing mainly includes two parts: data 
imbalance processing and data normalization. 

3.1 Data imbalance processing 
The defect dataset is usually unbalanced, and the number of defective instances is far less 
than the number of non-defective instances. As can be seen from Tab. 1, the defect rate 
of all datasets is less than 30%, which results in the relatively low prediction effect for a 
few classes. Therefore, in order to construct the optimal defect prediction model, we first 
need to conduct data imbalance processing for these datasets. 
The SMOTE (Synthetic Minority Over-sampling Technique) algorithm [Chawla, 
Bowyer, Hall et al. (2002)] has been widely used in the processing of unbalanced data as 
a classical oversampling method, and has achieved satisfactory results. In this paper, we 
adopt the SMOTE algorithm to conduct data imbalance processing. The algorithm 
synthesizes a few classes through certain strategies, and increases the number of 
instances of a few classes. In addition, the algorithm is an improved scheme based on 
random oversampling algorithm, which can effectively solve the over-fitting 
phenomenon caused by simply replicating instances of a few classes. 
This step is critical to the performance of software defect prediction, because it helps the 
trained predictor not bias toward non-defective modules (majority classes) [Zeng, Xiao, 
Wang et al. (2019)], thereby improving the performance of defect prediction. 

3.2 Data normalization 
The distribution of the feature values on defect dataset is of large difference, even not in 
the same order of magnitude. If the original feature values are directly used for defect 
prediction, the role of higher numerical values in the comprehensive analysis will be 
highlighted, and relatively reduce the effect of lower numerical values. Therefore, in 
order to ensure the reliability of the prediction results, we need to normalize the original 
defect dataset. 
In this paper, we use the mapminmax normalization function, the call format of the 
function is as shown in Eq. (9): 
[Y, PS] = mapminmax(X, YMIN, YMAX),                                                                        (9) 
where X is the original defect dataset; YMIN is the minimum value of each row on the 
array, and the default value is -1; YMAX is the maximum value of each row on the array, 
and the default value is 1; Y is the normalized data; PS is a structure after data 
normalization, including maximum, minimum, and average values, which can be used to 
the normalization of the test data. 
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4 Methodolody 
In this paper, we propose a software defect prediction model named KAEA, which 
consists of three stages: (1) Feature extraction based on KPCA. The KAEA model 
leverages KPCA to extract optimal features, which can reveal the intrinsic structure of 
the defect data. (2) The initial weights and biases of ELM optimized by adaptive genetic 
algorithm. The model uses adaptive genetic algorithm to optimize initial weights and 
biases of ELM, so as to find the initial weights and biases that can minimize the 
prediction error, that is, the optimal initial weights and biases. (3) Software defect 
prediction based on the KAEA model. We use Adaboost algorithm to integrate multiple 
ELM basic predictors optimized by the adaptive genetic algorithm into a strong predictor, 
which makes the integrated strong predictor better for software defect prediction. The 
framework of the KAEA model is shown in Fig. 2. 

 
Figure 2: The framework of the KAEA model 

4.1 Feature extraction based on KPCA 
In the first stage, we conduct feature extraction with KPCA, which can extract 
representative features and characterize the complex defect data structures. KPCA can 
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project the original data point within a low-dimensional feature space into a new point 
within a high-dimensional feature space by leveraging a nonlinear mapping function.  
Assuming that x is mapped into u through the corresponding function 𝜌𝜌, its definition is as  
follows: 
u = ρ(x)                                                        (10)                                                               
The kernel function maps data points to the corresponding feature space, and the data in  
the mapped feature space satisfies the concentration condition, i.e., 
∑ 𝜌𝜌(𝑥𝑥𝑖𝑖) = 0𝑁𝑁
𝑖𝑖=1                                                                                                                   

(11) 
The covariance matrix C in the feature space is as follows: 

C = 1
𝑁𝑁
∑ 𝜌𝜌(𝑥𝑥𝑖𝑖)𝜌𝜌(𝑥𝑥𝑖𝑖)𝑇𝑇𝑁𝑁
𝑖𝑖=1 .                                           (12) 

Finding the eigenvalues 𝜆𝜆 and eigenvectors w of the covariance matrix C through the 
following equation: 
Cw = λw.                                                        (13)                                                      
We multiply both sides of Eq. (13) by 𝜌𝜌(𝑥𝑥𝑡𝑡)𝑇𝑇, i.e., 
𝜌𝜌(𝑥𝑥𝑡𝑡)𝑇𝑇Cw = λ𝜌𝜌(𝑥𝑥𝑡𝑡)𝑇𝑇𝑤𝑤.                                                                                              (14) 
The coefficient 𝜉𝜉𝑗𝑗 can linearly express the eigenvector w with 𝜌𝜌(𝑥𝑥𝑗𝑗), i.e., 

w = ∑ 𝜉𝜉𝑗𝑗𝜌𝜌(𝑥𝑥𝑗𝑗)𝑁𝑁
𝑗𝑗=1 .                                                                                                            

(15)  
Then, Eq. (14) can be rewritten by substituting Eqs. (12) and (15) as following equation:  
1
𝑁𝑁
𝜌𝜌(𝑥𝑥𝑡𝑡)𝑇𝑇 ∑ 𝜌𝜌(𝑥𝑥𝑖𝑖)𝜌𝜌(𝑥𝑥𝑖𝑖)𝑇𝑇 ∑ 𝜉𝜉𝑗𝑗𝜌𝜌�𝑥𝑥𝑗𝑗� = 𝜆𝜆𝜌𝜌(𝑥𝑥𝑡𝑡)𝑇𝑇 ∑ 𝜉𝜉𝑗𝑗𝜌𝜌(𝑥𝑥𝑗𝑗)𝑁𝑁

𝑗𝑗=1
𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1 .          (16) 

The kernel matrix M can be expressed in the following equation: 
𝑀𝑀𝑖𝑖𝑗𝑗 = m�𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗� = 𝜌𝜌(𝑥𝑥𝑖𝑖)𝑇𝑇𝜌𝜌�𝑥𝑥𝑗𝑗�.                                                                               (17) 
Then, Eq. (16) can be rewritten by substituting Eq. (17) as following equation: 
1
𝑁𝑁
∑ 𝑀𝑀𝑡𝑡,𝑖𝑖
𝑁𝑁
𝑡𝑡=1,𝑖𝑖=1 ∑ 𝜉𝜉𝑗𝑗𝑁𝑁

𝑖𝑖=1,𝑗𝑗=1 𝑀𝑀𝑖𝑖,𝑗𝑗 = 𝜆𝜆 ∑ 𝜉𝜉𝑗𝑗𝑁𝑁
𝑡𝑡=1,𝑗𝑗=1 𝑀𝑀𝑡𝑡,𝑗𝑗 .                                                            (18) 

The Eq. (18) is rewritten as: 
𝑀𝑀2𝜉𝜉 = 𝜆𝜆𝜉𝜉𝑁𝑁𝑀𝑀.                                                                                                                       (19)  
That is: 
Mξ = λξN.                                                                                                                              (20)  
Before applying KPCA, assuming that the mapped data points are centralized. If not, we 
need to use the Gram matrix 𝑀𝑀� to replace the kernel matrix M, so as to complete the 
mean centralizing. Its equation is as follows: 
𝑀𝑀� = 𝑂𝑂𝑁𝑁𝑀𝑀 −𝑀𝑀𝑂𝑂𝑁𝑁 + 𝑂𝑂𝑁𝑁𝑀𝑀𝑂𝑂𝑁𝑁,                                                                                              (21)  
where 𝑂𝑂𝑁𝑁 represents the n×n matrix that all values equal to 1/n.  
Then, we only need to adjust the following equation: 
𝑀𝑀�𝜉𝜉 = 𝜆𝜆𝜉𝜉𝑁𝑁.                                                                                                                      (22) 
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After obtaining eigenvalues and eigenvectors, the projection of the test instance in the 
feature vector space can be expressed as follows: 
𝑤𝑤𝑖𝑖 ∙ 𝜌𝜌(𝑥𝑥) = ∑ 𝜉𝜉𝑖𝑖𝜌𝜌(𝑥𝑥𝑖𝑖)𝜌𝜌(𝑥𝑥)𝑁𝑁

𝑖𝑖=1 .                                                                                            (23) 
After replacing the inner product with a kernel function, the Eq. (23) is rewritten as:  
𝑤𝑤𝑖𝑖 ∙ 𝜌𝜌(𝑥𝑥) = ∑ 𝜉𝜉𝑖𝑖𝑀𝑀(𝑥𝑥𝑖𝑖,𝑥𝑥𝑁𝑁

𝑖𝑖=1 ).                                                                                               (24) 
The Radial Basis Function (RBF) kernel can be defined as follows: 

m�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� = exp�−
��𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗��

2

2𝜎𝜎2
�.                                                                                           (25) 

After performing feature extraction with KPCA, the original training data are 
transformed to a new dataset. Next, we will use the new defect dataset after feature 
extraction for further processing. 

4.2 The initial weights and biases of ELM optimized by adaptive genetic algorithm 
We use adaptive genetic algorithm to optimize network weights and biases. Firstly, the 
individual of adaptive genetic algorithm represents the initial weights and biases of ELM, 
and the test error of the network is used as the fitness function to calculate the fitness 
value of the individual. Then, we can find the individual with the minimum error through 
the selection, crossover and mutation operations, which is the optimal initial weights and 
biases of ELM.  

4.2.1 Encoding 
We adopt matrix encoding to encode the individuals, and each individual represents 
initial weights and biases of the network. More specifically, each individual is composed 
of two parts: the connection weights between the input layer and the hidden layer, the 
biases of the hidden layer. We adopt matrix encoding to represent the initial weights and 
biases of ELM for each individual instead of other encoding strategies, such as vector 
coding and binary coding. This is because matrix encoding makes the ELM easy to 
execute decoding, which is suitable for the training process of ELM network. However, 
for vector encoding, the decoding process is very complex, which may increase the 
difficulty of network training. For binary encoding, the individuals are encoded as strings 
of binary bits. But the length of each individual will increase when the network structure 
becomes more complicated, so the process of encoding and decoding also becomes very 
complex. Therefore, matrix encoding is more suitable for the training of ELM network. 
We take a 2-3-2 network structure as an example, as shown in Fig. 3. 

𝑤𝑤1 = �
𝑤𝑤13 𝑤𝑤23
𝑤𝑤14 𝑤𝑤24
𝑤𝑤15 𝑤𝑤25

 �,𝑏𝑏1 = �
𝛽𝛽1
𝛽𝛽2
𝛽𝛽3
� ,                                                                                      (26) 

where w1 is the weights from the input layer to the hidden layer, b1 is the biases of the 
hidden layer. 
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Figure 3: ELM with encoded weights and biases 

After encoding, the initial weights and biases of ELM are converted into the genetic 
space with chromosome form, so as to complete the population initialization. 

4.2.2 Fitness function 
In this paper, when ELM is used for defect prediction, the mean square error between the 
actual output value and the predicted output value is taken as the output of objection 
function, and calculate the fitness value of each individual by the mean square error. The 
smaller the mean square error of the individual, the larger the fitness value and the better 
the individual. We can find the individual with the minimum error, that is, the optimal 
initial weights and biases of the network. 
For a three-layer ELM, given N training instances {(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑁𝑁 , where 𝑥𝑥𝑖𝑖 =
[𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑖𝑖]𝑇𝑇 ∈ 𝑅𝑅𝑖𝑖 and 𝑦𝑦𝑖𝑖 = [𝑦𝑦𝑖𝑖1,𝑦𝑦𝑖𝑖2, … ,𝑦𝑦𝑖𝑖𝑖𝑖]𝑇𝑇 ∈ 𝑅𝑅𝑖𝑖. According to Eq. (8), we get 
the output f(x) of the output layer. 
So, the equation of the fitness function is as shown in Eq. (28): 

 𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝑁𝑁
∑ (f(x) − 𝑦𝑦)2𝑁𝑁
𝑖𝑖=1  ,                                                                                                                                                                                 (27) 

𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 1
1+𝑚𝑚𝑚𝑚𝑚𝑚

 ,                                                                                                                                                                                                                  (28) 

where mse is the mean square error of the network, f(x) is the predicted output value of 
ELM; y is the actual output value of ELM. 

4.2.3 Adaptive crossover rate and mutation rate 
The crossover rate Pc and the mutation rate Pm can adaptively change with the fitness 
value. When the individual fitness value is the local optimal value, the crossover rate and 
mutation rate will increase; otherwise, they will decrease. 
In this paper, we use Eqs. (29) and (30) to calculate adaptive crossover rate Pc and 
mutation rate Pm, respectively:  

𝑃𝑃𝑐𝑐 = �
𝑘𝑘1, f < 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎
𝑘𝑘3, f ≥ 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑘𝑘2 ∙ (𝐹𝐹𝑖𝑖𝑎𝑎𝑥𝑥 − 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎)

𝑘𝑘4 ∙ (𝐹𝐹𝑖𝑖𝑎𝑎𝑥𝑥 − 𝑓𝑓)/(𝐹𝐹𝑖𝑖𝑎𝑎𝑥𝑥 − 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎), else
 ,                     (29) 
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where Fmax is the maximum fitness value of the individual, Favg is the average fitness 
value of the individual; f is the larger one between the two individuals fitness values; k1, 
k2, k3 and k4 are constants between (0, 1). 

𝑃𝑃𝑖𝑖 = �
𝑘𝑘5, 𝑓𝑓′ < 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎
𝑘𝑘7, 𝑓𝑓′ ≥ 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑘𝑘6 ∙ (𝐹𝐹𝑖𝑖𝑎𝑎𝑥𝑥 − 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎)

𝑘𝑘8 ∙ (𝐹𝐹𝑖𝑖𝑎𝑎𝑥𝑥 − 𝑓𝑓′)/(𝐹𝐹𝑖𝑖𝑎𝑎𝑥𝑥 − 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎), else
,                (30)  

where 𝑓𝑓′ is fitness value of the individual variation; k5, k6, k7 and k8 are constants between 
(0, 1). 

4.3 Software defect prediction based on the KAEA model 
4.3.1 The integrated strong predictor based on Adaboost algorithm 
We use Adaboost algorithm to further improve the effect of software defect prediction, 
which can integrate multiple ELM basic predictors optimized by the adaptive genetic 
algorithm into a strong predictor. 
Suppose there are n training instances T={(xi, yi)|i=1,2,…,n}, M predictor output 
functions fm(x), m=1, 2, ..., M, each predictor is an ELM basic predictor optimized by 
adaptive genetic algorithm. We obtain a strong predictor integrated by M basic ELM 
predictors through the Adaboost algorithm. The specific steps are as follows: 
Step 1: Initialize the weights of the n training instances, as shown in Eq. (31): 

𝐷𝐷𝑖𝑖(𝑖𝑖) = 1
𝑖𝑖
,                                                                                                                       (31) 

where Dm(i) represents the weight assigned to the instances (xi, yi) in the mth iteration.  
Step 2: Calculate the error Ei of the basic predictor. According to the instances 
distribution Dm, m=1, 2, ..., M, we use the above instances to train the mth basic 
predictor, then use the trained basic predictor to predict the defect instances. The absolute 
value of the basic predictor error is as follows: 
𝐸𝐸𝑖𝑖 =∥ 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖 ∥.                                                                                                       (32) 
Step 3: Calculate and update the weight wm(i) of the basic predictor. We calculate the 
weight coefficient wm(i) of the basic predictor according to 𝜀𝜀𝑖𝑖: 
𝜀𝜀𝑖𝑖 = ∑ 𝐷𝐷𝑖𝑖(𝑖𝑖), 𝑖𝑖 = 1, 2, … , 𝑓𝑓𝑖𝑖

𝑖𝑖=1 .                                                                                     (33) 

𝑤𝑤𝑖𝑖 = 1
2

ln 1−𝜀𝜀𝑚𝑚
𝜀𝜀𝑚𝑚

 .                                                                                                              (34) 

Step 4: Adjust the training instances weight Dm+1(i). Adjust the weight of training 
instances in the next iteration according to the weight coefficient wm: 

𝐷𝐷𝑖𝑖+1(𝑖𝑖) = 𝐷𝐷𝑚𝑚(𝑖𝑖)
𝐵𝐵𝑚𝑚

. exp [−𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖)],                                                                          (35) 

where Bm is the normalization factor, the purpose is to make the sum of distribution 
weights equal to 1 when the weight proportion is constant. 
Step 5: Obtain the strong predictor KAEA. After training M rounds, we can obtain the M-
group basic prediction functions fm (x), then combine the M-group basic prediction 
functions to obtain a strong prediction function F(x), namely the strong predictor KAEA. 
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F(x) = ∑ 𝑤𝑤𝑖𝑖 × 𝑓𝑓𝑖𝑖(𝑥𝑥)𝑀𝑀
𝑖𝑖=1 .                                                                                             (36) 

4.3.2 Software defect prediction 
We use M ELMs with the optimal initial weights and biases to train the defect instances, so 
as to form M basic predictors. The Adaboost algorithm is used to integrate the M basic 
predictors into a strong predictor, so the test set is classified as defective or non-defective. 
In this paper, we use 10 times 10-fold cross-validation to evaluate the performance of the 
KAEA model. 
The pseudo code of the KAEA is shown in the algorithm 1: 

Algorithm 1 KAEA 
Input: 

population size: Psize; the maximum evolution generation of adaptive genetic algorithm: 
MAXGEN; the constants of the crossover rate Pc: k1, k2, k3, k4, the constants of the mutation 
rate Pm: k5, k6, k7, k8. 

Output: 
software defect prediction result: R 

# The first stage: Feature extraction based on KPCA 
1: Leverage KPCA to extract optimal representative features; 
# The second stage: The initial weights and biases of ELM optimized by adaptive genetic 

algorithm 
2: Initialize the parameters of the adaptive genetic algorithm: Psize, MAXGEN, the constants of 

Pc: k1, k2, k3, k4; the constants of Pm: k5, k6, k7, k8; 
3: Encode for the initial weights and biases of ELM according to Eq. (26), and obtain the initial 

population; 
4: for m1=1 to MAXGEN do 
5: Calculate the fitness value of each individual by the mean square error of ELM according to 

Eq. (28); 
6: Conduct the selection operation by the roulette selection; 
7: Conduct the crossover operation with crossover rate Pc by the arithmetic crossover operator; 
8: Conduct the mutation operation with mutation rate Pm by the adaptive mutation; 
9: end for 
10: Decode the chromosomes composed of the optimal initial weights and biases in the genetic 

space; 
11: Obtain the optimal initial weights and biases of ELM; 
# The third stage: Software defect prediction based on the KAEA model 
12: Initialize the weights of the n training instances; 
13: for k=1 to 9 do   # The number of ELM basic predictors is 9 
14: Train the ELM with the optimal initial weights and biases;  
15: Calculate the error Ei of the basic predictor according to Eq. (32); 
16: Calculate and update the weight wm of the basic predictors according to Eq. (34); 
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17: Adjust the training instance weight Dm+1(i) according to Eq. (35); 
18: end for 
19: Obtain the strong predictor KAEA; 
20: Conduct defect prediction by the KAEA predictor, and obtain the final prediction result R; 
21: return R; 

5 Experimental setup 
In this section, we will introduce the experimental setup, including datasets, evaluation 
metrics, baseline models and parameter setup. We conduct the experiments on a 3.6 GHz 
i7-4790 CPU machine with 8 GB RAM. 

5.1 Datasets 
In this paper, we use eleven datasets from the NASA data repository, namely KC2, MC1, 
CM1, JM1, PC1, PC2, PC3, PC4, PC5, MC2 and MW1. The details of these datasets are 
shown in Tab. 1, which shows the name of the project, number of metrics, number of 
instances, number of defective instances, number of non-defective instances, defective 
ratio and imbalance ratio. It can be seen that the defect ratio of PC2 is the smallest, which 
is 2.15%, and the defect ratio of PC5 is the largest, which is 27.53% from Tab. 1. The 
number of defects varies from tens to thousands.  
Tab. 2 describes the features of eleven datasets, where the first 20 lines describe the 
common features of datasets, and the last few lines describe the specific features of each 
dataset. If the dataset has such a feature, it is denoted by , otherwise, it is blank. 
We use 10 times 10-fold cross-validation to evaluate the performance of the KAEA model, 
so each dataset is randomly divided into 10 folds, where 9 folds are used as the training 
dataset and the remaining 1 fold is used as the test dataset. To further reduce experimental 
error, we perform 10 times cross-validation and record the average performance. 

5.2 Evaluation metrics 
To evaluate the performance of the KAEA model, we use three evaluation metrics, 
namely precision, recall and F1, which have been widely used to evaluate the 
performance of defect prediction techniques [Fu and Menzies (2017); Xia, Lo, Wang et 
al. (2016); Liu, Zhou, Yang et al. (2017)], and they can be calculated from the confusion 
matrix of the classification results. The confusion matrix is shown in Tab. 3. The 
confusion matrix is used to store the right and wrong decisions made by the prediction 
model. These instances are divided into true positive (TP), false positive (FP), true 
negative (FN) and false negative (TN) according to the combination of its actual class 
and predicted class. 
precision: The ratio of correctly predicted defect files to all files predicted to be 
defective, as shown in Eq. (37): 

𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑖𝑖𝑚𝑚𝑖𝑖𝑜𝑜𝑓𝑓 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

                                                                                                         (37) 
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Table 1: The statistics of the NASA datasets 

Project 
# of 

metrics 
# of 

instances 

# of 
defective 
instances 

# of non-
defective 
instances 

Defective 
ratio (%) 

Imbalance 
ratio (%) 

KC2 21 522 107 415 20.50 3.88 
MC1 38 1988 46 1942 2.31 42.22 
CM1 37 327 42 285 12.84 6.79 
JM1 21 7782 1672 6110 21.49 3.65 
PC1 37 705 61 644 8.65 10.56 
PC2 36 745 16 729 2.15 45.56 
PC3 37 1077 134 943 12.44 7.04 
PC4 37 1458 178 1280 12.21 7.19 
PC5 38 1711 471 1240 27.53 2.63 
MC2 39 125 16 109 12.80 6.81 
MW1 37 253 27 226 10.67 8.37 

Table 2: The feature description of eleven datasets 

Features KC2 MC1 CM1 JM1 PC1 PC2 PC3 PC4 PC5 MC2 MW1 

BRANCH_COUNT            
LOC_CODE_AND_CO

MMENT            
LOC_COMMENTS            

CYCLOMATIC_COMPL
EXITY            

DESIGN_COMPLEXIT
Y            

ESSENTIAL_COMPLE
XITY            

LOC_EXECUTABLE            
HALSTEAD_CONTENT            
HALSTEAD_DIFFICUL

TY            
HALSTEAD_EFFORT            

HALSTEAD_ERROR_E
ST            

HALSTEAD_LENGTH            
HALSTEAD_LEVEL            

HALSTEAD_PROG_TI
ME            

HALSTEAD_VOLUME            
NUM_OPERANDS            
NUM_OPERATORS            

NUM_UNIQUE_OPERA
NDS            

NUM_UNIQUE_OPERA
TORS            
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LOC_TOTAL            
DECISION_DENSITY            

LOC_BLANK            
CALL_PAIRS            

CYCLOMATIC_DENSI
TY            

DECISION_COUNT            
DESIGN_DENSITY            

EDGE_COUNT            
ESSENTIAL_DENSITY            
PARAMETER_COUNT            
GLOBAL_DATA_COM

PLEXITY            
GLOBAL_DATA_DENS

ITY            
MAINTENANCE_SEVE

RITY            
MODIFIED_CONDITIO

N_COUNT            
NODE_COUNT            

MULTIPLE_CONDITIO
N_COUNT            

NORMALIZED_CYLO
MATIC_COMPLEXITY            

NUMBER_OF_LINES            
PERCENT_COMMENT

S            
CONDITION_COUNT            

Table 3: Confusion matrix 

Confusion 
matrix 

Predicted 
Positive (P) Negative (N) 

Actual 
True (T) TP FN 
Flase (F) FP TN 

recall: The ratio of correctly predicted defect files to all truly defective files, as shown in 
Eq. (38): 

𝑝𝑝𝑚𝑚𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁

                                                                                                               (38) 

F1: The weighted harmonic mean of precision and recall, as shown in Eq. (39): 

𝐹𝐹1 = 2×𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖×𝑝𝑝𝑝𝑝𝑐𝑐𝑎𝑎𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖+𝑝𝑝𝑝𝑝𝑐𝑐𝑎𝑎𝑟𝑟𝑟𝑟

                                                                                                   (39) 
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5.3 Baseline models 
In the paper, we compare the KAEA model with the following eight baseline models: 
Machine learning basic classifiers: KLR (KPCA-Logistic Regression), KKNN (KPCA-
K-Nearest Neighbor), KNB (KPCA-Naive Bayes), KBP (KPCA - Back Propagation). 
ELM and its variants: KELM (KPCA-ELM), KGA-ELM (KPCA Genetic Algorithm- 
ELM), KA-GA-ELM (KPCA Adaboost-Genetic Algorithm-ELM), KAGA-ELM (KPCA 
Adaptive Genetic Algorithm-ELM). 

5.4 Parameter setup 
The increase in the number k of basic predictors for Adaboost algorithm can improve the 
prediction accuracy of the strong predictor. But if k is too large, the time and space costs 
will be too large, so k is set to 9 in this paper. 
The neuron transfer function is the tansig function. The parameters in adaptive genetic 
algorithm are set as follows: Psize =30, MAXGEN=100, the values of the constants in Pc: 
k1=0.6, k2=0.7, k3=0.2 and k4=0.3, the values of the constants in Pm: k5=0.8, k6=0.6, k7=0.9 
and k8=0.3. 

6 Experimental results 
We will introduce the experimental results in the section. We focus on the performance 
of our proposed KAEA model and answer the following three research questions (RQ): 
RQ1: Does our KAEA model outperform four machine learning basic classifiers for 
defect prediction? 
To validate the effectiveness of our KAEA model for defect prediction, we need to 
compare it with the four machine learning basic classifiers, including the LR, KNN, NB, 
BP models. Since these basic classifiers all use datasets processed by KPCA, they are 
named KLR, KKNN, KNB and KBP, respectively. 
Tabs. 4-6 present the precision, recall and F1 of our KAEA model compared with those 
of four machine learning basic classifiers respectively for defect prediction. Note that the 
highest value of each row is marked in bold.  
As shown in Tabs. 4-6, the KAEA model performs better than the four baseline models 
from the point of average precision, recall and F1. Compared with the four baseline 
models, the KAEA model achieves 86.95%, 88.79% and 87.66% performance on 
average in terms of precision, recall and F1, respectively. We also find that the 
performance of KAEA is worse than that of some other models with a small amount of 
dataset. For example, On the MW1 dataset, the performance of KAEA is worse than that 
of KNB in terms of precision.  
Figs. 4-6 present box-plots of three metrics for KAEA and four machine learning basic 
classifiers on eleven datasets on average respectively for defect prediction. From Figs. 4-
6, we can observe that the maximum value and the median value achieved by the KAEA 
model are higher than those achieved by other models in terms of precision, recall and 
F1, respectively, which can fully demonstrate the superiority of our KAEA model, and it 
is consistent with the observation in Tabs. 4-6. In addition, we can also see that the 
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performance of the KNB model is significantly lower than that of other models from the 
point of recall and F1. 
 
 
 
 
 

Table 4: The precision comparison of KAEA and four basic classifiers 

Dataset KLR KKNN KNB KBP KAEA 

KC2 0.7812 0.8081 0.8823 0.7832 0.8943 
MC1 0.7537 0.8313 0.7264 0.6506 0.8967 
CM1 0.7849 0.8029 0.7647 0.6118 0.8563 
JM1 0.7087 0.7018 0.9069 0.6450 0.7994 
PC1 0.8102 0.7340 0.7676 0.7103 0.8605 
PC2 0.7865 0.8151 0.6417 0.8095 0.8511 
PC3 0.7898 0.7447 0.6259 0.8240 0.8945 
PC4 0.8288 0.7598 0.5643 0.7305 0.9379 
PC5 0.6715 0.6437 0.5419 0.6861 0.8889 
MC2 0.8000 0.7571 0.7777 0.7976 0.8638 
MW1 0.6500 0.8214 0.8723 0.7740 0.8215 

Average 0.7605 0.7654 0.7338 0.7293 0.8695 

Table 5: The recall comparison of KAEA and four basic classifiers 
Dataset KLR KKNN KNB KBP KAEA 

KC2 0.8000 0.8236 0.1145 0.7135 0.9113 
MC1 0.7972 0.7897 0.4178 0.6512 0.7903 
CM1 0.8021 0.8354 0.1428 0.7178 0.9889 
JM1 0.4907 0.6197 0.0205 0.5716 0.8528 
PC1 0.8102 0.8738 0.3897 0.7085 0.9700 
PC2 0.8689 0.8951 0.1877 0.4976 0.9019 
PC3 0.7841 0.8036 0.5719 0.3554 0.7926 
PC4 0.8970 0.8781 0.8000 0.3659 0.9002 
PC5 0.6106 0.7453 0.2240 0.6071 0.8222 
MC2 0.5925 0.6571 0.2692 0.5803 0.8700 
MW1 0.6093 0.6200 0.6029 0.6100 0.9667 

Average 0.7330 0.7765 0.3401 0.5799 0.8879 

 

Conclusion: Our KAEA model outperforms the four machine 
learning basic classifiers in terms of precision, recall and F1, 
especially on the KNB and KBP models. On average, compared 
with KNB and KBP models, KAEA achieves 46.65%, 24.27% 
performance improvement in terms of the F1, respectively. 
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Table 6: The F1 comparison of KAEA and four basic classifiers 

Dataset KLR KKNN KNB KBP KAEA 
KC2 0.7905 0.8158 0.2027 0.7467 0.9027 
MC1 0.7748 0.8100 0.5305 0.6509 0.8401 
CM1 0.7934 0.8188 0.2407 0.6606 0.9178 
JM1 0.5799 0.6582 0.0401 0.6061 0.8252 
PC1 0.8102 0.7978 0.5170 0.7094 0.9120 
PC2 0.8257 0.8532 0.2905 0.6163 0.8758 
PC3 0.7870 0.7730 0.5977 0.4966 0.8405 
PC4 0.8615 0.8147 0.6618 0.4876 0.9187 
PC5 0.6396 0.6908 0.3169 0.6442 0.8542 
MC2 0.6808 0.7036 0.4000 0.6718 0.8669 
MW1 0.6290 0.7066 0.7130 0.6823 0.8882 

Average 0.7429 0.7675 0.4101 0.6339 0.8766 

 

Figure 4: The box-plot of precision for KAEA and four basic classifiers on eleven 
datasets on average 

RQ2: Does our KAEA model outperform ELM and its three variants for defect 
prediction? 
To further validate the effectiveness of our KAEA model for defect prediction, we also 
need to compare it with ELM and its three variants, including the KELM, KGA-ELM, 
KA-GA-ELM and KAGA-ELM, and these models all use datasets processed by KPCA. 
Tabs. 7, 8 and 9 present the precision, recall and F1 of our KAEA model compared with 
those of four baseline models respectively for defect prediction. Note that the highest 
value of each row is marked in bold. 
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Figure 5: The box-plot of recall for KAEA and four basic classifiers on eleven datasets 
on average 

 

Figure 6: The box-plot of F1 for KAEA and four basic classifiers on eleven datasets on average 

As shown in Tabs. 7-9, the KAEA model performs better than the four baseline models 
from the point of average precision, recall and F1. We also find that the performance of 
the KAEA model is not the best in a few cases. For example, on the PC2 dataset, the 
performance of KAEA is 85.11%, which is worse than KGA-ELM, KA-GA-ELM and 
KAGA-ELM in terms of precision. On the MC1, JM1 and PC5 datasets, the performance 
of our model are 79.03%, 85.28% and 82.22%, which are worse than KAGA-ELM, KA-
GA-ELM and KA-GA-ELM model with the best performance respectively in terms of 
recall. 
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Table 7: The precision comparison of KAEA and four baseline models 

Dataset KELM KGA-ELM KA-GA-
ELM 

KAGA-
ELM KAEA 

KC2 0.8083 0.8268 0.8316 0.8224 0.8943 
MC1 0.7268 0.7839 0.8307 0.8100 0.8967 
CM1 0.7816 0.8111 0.7944 0.8163 0.8563 
JM1 0.7051 0.6863 0.4966 0.5562 0.7994 
PC1 0.7263 0.8040 0.8053 0.8373 0.8605 
PC2 0.8378 0.9171 0.8994 0.9430 0.8511 
PC3 0.8455 0.8533 0.8364 0.8667 0.8945 
PC4 0.8333 0.9059 0.7602 0.9326 0.9379 
PC5 0.8308 0.8417 0.5021 0.8398 0.8889 
MC2 0.8333 0.6897 0.7407 0.7143 0.8638 
MW1 0.7407 0.7308 0.7800 0.7900 0.8215 

Average 0.7881 0.8046 0.7525 0.8117 0.8695 

Table 8: The recall comparison of KAEA and four baseline models 

Dataset KELM KGA-ELM KA-GA-
ELM 

KAGA-
ELM KAEA 

KC2 0.7823 0.8468 0.8677 0.8065 0.9113 
MC1 0.7756 0.8269 0.7544 0.8316 0.7903 
CM1 0.7556 0.8111 0.9444 0.8226 0.9889 
JM1 0.4574 0.5135 0.9962 0.7922 0.8528 
PC1 0.6900 0.8000 0.7650 0.8600 0.9700 
PC2 0.4208 0.8507 0.9000 0.8622 0.9019 
PC3 0.3852 0.5815 0.6815 0.7634 0.7926 
PC4 0.3274 0.5446 0.8869 0.8929 0.9002 
PC5 0.3500 0.2806 0.9861 0.7721 0.8222 
MC2 0.6000 0.8000 0.8000 0.8200 0.8700 
MW1 0.6667 0.9500 0.9633 0.9617 0.9667 

Average 0.5646 0.7096 0.8678 0.8350 0.8879 

Figs. 7-9 present box-plots of three metrics for KAEA and ELM and its three variants on 
eleven datasets on average respectively for defect prediction. From Figs. 7-9, we can 
observe that the median value achieved by the KAEA model is higher than that achieved 
by other models in terms of precision, recall and F1, respectively, which also reflect that 
our KAEA model can achieve a competitive prediction effect. We can also find that the 
performance of the KELM model is far from ideal from the point of recall and F1, but it 
performs well in precision. Moreover, there are more outliers in Fig. 7, but those outliers 
don’t affect the overall performance comparison of the various models. 
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Table 9: The F1 comparison of KAEA and four baseline models 

Dataset KELM KGA-ELM KA-GA-
ELM 

KAGA-
ELM KAEA 

KC2 0.7951 0.8367 0.8493 0.8144 0.9027 
MC1 0.7504 0.8048 0.7907 0.8207 0.8401 
CM1 0.7684 0.8111 0.8629 0.8194 0.9178 
JM1 0.5549 0.5874 0.6628 0.6535 0.8252 
PC1 0.7077 0.8020 0.7846 0.8485 0.9120 
PC2 0.5602 0.8826 0.8997 0.9008 0.8758 
PC3 0.5293 0.6916 0.7510 0.8118 0.8405 
PC4 0.4701 0.6803 0.8187 0.9123 0.9187 
PC5 0.4925 0.4208 0.6654 0.8045 0.8542 
MC2 0.6977 0.7407 0.7692 0.7635 0.8669 
MW1 0.7018 0.8261 0.8620 0.8674 0.8882 

Average 0.6389 0.7349 0.7924 0.8197 0.8766 

 
Figure 7: The box-plot of precision for KAEA and four baseline models on eleven 
datasets on average 

Conclusion: Our KAEA model outperforms the ELM and its three 
variants in terms of precision, recall and F1. On average, compared 
with KELM, KGA-ELM, KA-GA-ELM, and KAGA-ELM models, 
KAEA achieves 23.77%, 14.17%, 8.42% and 5.69% performance 
improvement in terms of the F1 respectively. 
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Figure 8: The box-plot of recall for KAEA and four baseline models on eleven datasets 
on average 

 
Figure 9: The box-plot of F1 for KAEA and four baseline models on eleven datasets 
on average 

RQ3: Does our KAEA model with the Adaboost ensemble learning method 
outperform the model without it? 
Fig. 10 presents the precision, recall and F1 of our KAEA model compared with KAGA-
ELM (without the Adaboost ensemble learning method) for defect prediction. The 
evaluation metric values in the comparison figure are the average of the experimental 
results on the eleven datasets. 
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Figure 10: The evaluation metrics comparison figure between KAEA and KAGA-ELM  

From Fig. 10, we can observe that the performance of KAEA using Adaboost ensemble 
learning method better than that of KAGA-ELM without the ensemble learning method 
in terms of precision, recall and F1. More specifically, the average precision (86.95%), 
recall (88.79%) and F1 (87.66%) by KAEA yields improvement 5.78%, 5.29% and 
5.69% compared with KAGA-ELM, respectively. The experimental results verify that 
the integrated ELM strong predictor can improve the effect of defect prediction. 
 
 
 
 
 

7 Discussion 
Compared to baseline models in Section 5.3, our KAEA model is the best predictor. This 
is because the ELM is considered an advanced neural network, which has obvious 
advantages in classification, including strong classification capacity, good generalization 
performance. Moreover, we utilize adaptive genetic algorithm (AGA) to optimize initial 
weights and biases of ELM, and find the optimal initial weights and biases that can 
minimize the prediction error, thereby further enhance the classification capacity of the 
ELM. Compared to traditional genetic algorithm (GA), the AGA used in this paper is an 
improvement on the basic GA. The AGA improves the convergence speed and accuracy 
of the basic GA by adaptive adjustment of genetic parameters while maintaining the 
population diversity. We also leverage Adaboost algorithm to integrate multiple ELM 
basic predictors optimized by the adaptive genetic algorithm into a strong predictor, 
which makes the integrated strong predictor better for software defect prediction. 

8 Threat to validity 
In this section, we discuss three kinds of validity threats that may have an impact on our 
experimental results, namely internal validity, external validity and construct validity. 

Conclusion: Our KAEA model with the Adaboost ensemble learning 
method outperforms the model without it in terms of precision, recall 
and F1. KAEA achieves 5.78%, 5.29%, 5.69% performance 
improvement in terms of the three metrics compared with KAGA-
ELM, respectively. 
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8.1 Internal validity 
Internal validity is related to uncontrolled aspects that may affect the experimental results, 
such as errors in the experiment. We examine our experiment process carefully, but there 
may still be errors that we do not notice. 

8.2 External validity 
External validity is related to the quality and universality of the eleven datasets used in 
the paper, which are often used in previous software defect prediction studies. The scale 
of these projects is large enough, and these instances are universal enough. In the future, 
we also plan to further reduce this threat by analyzing more instances of other open 
source and commercial projects. 

8.3 Construct validity 
Construct validity involves the applicability of our evaluation metrics. In this paper, we 
use three evaluation metrics, namely precision, recall and F1, which have been used in 
previous studies [Fu and Menzies (2017); Xia, Lo, Wang et al. (2016); Liu, Zhou, Yang  
et al. (2017)], so we believe that construct validity is acceptable. 
The experimental design may also affect our experimental results. Recent studies have 
pointed out that defect prediction models with different parameter setup may produce 
different results. In order to reduce the threat to the experimental design of parameter 
setup, we plan to use parameter optimization techniques for more experiments. 

9 Conclusion and future work 
In this paper, we propose a novel defect prediction model named KAEA based on KPCA, 
adaptive genetic algorithm, ELM and Adaboost algorithm. We first leverage KPCA to 
extract optimal representative features, so as to reflect the intrinsic structure of the defect 
data. Then we also use adaptive genetic algorithm to optimize the initial weights and 
biases of ELM, and obtain the optimal initial weights and biases. Moveover, the 
Adaboost algorithm is used to integrate multiple ELM basic predictors optimized by 
adaptive genetic algorithm into a strong predictor, which further improves the effect of 
defect prediction. We conduct a large number of defect prediction experiments on eleven 
datasets from large open source projects, and compare the KAEA with four machine 
learning basic classifiers, ELM and its three variants. The experimental results show that 
our KAEA model can achieve better results than baseline models in most cases. 
In the future, we will evaluate our KAEA model in more open source and commercial 
projects. In addition, we will use parameter optimization technologies to adjust the 
parameter setup of the KAEA model, for example, the number of hidden nodes, so as to 
achieve the optimal defect prediction performance. 
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