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Abstract: The problem of influence maximizing in social networks refers to obtaining a 
set of nodes of a specified size under a specific propagation model so that the aggregation 
of the node-set in the network has the greatest influence. Up to now, most of the research 
has tended to focus on monolayer network rather than on multiplex networks. But in the 
real world, most individuals usually exist in multiplex networks. Multiplex networks are 
substantially different as compared with those of a monolayer network. In this paper, we 
integrate the multi-relationship of agents in multiplex networks by considering the 
existing and relevant correlations in each layer of relationships and study the problem of 
unbalanced distribution between various relationships. Meanwhile, we measure the 
distribution across the network by the similarity of the links in the different relationship 
layers and establish a unified propagation model. After that, place on the established 
multiplex network propagation model, we propose a basic greedy algorithm on it. To 
reduce complexity, we combine some of the characteristics of triggering model into our 
algorithm. Then we propose a novel MNStaticGreedy algorithm which is based on the 
efficiency and scalability of the StaticGreedy algorithm. Our experiments show that the 
novel model and algorithm are effective, efficient and adaptable. 
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1 Introduction 
With the exponential growth of information in social networks, the speed of information 
dissemination is accelerating, and the way people obtain information is becoming wider. 
The information-gathering structure based on social network communication enables 
people to disseminate and acquire information [Chen, Li, Zhang et al. (2018)]. In a sense, 
social network information dissemination is based on the integration of mass 
communication and interpersonal communication, where a new distributed network is 
constructed [Bond, Fariss, Jones et al. (2012); Gaye, Mendy, Ouya et al. (2015)]. The 
unprecedented improvement of the dissemination mechanism has further accelerated 
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interpersonal communication and information dissemination [Chen, Hua, Yuan et al. 
(2018)]. In this kind of communication mechanism, the diffusion of information between 
users is often affected by user influence. In the research on the social network, how the 
information spreads through the interconnections of the people in the network has drawn 
more and more attention. The problem of influence maximizing in social networks refers 
to obtaining a set of nodes of a specified size under a specific propagation model so that 
the aggregation of the node-set in the network has the greatest influence. Essentially, the 
user's behavior and thoughts will be impacted by others. Meanwhile, the user's own 
behavior and thoughts will affect others. According to the characteristics of influence 
diffusion, when promoting new products, companies often apply advertising or “viral 
marketing” methods on social networks to expand their market share [Li, Luo, Huang et 
al. (2012); Mehmood, Barbieri, Bonchi et al. (2013); Wu, Liu, Yue et al. (2015)]. When 
formulating specific strategies, it is necessary to mine users who play a key role in 
information diffusion according to the influence of users to maximize the effectiveness of 
publicity. Besides, through the analysis of the influence of users and the use of influence 
to guide the public opinion, it can promote the relevant policies of the government and 
prevent the spread of harmful information. It can also effectively serve real-time 
monitoring, forecasting and early warning and emergency response of social security 
[Tsai, Yang and Chiang (2015)]. Therefore, research on maximizing the influence of 
social networks can make better use of the openness and freedom of online speech to 
serve social public safety. 
Multiplex networks [Zhang, Nguyen, Zhang et al. (2016)] are networks in which the 
same of nodes are connected by distinct types of links organized in different interacting 
layers. This topic had received more and more attention in recent years. Some recent 
studies have shown that the topological properties of a multiplex network are 
substantially different as compared with those of a monolayer network and that the 
interaction of layers of a multiplex network can generate new interesting diffusion 
processes [Kuhnle, Alim, Li et al. (2018)]. 
In this study, we first put forward a linear threshold (LT) diffusion model in multiplex 
networks (named MNTM) for describing more than two types of influence spreads which 
can obtain better results. Specifically, we make the following contributions in this paper: 
Our contributions can be summarized as follows: 
1. We integrate the multi-relationship of agents by considering the existing and relevant 
correlations in each layer of relationships and establish a unified influence diffusion model. 
2. Based on the established multiplex network propagation model, we proposed a novel 
MNStaticGreedy algorithm which is based on the efficiency and scalability of the 
StaticGreedy algorithm. 

2 Preliminaries 
2.1 Influence maximization in the single level relation network 
There are two basic models for studying the maximization of influence propagation: The 
Independent Cascade Model (ICM) and the Linear Threshold Model (LTM) [Kempe, 
Kleinberg and Tardos (2003); Rahimkhani, Aleahmad, Rahgozar et al. (2015); Galhotra, 
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Arora, Virinchi et al. (2015)]. The influence between the user and its neighbor nodes in 
the independent cascade model is independent of each other. It is not affected by the 
relationship between neighbor nodes in the influence propagation process. The difference 
from the independent cascade model is that the linear threshold model considers the 
cumulative effect of influence. On this basis, Kempe et al. [Kempe, Kleinberg and Tardos 
(2003)] extended the ICM and LTM models, abandoned the independence conditions, 
and proposed the General Cascade Model (GCM) and the general threshold model 
(GTM). These two extended propagation models can be converted to each other and are 
considered as two mutually equivalent models. Shultz et al. [Shultz and Rivest (2000)] 
proposed a Weighted Cascade Model (WCM) based on the factor of node degree based 
on the ICM. The edges associated with the generous nodes in the model are on a lower 
activation probability, so the WCM is a particular case of the ICM. Kempe et al. [Kempe, 
Kleinberg and Tardos (2005)] proposed a Decreasing Cascade Model (DCM) based on 
the idea that the probability that a node is activated may change as the neighboring node 
attempts to enable it. They believe that if multiple nodes have not successfully activated 
the target node for many times, the impact of the newly activated neighbor node on the 
target node will be weakened. Fazli et al. [Fazli, Ghodsi, Habibi et al. (2014)] believe that 
nodes can convert between active and inactive states, so a non-progressive model (NPM) 
is proposed. Li et al. [Li, Luo, Huang et al. (2012)] proposed a multi-layer network 
(MLN) based on the characteristics of Weibo data. Although that model combines the 
user’s topology information and attribute information through linear combination, it does 
not consider the different influences of different relationship layers on users and the 
correlation between the relationship layers. 
Kempe et al. [Kempe, Kleinberg and Tardos (2005)] took the lead in studying the 
problem of maximizing influence in detail and proved that it is an NP-hard problem. On 
this basis, an approximate greedy algorithm suitable for most influence propagation 
models is proposed [Mehmood, Barbieri, Bonchi et al. (2013)]. At each step, the 
algorithm puts the most influential node as a candidate node into the seed-set, and then 
iterates continuously until all seed nodes are selected. However, the optimal local strategy 
of this algorithm does not guarantee the global optimization of the final result, and the 
efficiency of the algorithm is relatively low. The time complexity is high, which is not 
suitable for actual large-scale networks. On this basis, Tsai et al. [Tsai, Yang and Chiang 
(2015)] improved the greedy algorithm and proposed the GNG algorithm (Genetic 
NewGreedy, GNG). Experiments show that the algorithm combines some characteristics 
of the genetic algorithm to improve the performance of the greedy algorithm by about 
10%. To solve the dilemma of the accuracy and scalability of the influence maximization 
algorithm, Cheng et al. [Cheng, Shen, Huang et al. (2013)] proposed the heuristic SG 
algorithm (StaticGreedy, SG). The algorithm utilizes the submodular of the influence 
maximizing objective function to select the currently most influential node, thereby 
reducing the time taken for candidate node selection. Tang et al. [Tang, Xiao and Shi 
(2014)] propose a Reverse Reachable-SKETCH approach (TIM).  After that, Tang et al. 
[Tang, Shi and Xiao (2015)] further propose IMM to improve over TIM by using a 
martingale analysis and a better bootstrap estimation technique. In recent years, several 
studies have a focus on the key influencer in the network for influence maximizing 
problem [Hua, Chen, Yuan et al. (2019)]. 
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2.2 StaticGreedy in traditional network 
StaticGreedy algorithm [Cheng, Shen, Huang et al. (2013)] produces several Monte Carlo 
snapshots at the very beginning, and uses the same set of snapshots in all iterations. 
Those snapshots are called “static”. The algorithm ensures that the estimated impact 
range of each seed set is consistent in different iteration cycles. This guarantees 
submodular and monotonicity. Avoiding a vast number of Monte Carlo simulations 
needed in every iteration, this algorithm brings the possibility to reduce the 
computational expense without loss of accuracy significantly. 

Table 1: StaticGreedy algorithm 

Algorithm1 StaticGreedy(G, k, R) 
1:  initialize S=φ 
2:  for i=1 to R do 
3:    generate snapshot G’ 

i by removing each edge (u, v) from G with 
probability 1 −  p(u ,v) 

4:  end for 
5:  for i=1 to k do 
6:     set sv=0 for all v ∈ V \ S // sv stores the influence spread after adding 

node v 
7:     for j=1 to R do 
8:        for all v V\S do 
9:        sv+=|R(G’ 

j ,S ∪ {v})| //R(G’ 
j  , S ∪ {v}) is the influence spread of S∪ 

{v} in snapshot  G’ 
j   

10:       end for 
11:     end for 
12:  S=S∪{ argmaxv∊ V\S{ sv /R}} 
13:  end for  
14:  output S 

3 Diffusion model in multiplex networks 
3.1 Multiplex networks threshold model 
In a multiplex network, when different relationships are merged, we need to establish a 
unified model for m different types of link relationships. The Multiplex Networks 
Threshold Model (MNTM) is exhibited in Fig. 1. As the separate relationship layer that has 
a distinct impact on the agent, some of the relationships may be stronger than others, and 
we intend to increase the weight of such relation links. Conversely, for the relationship 
layer that has week impact on the node, we want to reduce the weight of such links. 
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Figure 1: Multiplex networks threshold model 
We need to calculate the correlation between agent u and the r-th relationship layer. Let 
Γr(u)denote the set of neighbor nodes of node u in the r-th relational layer, and d k 

r (u) be 
the number of k level neighbor of node u in the r-type relational layer, where k can take 1 
or 2. Let cr (u, v) denote the correlation of vertex u and v in the r-th relational layer. We 
can use the quantity of links or the remaining topological attributes of nodes to measure 
it.  The c (u, v) is the sum of the correlation values of the vertices u and v in all relational 
layers i.e., 
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Similarly, we can get the correlation between the vertex v and the r-th relationship layer 
Rr(v). When we merging distinct relation links of edge (u, v), their weights on the r-th 
relationship layer can be calculated by the following formula: 

                                                                                                (3) 

It can be seen from the formula that when the sum of Rr(u)+Rr(v) increasing, the weight 
of the node pair (u, v) in r-th relationship. Therefore, we can get the correlation between 
all pairs of nodes, the formula is as follow: 
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On this basis, we must also study the problem of unbalanced distribution between various 
relationships. We intend to measure their distribution across the network by the similarity 
of the links in the different relationship layers. Consider two relation layers i-th layer and 
j-th layer, let Ei and Ej denote the path set with the same length l in the two layers. K is 
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the maximum path length between any two points in each layer, we define the similarity 
of this relationship type as Sij, and the formula can be as follow: 
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η∊ (0,1) denotes the weight coefficient. If the common paths’ number in i-th and j-th 
relationship are big, the more similar they are to the topological similarity. The higher 
weight should be given to it, i.e., the more similar the two relationship layer topologies are, 
the higher the value Sij. After that, we define the degree of centrifugation between all links, 
i.e., the distribution of all links in i-th relationship layer. Let Di formula can be as follow: 

∑
≠=

= m
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ij
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λ
                                                                                                                    (6) 

λ is a constant. It can be seen from the formula that for relation layer links with a 
significant degree of centrifugation, to prevent their links from being masked due to 
uneven distribution, we should give higher weight to them. So we improve the 
topological correlation W(u,v) between the pairs of nodes. The formula can be as follow: 
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In the influence propagation model, assume that there is an active state function f for each 
agent. If the total influence value p(u,v) from neighbors is higher than the threshold 
value θv of the agent, the agent will be active otherwise will not. The q1(u) denotes the 
nodes set which include active neighbors. p(u,v)  formula  is as follow： 

∑
∈

=
)(1

),(),(
uqv T

vuWvup                                                                                                             (8) 

Therefore, assuming that the initial seed node-set is S, the propagation process of the 
MNTM model can be briefly described as follow: 
I) Merge multiplex layer network into one network by the method we have proposed 
above. 
II) Chose a threshold value for each agent in the network. 
III) In t step, if agent v∊ V\S , v≠ф  and p(u, v)>θv , agent v will be active otherwise 
will not. 
IV) The propagation process will finish when no new agent is being active. 

3.2 Influence maximization in multiplex networks 
Based on the above, letσ s denote the influence range of seed set S. Our influence 
maximization in multiplex networks problem can be descript as Input G = {G1, G2, … 
Gi}, Gi=(V,E), G include i distinct type relationship networks, give a constant k<|V|, 
finding a seeds set S, when |S| = k,σs is maximization.   
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The MNTM model considers the impact of topological relationships between multiple 
relational networks on propagation, as well as the overlapping effects of nodes between 
multiplex networks and the strength of relationships among them. The propagation 
mechanism of MNTM is very similar to the traditional LT model. So the MNTM model is 
still an impact accumulation model. It has the same conditions as a typical LT model when 
it successfully activates a node during the propagation process. Therefore, it can be proved 
that under the MNTM model, the influence propagation function σs is also submodular 
and monotone. Therefore, the greedy algorithm can also be used to approximate the 
influence of the multiplex network under the MNTM model. Based on the above theory, we 
can give the basic greedy algorithm on the multiplex network as Algorithm 2. 

Table 2: Greedy algorithm on MNTM 

Algorithm2  BasicMNGreedy(G,k) 
1: calculate W(u,v) from G set 
2: generate multiplex G’ from G 
3: S=φ 
4: for i=1~k,|S|=i do 
         find u= argmaxv∊ V\S{σ(S∪u )-σ(S)} 
5:  S=S∪u 
6: return S 

 
From the Algorithm 2, we can see that the process of propagating the search seed still 
uses the traditional greedy algorithm. Based on the unique feature of the multiplex 
network, we merge multiple networks into an entire network according to the previously 
proposed multiple-layer relationship fusion method. It can easily be expanded.  

3.3 MNStaticGreedy 
Based on the proposed MNTM and basic greedy algorithm, we can find that the new 
propagation process needs to consider the mutual integration of multi-layer relationships 
and the shortcoming of the greedy algorithm is the problem of time complexity. Vast 
numbers of iterative iterations will be processed. These problems need an efficient and 
scalable algorithm. Most of the existing algorithms are specific to specific conditional 
constraints and frameworks, while the traditional StaticGreedy is for simple relationship 
cascaded propagation. It has good scalability and effect. It can combine with a lot of 
different algorithms. Meanwhile, Tang et al. [Tang, Xiao and Shi (2014)] proposed a 
method based on triggering model and reverse reachable (RR) set. Under the LT model 
(which is s special case of the triggering model), T(v) denotes a sample from triggering 
distribution of v, it has pi probability to be a unit set containing the i-th incoming 
neighbor of v, and has 1-∑x 

i=1 pi probability to be an empty set. Based on the above 
problems and methods, we propose our MNStaticGreedy algorithm. The algorithm 
consists of three steps: 
1. Building a multiplex network by merge different type networks. Generate R snapshot 
of multiplex networks using W(u,v). 
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2. Then random select n nodes for each snapshot to generate their reverse reachable set. 
The reverse reachable set RRv of node v represents a set of all nodes on the multiplex 
network that can reach v. All RRv set ultimately constitutes the reverse reachable set RRi 
for each snapshot. 
3. Select the RR set that contains the snapshot of the most nodes. The seed node is 
selected by the maximum coverage method. At the same time, the more nodes in the 
reverse reachable concentration, the more nodes that the node can activate. 
The description of MNStaticGreedy is given in Algorithm 3. 

Table 3: MNStaticGreedy Algorithm 

Algorithm3 MNStaticGreedy(G,k,R) 
1: calculate W(u,v)from G set 
2: generate multiplex G’ from G 
3: for i=1 to R 
4:    generate snapshot G’ 

i by removing each edge (u, v) from G’ with 
probability 1− p(u,v)  

5: end for 
6: S=φ, RR=φ 
7: for i=1 to R do 
8:       for  j=1 to n do     
9:              random sample a node v generates RRv set 
10:      end for 
11: end for      
12: RR=max{|Vi|, i∊ [1,R]} 
13: for 1 to k do 
14:      S=S∪u //u cover the most RRv  
15:      RRv= RRv\RRu     
16: end for 
17: return S 

It can be seen that the algorithm combines the characteristics of the StaticGreedy 
algorithm and the RRset method. The snapshot generation and the RR generation can be 
merged in actual operation. After finding seeds, the simulation propagation can directly 
use the generated snapshot instead of using a large number of Monte Carlo simulations. 

4 Experiments 
4.1 Experiment setting 
We consider Triggering Model of information diffusion for our experiments. We use the 
intersection method as described in Section 3 for generating node distribution. All code is 
implemented in Python. Code is executed on a standalone machine with Intel Core i7 
processor, 8 GB of RAM.  
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Two real-world networks are employed to demonstrate the performance of our algorithms 
by comparing with other existing algorithms. These two datasets are both undirected as 
shown in Tab. 4. ca-GrQc is a collaboration network. It is from the e-print arXiv 
(http://www.arXiv.org) and covers scientific collaborations between authors papers 
submitted to General Relativity and Quantum Cosmology category. ca-HepPh’s data 
came from High Energy Physics-Phenomenology category. Since this is two overlapping 
categories, many authors publish articles in both categories. So we can consider them as 
related networks of two different types of relationships. We choose two algorithms as the 
benchmark, one is the classic LT algorithm LDAG, and the other is the ordinary 
StaticGreedy algorithm. 

Table 4: Statistics of two real world networks 
 
 

 

4.2 Results 
This paper compares MNStaticGreedy and LDAG, StaticGreedy, on two networks of ca-
GrQc and ca-HepPh. To compare these three influence maximization algorithms, we 
selected five different numbers of seed sets, i.e., 10, 20, 30, 40, 50. The MNStaticGreedy 
algorithm and the StaticGreedy algorithm use static snapshots to simulate propagation. We 
set the number of snapshots to 100 and take the final average as the propagation range. For 
the LDAG algorithm, we use 1000 Monte Carlo algorithms to simulate the propagation of 
information in a multivariate network and use the average as its range of influence. 

 

Figure 2: Total influence with different seed sizes 
As can be seen from Fig. 2, due to the classic greedy algorithm used by the static greedy 
algorithm to perform seed iteration, its accuracy is far less than the other two algorithms. 
MNStaticGreedy algorithm and LDAG algorithm have better performance with the 
increase of seed nodes. Both two algorithms are based on topological structure. Therefore 

Datasets #Nodes #Edges Directed? 
ca-GrQc 5,242 14,496 undirected 

ca-HepPh 12,008  118,521 undirected 
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they can get better accuracy than ordinary greedy algorithms. It is easy to find out from 
the characteristics of the dataset that our dataset has a large number of edges, which 
brings a lot of topology information to each node in the networks. Our MNStaticGreedy 
algorithm uses the calculation of the influence value after the fusion of the two networks, 
and it produces better seed selection results. 

 

Figure 3: Run time with different seed sizes 
As Fig. 3. shows that MNStaticGreedy and StaticGreedy algorithms have lower time 
complexity. The main reason is in that it is using static snapshots instead of a large 
number of Monte Carlo simulations. At the same time, the MNStaticGreedy algorithm 
combines the generation process of the RR set with the snapshot generation process and 
achieves a good time benefit. We can see that the LDAG algorithm has a higher 
complexity for a large number of linked graphs. 
It can be seen from Fig. 4, as the threshold increases, the influence propagation range of 
the three algorithms show a downward trend with different seeds number. This is mainly 
because the threshold θ represents the ease with which the nodes in the MNLM model 
are affected, and the higher the threshold, the more significant the impact required to 
activate an inactive node. Besides, under the same threshold, as the number of nodes in 
the initial seed node-set increases, the range of influence also increases. Under the same 
threshold, when the initial seed node-set is the same, the propagation range of the 
proposed algorithm is significantly more extensive than the other two algorithms. 
At the same time, we can see from Fig. 4. that the number of nodes activated when the 
threshold changes from 0.05 to 0.1 has a relatively significant change. This also shows that 
due to the large number of links in the network, the weight values are scattered to a large 
number of edges. The weight of a large number of edges is relatively small. With the 
uncertainty of the activated nodes around the random simulation, and the number of edges 
after the snapshot is reduced, the probability of node activation is small when the threshold 
is increased. However, from the range, after the threshold is greater than 0.1, including 0.1, 
0.15, 0.2, these regions change gently. This shows that at the threshold of 0.1, this node 
filters out a large number of small-weight-intensive nodes in the graph, leaving a sparse 
node with a small number of neighbors. These nodes are stable with high thresholds. 
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(a)                                                               (b) 

          
(c)                                                               (d) 

 
(e) 

Figure 4: (a) Seed node number k=10; (b) Seed node number k=20; (c) Seed node 
number k=30; (d) Seed node number k=40; (e) Seed node number k=50; 
From Fig. 5, we can see that the run time for the three algorithms decreases as the 
threshold increases because the more significant the threshold, the smaller the candidate 
seed node-set. The algorithm proposed in this paper runs faster than the other two 
algorithms. And the change of the threshold of MNStaticGreedy algorithm has little 
effect, which proves that our algorithm has better adaptability. 
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Figure 5: Run time with different threshold 

5 Conclusions 
In this paper, we explore an Influence Maximization Problem in Multiplex Networks. By 
considering the relationship between the independent agents in the multiplex network, it 
is valid and feasible to establish a multiplex network influence diffusion model through 
the correlation and importance of agents in the relationship layer. At the same time, a 
novel greedy algorithm MNStaticGreedy is proposed, which is based on a multivariate 
relationship. Our algorithm has distinct advantages compared with the existing advanced 
algorithms. In future, we will try to design the dynamic multiplex network influence 
propagation model based on the influence between nodes. 
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