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Abstract: With the development of communication technologies, various mobile devices 
and different types of mobile services became available. The emergence of these services 
has brought great convenience to our lives. The multi-server architecture authentication 
protocols for mobile cloud computing were proposed to ensure the security and 
availability between mobile devices and mobile services. However, most of the protocols 
did not consider the case of hierarchical authentication. In the existing protocol, when a 
mobile user once registered at the registration center, he/she can successfully authenticate 
with all mobile service providers that are registered at the registration center, but real 
application scenarios are not like this. For some specific scenarios, some mobile service 
providers want to provide service only for particular users. For this reason, we propose a 
new hierarchical multi-server authentication protocol for mobile cloud computing. The 
proposed protocol ensures only particular types of users can successfully authenticate 
with certain types of mobile service providers. The proposed protocol reduces computing 
and communication costs by up to 42.6% and 54.2% compared to two superior protocols. 
The proposed protocol can also resist the attacks known so far. 
 
Keywords: Multi-server authentication, cryptography, hierarchical authentication, 
mobile cloud computing. 

1 Introduction 
With the development of mobile technology and communication technology, a variety of 
mobile devices appear in our lives like laptops, tablets, mobile phones, etc. According to 
a recent report from Pew Research Center [Silver (2019)], it is estimated that more than 5 
billion people have mobile devices and over half of these connections are smartphones. 
People in advanced economies are more likely to have mobile phones in particular. 
China, a country with a huge population in the world, has about 900 million mobile users, 
which brings a huge opportunity for the development of mobile cloud computing. With 
the increase of mobile users, a variety of mobile cloud services appear in our lives, such 
as mobile banking, mobile online shopping, mobile online game, and mobile TV, which 
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all can be accessed from anywhere at any time. The revolution in wireless 
communication and mobile technology brings great benefits to mobile users. 
The traditional single-server architecture for mobile cloud computing was proposed 
[Lamport (2019); Shen, Tan, Wang et al. (2015); Li, Dai, Tian et al. (2009)] to allow users 
to use the services remotely. However, due to the increasing number of mobile users and 
mobile service providers, traditional single-server architecture becomes inefficient [He, 
Zeadally, Kumar et al. (2016)] because of the limitation of computation and 
communication capabilities. For changing this situation, researchers introduced the multi-
server architecture for mobile cloud computing. A multi-server architecture for mobile 
cloud computing is shown in Fig. 1. 

 
Figure 1: Network model 

With the development of multi-server architecture for mobile cloud computing, multi-
server architecture authentication protocol for mobile cloud computing has been widely 
implemented. However, there exist some security issues which any adversary can easily 
intercept, modify, replay, and delay the transmission of messages [Fang, Li, Yun et al. 
(2019)]. Security is an important aspect of the authentication protocol for mobile cloud 
computing, and a good protocol must give solutions to these security issues [Gopinath 
and Bhuvaneswaran (2019); Jiang, Liu, Yang et al. (2019); Kou, Shi, Zhang et al. 
(2019)]. The current authentication protocols can be divided into two types [Odelu, Das, 
Kumari et al. (2017)]: (i) authentication protocol with online registration center [Yoon 
and Yoo (2013); He and Wang (2015); Odelu, Das and Goswami (2015); Chandrakar and 
Om (2017); Feng, He, Zeadally et al. (2018); Amin, Kumar, Biswas et al. (2018)], (ii) 
authentication protocol without online registration center [Choi, Hwang, Lee et al. 
(2005); Tsai and Lo (2015); Tseng, Huang, Tsai et al. (2016); Odelu, Das, Kumari et al. 
(2017); He, Zeadally, Kumar et al. (2016); Xie, Wong, Wang et al. (2017); Xiong, Peng, 
Peng et al. (2017a); Xiong, Peng, Peng et al. (2017b); Jiang, Ma and Wei (2018); 
Chatterjee, Roy, Das et al. (2018)]. 
Because the second type of authentication protocols have many advantages, in recent years, 
many researchers have been working on it and have proposed many protocols that improve 
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performance and security [He, Zeadally, Kumar et al. (2016)]. However, there is a 
situation, in the second type of authentication protocol, that has not been considered. In the 
second type authentication protocol, there is no registration center involved in the 
authentication phase; therefore, no third party can verify the authentication of the mobile 
users accurately. When a mobile user registers at the registration center, he/she can 
authenticate with all mobile service providers who have registered at the registration center 
and free access to the resources provided by mobile service providers. The lake of this 
function prevents the deployment of the existed protocol in various real-time applications. 
Fig. 2 shows an environment that particular mobile users are authenticated with different 
level mobile service providers, which cannot be achieved by existing protocols. 
It remains a significant challenge to construct a hierarchical multi-server authentication 
protocol for mobile cloud computing with better efficiency and security to protect the 
authorized users’ rights for various practical mobile applications. 

 
Figure 2: Hierarchical authentication model 

1.1 Organization of the paper 
The remainder of this paper is sketched as follows. Section 2 discusses the related work. 
Section 3 describes our contribution. Section 4 describes preliminaries. In Section 5, we 
show the details of the proposed protocol. Section 6 gives out the formal security proof of 
the proposed protocol. Section 7 presents a comparison of our protocol with two superior 
protocols on security, computation, and communication. Section 8 concludes the paper. 

2 Related work 
When people realized that the single-server architecture is not efficient enough for practical 
use, research on multi-server architecture began. Li et al. [Li, Dai, Tian et al. (2009)] found 
that the protocols in single-server architecture cannot apply to multi-server architecture. 
Hence, they proposed a multi-server architecture authentication protocol using neural 
network. In recent years many improvements in the authentication protocol of multi-server 
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architecture have been made by researchers. However, these protocols transmit the user’s 
identity without protection; therefore, they cannot provide user anonymity. 
Yoon et al. [Yoon and Yoo (2013)] proposed a biometrics-based authentication protocol 
which can resist smart card stolen attack. He et al. [He and Wang (2015)] constructed the 
first truly three-factor authentication protocol for the multi-server environment. Odelu et 
al. [Odelu, Das and Goswami (2015)] proposed an improved protocol to solve the 
security problems in He et al. [He and Wang (2015)]. Chandrakar et al. [Chandrakar and 
Om (2017)] proposed a new security-enhanced three-factor protocol to get more security. 
Feng et al. [Feng, He, Zeadally et al. (2018)] proposed an enhanced protocol that can 
resist several attacks and have user anonymity. Amin et al. [Amin, Kumar, Biswas et al. 
(2018)] proposed a lightweight authentication protocol that has lower computational and 
communication costs. However, the previous protocols require that the registration center 
be always be online, which increases communication costs and complexity. 
To address the above problems, Choi et al. [Choi, Hwang, Lee et al. (2005)] proposed the 
first authentication protocol without the online registration center. Tseng et al. [Tseng, 
Huang, Tsai et al. (2016)] proposed a list-free ID-based authentication protocol using 
bilinear pairings for multi-server architecture. However, Tseng et al. [Tseng, Huang, Tsai et 
al. (2016)] did not provide credentials privacy and un-traceability for users. Odelu et al. 
[Odelu, Das, Kumari et al. (2017)] and He et al. [He, Zeadally, Kumar et al. (2016)] 
proposed new protocols that saved the computation and communication costs, and fixed the 
security problems. Xie et al. [Xie, Wong, Wang et al. (2017)] proposed an enhanced 
protocol. Afterward, Xiong et al. [Xiong, Peng, Peng et al. (2017a)] proposed an enhanced 
protocol for distributed mobile cloud and at the same time Xiong et al. [Xiong, Peng, Peng 
et al. (2017b)] proposed a new lightweight Anonymous Authentication Protocol. Jiang et al. 
[Jiang, Ma and Wei (2018)] performed a security analysis of Tsai et al. [Tsai and Lo (2015)] 
protocol and pointed out their defects. Chatterjee et al. [Chatterjee, Roy, Das et al. (2018)] 
proposed a biometric-based protocol using the chaotic map to enhance the security of 
multi-server architecture. These protocols did bring more security to the authentication, but 
cannot effectively control the user’s access rights. So registered users can have access to all 
registered service providers, which seems unreasonable in practical applications. 

3 Our contribution 
Our contributions in this paper are presented as follows. 
The proposed protocol embeds an authentication right parameter into the user’s private 
key to achieve hierarchical authentication functionality that is not implemented by other 
protocols. In the proposed protocol, at the authentication phase, the session key is 
established between the service provider and user without involving the RC. This process 
significantly reduces communication costs and makes the authentication process faster 
and more efficient. The proposed protocol can satisfy the security requirement of multi-
server architecture and is provably secure in the general security model. The proposed 
protocol reduces computing costs and communication costs by up to 42.6% and 54.2% 
compared to two top protocols. 
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4 Preliminaries 
In this section, we introduce the mathematical preliminaries of the proposed protocol. 
Let 𝔾𝔾1 and 𝔾𝔾2 be an additive cyclic group and a multiplicative cyclic group, both of them 
has a large prime order 𝑞𝑞. Let 𝑒̂𝑒:𝔾𝔾1 × 𝔾𝔾1 → 𝔾𝔾2 denote a bilinear map. Suppose 𝑃𝑃 is a 
generator of 𝔾𝔾1, 𝑔𝑔 is a generator of 𝔾𝔾2. A bilinear map 𝑒̂𝑒 has properties below. 
• Bi-linearity: For all 𝑃𝑃,𝑄𝑄 ∈ 𝔾𝔾1 and for all 𝑎𝑎, 𝑏𝑏 ∈ 𝑍𝑍𝑞𝑞∗, 𝑒̂𝑒(𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏) = 𝑒̂𝑒(𝑃𝑃,𝑄𝑄)𝑎𝑎𝑎𝑎. 
• Computability: There exists an algorithm that can successfully compute 𝑒̂𝑒(𝑃𝑃,𝑄𝑄) for all 
𝑃𝑃,𝑄𝑄 ∈ 𝔾𝔾1. 
• Non-degeneracy: There exists 𝑃𝑃,𝑄𝑄 ∈ 𝔾𝔾1 such that 𝑒̂𝑒(𝑃𝑃,𝑄𝑄) ≠ 1, where 1 is the identity 
element of 𝔾𝔾2. 
We list the hard problems that we used in the proposed protocol as follows. 
• Discrete Logarithm (DL) Problem: Given an element 𝑥𝑥 ∈ 𝔾𝔾2, it is hard to compute 
𝑎𝑎 ∈ 𝑍𝑍𝑞𝑞∗  such that 𝑥𝑥 = 𝑔𝑔𝑎𝑎. 
• Computational Diffie-Hellman (CDH) Problem: Given two elements 𝑔𝑔𝑎𝑎,𝑔𝑔𝑏𝑏 ∈ 𝔾𝔾2, it 
is hard to compute 𝑔𝑔𝑎𝑎⋅𝑏𝑏 ∈ 𝔾𝔾2, where 𝑎𝑎 and 𝑏𝑏 are unknown and randomly choose from 𝑍𝑍𝑞𝑞∗. 
• Modified Bilinear Inverse Diffie-Hellman with 𝑘𝑘  value (k-mBIDH) Problem: 
Given 𝑘𝑘  elements {𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑘𝑘}�𝛼𝛼𝑖𝑖 ∈ 𝑍𝑍𝑞𝑞∗�  and 𝑘𝑘 + 2  elements �𝜏𝜏 ⋅ 𝑃𝑃, 𝜂𝜂 ⋅ 𝑃𝑃, 1

𝜏𝜏+𝛼𝛼1
⋅

𝑃𝑃, 1
𝜏𝜏+𝛼𝛼2

⋅ 𝑃𝑃, … , 1
𝜏𝜏+𝛼𝛼𝑘𝑘

⋅ 𝑃𝑃� each of them is in 𝔾𝔾1, it is hard to compute 𝑒̂𝑒(𝑃𝑃,𝑃𝑃)
𝜂𝜂

𝜏𝜏+𝛼𝛼, where 
𝛼𝛼 ∉ {𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑘𝑘}, 𝜏𝜏 and 𝜂𝜂 are two unknown elements in 𝑍𝑍𝑞𝑞∗. 

5 The proposed protocol 
5.1 Registration center initialization phase 
The registration center 𝑅𝑅𝑅𝑅  runs the generation function 𝐺𝐺𝐺𝐺𝐺𝐺(1𝑛𝑛) which takes security 
parameter 𝑛𝑛 ∈ 𝑍𝑍+ as input and outputs parameters as follows. 
•  Step 1: 𝑅𝑅𝑅𝑅  chooses the bilinear map groups 𝔾𝔾1  and 𝔾𝔾2  with a prime order 𝑞𝑞 , the 
generator 𝑃𝑃 ∈ 𝔾𝔾1 and 𝑔𝑔 = 𝑒̂𝑒(𝑃𝑃,𝑃𝑃) ∈ 𝔾𝔾2, where 𝑒̂𝑒:𝔾𝔾1 × 𝔾𝔾1 → 𝔾𝔾2 is a bilinear map. 
•  Step 2: 𝑅𝑅𝑅𝑅  chooses cryptographic hash functions 𝐻𝐻1: {0,1}∗ → 𝑍𝑍𝑞𝑞∗ , 𝐻𝐻2:𝔾𝔾2 → 𝑍𝑍𝑞𝑞∗ , 
𝐻𝐻3: {0,1}∗ → 𝔾𝔾1, 𝐻𝐻4: {0,1}∗ → {0,1}𝑛𝑛. 
•  Step 3: 𝑅𝑅𝑅𝑅  chooses a random number 𝑠𝑠  from 𝑍𝑍𝑞𝑞∗  as master key, computes the 
corresponding public key 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑠𝑠𝑠𝑠 ∈ 𝔾𝔾1  and selects a set of authentication right 
parameters {𝜑𝜑1,𝜑𝜑2,⋯ ,𝜑𝜑𝑛𝑛}, each parameter 𝜑𝜑𝑖𝑖 represents the authentication right level. 
• Step 4: 𝑅𝑅𝑅𝑅 publishes �𝔾𝔾1,𝔾𝔾2, 𝑞𝑞, 𝑒̂𝑒,𝑃𝑃,𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑔𝑔,𝐻𝐻1,𝐻𝐻2,𝐻𝐻3,𝐻𝐻4�. 

5.2 Mobile user registration phase 
If a mobile user 𝑈𝑈𝑖𝑖 wants to register at the registration center 𝑅𝑅𝑅𝑅, the following steps are 
executed. The main steps are provided in Tab. 1. 
•  Step 1: 𝑈𝑈𝑖𝑖 sends his/her identity 𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 to 𝑅𝑅𝑅𝑅 via a secure channel. 
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•  Step 2: 𝑅𝑅𝑅𝑅  selects the authentication right parameter 𝜑𝜑𝑖𝑖  according to mobile user’s 
level, and computes the 𝑈𝑈𝑖𝑖’s private key 𝑑𝑑𝑈𝑈𝑖𝑖 = 1

𝑠𝑠+𝐻𝐻1(𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖∥𝑒𝑒∥𝜑𝜑𝑖𝑖)
⋅ 𝑃𝑃, where 𝑒𝑒 is the expire 

date of the private key. 𝑅𝑅𝑅𝑅 sends 𝑑𝑑𝑈𝑈𝑖𝑖 to 𝑈𝑈𝑖𝑖 via a secure channel. 
•  Step 3: 𝑈𝑈𝑖𝑖  computes (𝜎𝜎𝑖𝑖 ,𝜃𝜃𝑖𝑖) ← 𝑓𝑓(𝑏𝑏𝑖𝑖) using fuzzy-extractor generation procedure 𝑓𝑓(⋅) 
[Dodis, Reyzin and Smith (2004)], where 𝜎𝜎𝑖𝑖 is a biometric key, 𝜃𝜃𝑖𝑖 is public reproduction 
parameter and 𝑏𝑏𝑖𝑖  is his/her personal biometrics. 𝑈𝑈𝑖𝑖  computes 𝐴𝐴 = 𝑑𝑑𝑈𝑈𝑖𝑖 ⊕ 𝐻𝐻3(𝑝𝑝𝑝𝑝 ∥ 𝜎𝜎𝑖𝑖) 
and 𝐵𝐵 = 𝐻𝐻4�𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ 𝑝𝑝𝑝𝑝 ∥ 𝜎𝜎𝑖𝑖� , where 𝑝𝑝𝑝𝑝  is his/her password. Finally, 𝑈𝑈𝑖𝑖  stores 
{𝜃𝜃𝑖𝑖,𝐴𝐴,𝐵𝐵, 𝑒𝑒,𝑓𝑓(⋅),𝑓𝑓−1(⋅), 𝑡𝑡,𝐻𝐻1,𝐻𝐻2,𝐻𝐻3,𝐻𝐻4} on its mobile device, where 𝑡𝑡 is the threshold in 
fuzzy extractor, 𝑓𝑓(⋅) is the probabilistic generation procedure for outputting 𝜎𝜎𝑖𝑖  and 𝜃𝜃𝑖𝑖 , 
𝑓𝑓−1(⋅) is the deterministic reproduction procedure that can recover 𝜎𝜎𝑖𝑖 and 𝜃𝜃𝑖𝑖 from a new 
personal biometrics input. 

Table 1: Mobile user registration phase 

Mobile user 𝑈𝑈𝑖𝑖 Registration center 𝑅𝑅𝑅𝑅 

𝐼𝐼𝐼𝐼𝑈𝑈𝑖𝑖 →  

 Compute 𝑑𝑑𝑈𝑈𝑖𝑖 = 1
𝑠𝑠+𝐻𝐻1(𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖∥𝑒𝑒∥ 𝜑𝜑𝑖𝑖)

⋅ 𝑃𝑃 

 ← 𝑑𝑑𝑈𝑈𝑖𝑖  

computes (𝜎𝜎𝑖𝑖 ,𝜃𝜃𝑖𝑖) ← 𝑓𝑓(𝑏𝑏𝑖𝑖)  

𝐴𝐴 = 𝑑𝑑𝑈𝑈𝑖𝑖 ⊕ 𝐻𝐻3(𝑝𝑝𝑝𝑝 ∥ 𝜎𝜎𝑖𝑖),  

𝐵𝐵 = 𝐻𝐻4(𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ 𝑝𝑝𝑝𝑝 ∥ 𝜎𝜎𝑖𝑖)  

Stores {𝜃𝜃𝑖𝑖 ,𝐴𝐴,𝐵𝐵, 𝑒𝑒, 𝑓𝑓(⋅), 𝑓𝑓−1(⋅), 𝑡𝑡,𝐻𝐻1,𝐻𝐻2,𝐻𝐻3,𝐻𝐻4}  

5.3 Mobile service provider registration phase 
If a mobile service provider 𝑆𝑆𝑗𝑗  wants to register at the 𝑅𝑅𝑅𝑅 , the following steps are 
executed. The main steps are provided in Tab. 2. 
•  Step 1: 𝑆𝑆𝑗𝑗 sends his/her identity 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗 to 𝑅𝑅𝑅𝑅 via a secure channel. 

•  Step 2: 𝑅𝑅𝑅𝑅 computes the private key 𝑑𝑑𝑆𝑆𝑗𝑗 = 1
𝑠𝑠+𝐻𝐻1(𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗)

⋅ 𝑃𝑃 for 𝑆𝑆𝑗𝑗  and sends 𝑑𝑑𝑆𝑆𝑗𝑗  to him 

via a secure channel. 
•  Step 3: Finally, 𝑆𝑆𝑗𝑗 saves 𝑑𝑑𝑆𝑆𝑗𝑗. 

Table 2: Mobile service provider registration phase 
Mobile service provider 𝑆𝑆𝑗𝑗 Registration center 𝑅𝑅𝑅𝑅 

𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗 →  

 Computes private key 𝑑𝑑𝑆𝑆𝑗𝑗 = 1
𝑠𝑠+𝐻𝐻1(𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗)

⋅ 𝑃𝑃 

 ← 𝑑𝑑𝑆𝑆𝑗𝑗  

Stores 𝑑𝑑𝑆𝑆𝑗𝑗  
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5.4 Mobile user and mobile service provider authentication phase 
In this part, we will show the mutual authentication between a mobile user and a mobile 
service provider without involving the 𝑅𝑅𝑅𝑅. The main steps are provided in Tab. 3. 
•  Step 1: 𝑈𝑈𝑖𝑖 first inputs his/her biometrics 𝑏𝑏𝑖𝑖, identity 𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 and password 𝑝𝑝𝑤𝑤 to mobile 
device. Mobile device computes 𝜎𝜎𝑖𝑖 = 𝑓𝑓−1(𝜃𝜃𝑖𝑖,𝑏𝑏𝑖𝑖)  and 𝐵𝐵∗ = 𝐻𝐻4(𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ 𝑝𝑝𝑝𝑝 ∥ 𝜎𝜎𝑖𝑖) , and 

verifies the validity of inputted biometrics and password by computing 𝐵𝐵∗ =? 𝐵𝐵 . If it 
holds, mobile device retrieves 𝑈𝑈𝑖𝑖’s private key by computing 𝑑𝑑𝑈𝑈𝑖𝑖 = 𝐴𝐴⊕𝐻𝐻3(𝑝𝑝𝑝𝑝 ∥ 𝜎𝜎𝑖𝑖). 
Then 𝑈𝑈𝑖𝑖  selects a random number 𝑟𝑟1 ← 𝑍𝑍𝑞𝑞∗ , computes 𝑔𝑔1 = 𝑔𝑔r1 , 𝐶𝐶 = 𝑟𝑟1 ⋅ (𝐻𝐻1(𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗)𝑃𝑃 +
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝) by using the identity of 𝑆𝑆𝑗𝑗. Next 𝑈𝑈𝑖𝑖 computes 𝐷𝐷 = 𝐻𝐻1(𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ e ∥ 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗 ∥ 𝑔𝑔1), 𝐸𝐸 =

(𝑟𝑟1 + 𝐷𝐷) ⋅ 𝑑𝑑𝑈𝑈𝑖𝑖  and 𝐹𝐹 = �𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ 𝑒𝑒 ∥ 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗� ⊕𝐻𝐻2(𝑔𝑔𝑟𝑟1) . Finally, 𝑈𝑈𝑖𝑖  sends login message 
𝐶𝐶,𝐸𝐸,𝐹𝐹 to 𝑆𝑆𝑗𝑗. 
•  Step 2: After receiving {𝐶𝐶,𝐸𝐸,𝐹𝐹}, 𝑆𝑆𝑗𝑗 retrieves 𝑔𝑔1 using his/her private key 𝑑𝑑𝑆𝑆𝑗𝑗 as 𝑔𝑔1 =
𝑔𝑔r1 = 𝑒̂𝑒�𝐶𝐶,𝑑𝑑𝑆𝑆𝑗𝑗� . 𝑆𝑆𝑗𝑗  retrieves 𝐷𝐷, 𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 , 𝑒𝑒, 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗  by computing 𝐹𝐹 ⊕𝐻𝐻2(𝑔𝑔1) . 𝑆𝑆𝑗𝑗  computes 

𝑒̂𝑒�𝐸𝐸,𝐻𝐻1�𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ 𝑒𝑒 ∥ 𝜑𝜑𝑖𝑖� ⋅ 𝑃𝑃 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝� =? 𝑔𝑔1 ⋅ 𝑔𝑔𝐷𝐷 . If both are equal, means 𝑈𝑈𝑖𝑖  can 
authenticate with 𝑆𝑆𝑗𝑗. Then 𝑆𝑆𝑗𝑗 selects a random number 𝑟𝑟2 ← 𝑍𝑍𝑞𝑞∗ and computes 𝑔𝑔2 = 𝑔𝑔r2, 
the session key is set as 𝑠𝑠𝑠𝑠 = 𝐻𝐻2�𝑔𝑔1

r2� = 𝐻𝐻2(𝑔𝑔r1𝑟𝑟2) . Finally, 𝑆𝑆𝑗𝑗  calculates 𝐺𝐺 =
𝐻𝐻4 �𝑠𝑠𝑠𝑠 ∥ 𝑔𝑔1 ∥ 𝑔𝑔2 ∥ 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗 ∥ 𝐶𝐶� and sends 𝑔𝑔2 and 𝐺𝐺 to 𝑈𝑈𝑖𝑖. 

•  Step 3: Upon receiving 𝑔𝑔2  and 𝐺𝐺 , 𝑈𝑈𝑖𝑖  computes 𝑠𝑠𝑠𝑠 = 𝐻𝐻2�𝑔𝑔2
𝑟𝑟1� = 𝐻𝐻2(𝑔𝑔r1𝑟𝑟2) , 𝐺𝐺∗ =

𝐻𝐻4�𝑠𝑠𝑠𝑠 ∥ 𝑔𝑔1 ∥ 𝑔𝑔2 ∥ 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗 ∥ 𝐶𝐶�  and checks whether 𝐺𝐺  and 𝐺𝐺∗  are equal. If both are not 
equal, 𝑈𝑈𝑖𝑖  aborts the session. Otherwise, 𝑈𝑈𝑖𝑖  confirms 𝑆𝑆𝑗𝑗  as a valid service provider and 
sets 𝑠𝑠𝑠𝑠 as the session key between 𝑈𝑈𝑖𝑖 and 𝑆𝑆𝑗𝑗. 

Table 3: Mobile user and mobile service provider authentication phase 

Mobile user 𝑈𝑈𝑖𝑖 Mobile service provider 𝑆𝑆𝑗𝑗 

𝑟𝑟1 ← 𝑍𝑍𝑞𝑞∗ ,𝑔𝑔1 = 𝑔𝑔𝑟𝑟1  

𝐶𝐶 = 𝑟𝑟1 ⋅ �𝐻𝐻1 �𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗� ⋅ 𝑃𝑃 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝�  

𝐷𝐷 = 𝐻𝐻1�𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ 𝑒𝑒 ∥ 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗 ∥ 𝑔𝑔1�  

𝐸𝐸 = (𝑟𝑟1 + 𝐷𝐷) ⋅ 𝑑𝑑𝑈𝑈𝑖𝑖   

𝐹𝐹 = �𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ 𝑒𝑒 ∥ 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗� ⊕ 𝐻𝐻2(𝑔𝑔1)  

𝐶𝐶,𝐸𝐸,𝐹𝐹 →  

 Retrieves 𝑔𝑔1 = 𝑔𝑔𝑟𝑟1 = 𝑒̂𝑒�𝐶𝐶,𝑑𝑑𝑆𝑆𝑗𝑗� 

 �𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ 𝑒𝑒 ∥ 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗� = 𝐹𝐹 ⊕𝐻𝐻2(𝑔𝑔1) 

 𝑒̂𝑒�𝐸𝐸,𝐻𝐻1�𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ 𝑒𝑒 ∥ 𝜑𝜑𝑖𝑖� ⋅ 𝑃𝑃 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝� =? 𝑔𝑔1 ⋅ 𝑔𝑔𝐷𝐷 

 Accept/reject 

 𝑟𝑟2 ← 𝑍𝑍𝑞𝑞∗ ,𝑔𝑔2 = 𝑔𝑔𝑟𝑟2 
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 𝑠𝑠𝑠𝑠 = 𝐻𝐻2�𝑔𝑔1
𝑟𝑟2� 

 𝐺𝐺 = 𝐻𝐻4�𝑠𝑠𝑠𝑠 ∥ 𝑔𝑔1 ∥ 𝑔𝑔2 ∥ 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗 ∥ 𝐶𝐶� 

 ← 𝐺𝐺,𝑔𝑔2 

Computes 𝑠𝑠𝑠𝑠 = 𝐻𝐻2�𝑔𝑔2
𝑟𝑟1�  

𝐺𝐺∗ = 𝐻𝐻4�𝑠𝑠𝑠𝑠 ∥ 𝑔𝑔1 ∥ 𝑔𝑔2 ∥ 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗 ∥ 𝐶𝐶�  

Checks 𝐺𝐺∗ =? 𝐺𝐺  

Accept/reject 𝑠𝑠𝑠𝑠  

6 Formal security analysis 
We present a security model for the proposed protocol based on previous security model 
[Canetti and Krawczyk (2001)]. In this model, an adversary can control the 
communications between different parties and knows all public parameters. 𝒜𝒜 can make 
queries to all hash functions. 
There are 𝑈𝑈𝑖𝑖  and 𝑆𝑆𝑗𝑗  at the authentication phase of our protocol. The security of the 
proposed protocol is defined by a game played between an adversary 𝒜𝒜 and a challenger 
𝒞𝒞. Let 𝛱𝛱𝛬𝛬𝑙𝑙  denote the 𝑙𝑙th instance of the participant of 𝛬𝛬 ∈ �𝑈𝑈𝑖𝑖 , 𝑆𝑆𝑗𝑗� respectively. In this 
game, 𝒜𝒜 can issue queries to 𝒞𝒞 and get answers from it as follows. 
• 𝐻𝐻𝑖𝑖�𝑞𝑞𝑗𝑗�: At any time 𝒜𝒜 issues query 𝑞𝑞𝑗𝑗 where 𝑞𝑞𝑗𝑗 can be any string, 𝒞𝒞 picks a random 
number 𝑟𝑟𝑗𝑗 ∈ 𝑍𝑍𝑞𝑞∗  and stores < 𝑞𝑞𝑗𝑗, 𝑟𝑟𝑗𝑗 >  into list ℋ𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , where 𝑖𝑖 ∈ {1,2,3,4}  and 𝑗𝑗 ∈
{𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑛𝑛)}. Finally, 𝒞𝒞 sends 𝑟𝑟𝑗𝑗 to 𝒜𝒜. 

• 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸�𝑈𝑈𝑖𝑖 , 𝑆𝑆𝑗𝑗�: This query simulates the passive attacks and allows 𝒜𝒜 to learn all 
transmitted messages between 𝑈𝑈𝑖𝑖 and 𝑆𝑆𝑗𝑗. 
• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆( ) : This query simulates active attacks. In this query 𝒜𝒜  can modify the 
transmitted messages between 𝑈𝑈𝑖𝑖 and 𝑆𝑆𝑗𝑗. The oracle returns the corresponding response 
to 𝒜𝒜. 
• 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸( ): This query allows 𝒜𝒜 to learn the session-specific ephemeral secrets 
held by the oracle, and the output should not have the long-term secret key of 𝑈𝑈𝑖𝑖 or 𝑆𝑆𝑗𝑗. 
• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆( ): This query allows 𝒜𝒜 to lean session key which created by oracle. 
• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶( ): This query shows the perfect forward secrecy of the session key on 
oracle; In this query, 𝒜𝒜 can obtain long-term private key of 𝑈𝑈𝑖𝑖 or 𝑆𝑆𝑗𝑗. 
• 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸( ): This query clears the session key of a completed session created by oracle. 
• 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇( ): This query returns a session key or a random string. 
After issuing the queries above, 𝒜𝒜 outputs 𝑏𝑏′, where 𝑏𝑏′ is about the coin 𝑏𝑏 produced in 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇( ) . 𝒜𝒜 violates the authentication key agreement (AKA) of the proposed protocol, 
if 𝒜𝒜 can guess 𝑏𝑏 correctly. If Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆] denotes the probability that 𝒜𝒜 violates the AKA 
of the proposed protocol, the advantage of 𝒜𝒜 violates the AKA of the proposed protocol 
becomes 𝐴𝐴𝐴𝐴𝐴𝐴(𝒜𝒜) = |2 Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆] − 1|. The proposed protocol is secure under random 
oracles if 𝐴𝐴𝐴𝐴𝐴𝐴(𝒜𝒜) < 𝜖𝜖, where 𝜖𝜖 is an extremely small number. 
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Let 𝒜𝒜  be a polynomial time adversary and he/she can make no more than 𝑞𝑞𝑠𝑠  Send 
queries, 𝑞𝑞𝑒𝑒  Excution queries, and 𝑞𝑞ℎ  Hash queries. We have the advantage of 𝒜𝒜  as 
follows. 

𝐴𝐴𝐴𝐴𝐴𝐴(𝒜𝒜) ≤ 𝑂𝑂(𝑞𝑞𝑠𝑠+𝑞𝑞𝑒𝑒)2

2𝑝𝑝
+ 𝑂𝑂�𝑞𝑞ℎ

2�
2𝑛𝑛

+ 𝑂𝑂(𝑞𝑞𝑠𝑠)
2𝑛𝑛+𝑝𝑝

+ 𝑂𝑂�𝑞𝑞ℎ ⋅ 𝐴𝐴𝐴𝐴𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡′)�           (1) 

where 𝑡𝑡′ = 𝑂𝑂�𝑡𝑡 + (𝑞𝑞𝑠𝑠 + 𝑞𝑞𝑒𝑒)𝑇𝑇exp� and 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒notes the group exponentiation operation in 
bilinear pairing groups. 
We define a sequence of games, starting with the real attack 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒0 to 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒4. For each 
game, we give an event 𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑖𝑖 denotes 𝒜𝒜 successfully guessed 𝑏𝑏 in the 𝑖𝑖𝑡𝑡ℎ instance of game. 
𝐆𝐆𝐆𝐆𝐆𝐆𝐞𝐞𝟎𝟎: This game shows the advantage that 𝒜𝒜 violates the real game of the proposed 
protocol. From the definition, we have, 
𝐴𝐴𝐴𝐴𝐴𝐴(𝒜𝒜) = |2 Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐0] − 1|               (2) 
𝐆𝐆𝐆𝐆𝐆𝐆𝐞𝐞𝟏𝟏: In this game, we simulate all the oracles for each query and keep lists to store 
the results of the oracles. 𝐿𝐿𝐻𝐻 stores the results from 𝐻𝐻𝑖𝑖. 𝐿𝐿𝒜𝒜 denotes 𝒜𝒜 queries the random 
oracles. 𝐿𝐿𝑇𝑇  denotes the transcript in this channel. 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒0  and 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒1  are 
indistinguishable. Therefore, we have, 
Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐1] = Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐0]                (3) 
𝐆𝐆𝐆𝐆𝐆𝐆𝐞𝐞𝟐𝟐 : In this game, we simulate all random oracles in 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒1 , but avoid some 
collisions in the transcripts and hashes which is queried by 𝒜𝒜. The 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒1 and 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒2 
are indistinguishable unless the collisions of the group points and hash value occurred. 
According to the birthday paradox, we have, 

|Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐2] − Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐1]| ≤ 𝑂𝑂�(𝑞𝑞𝑠𝑠+𝑞𝑞𝑒𝑒)2�
2𝑝𝑝

+ 𝑂𝑂�𝑞𝑞ℎ
2�

2𝑛𝑛
              (4) 

𝐆𝐆𝐆𝐆𝐆𝐆𝐞𝐞𝟑𝟑: In this game, we abort the process if 𝒜𝒜 has been successfully guessing the value 
without the help of random oracle. This only happens in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 queries. Therefore 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒2 
and 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒3  are perfectly indistinguishable unless 𝑈𝑈𝑖𝑖  rejects the response from 𝒜𝒜 . We 
get, 

|Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐3] − Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐2]| ≤ 𝑂𝑂(𝑞𝑞𝑠𝑠)
2𝑛𝑛+𝑝𝑝

               (5) 

Game4: In this game, we consider the session-key security. The purpose of this game is 
that 𝒜𝒜  cannot obtain past session keys even if the secret information of 𝑈𝑈𝑖𝑖  and 𝑆𝑆𝑗𝑗  is 
leaked. The session key is computed as 𝐻𝐻4(𝑔𝑔𝑟𝑟1⋅𝑟𝑟2). The advantage that 𝒜𝒜 guesses session 
key correctly is equals to 𝒞𝒞 break the CDH problem. Therefore 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒3 and 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒4  is 
indistinguishable if the CDH problem holds. So, we have 
| Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐4]− Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐3] | ≤ 𝑂𝑂�𝑞𝑞ℎ ⋅ 𝐴𝐴𝐴𝐴𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡′)�.            (6) 
In 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒4, all of the random oracles are simulated. The advantage of 𝒜𝒜 guess 𝑏𝑏 correctly 
is listed as follows. 

Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐4] = 1
2
                 (7) 

Therefore, we get the equation as follows: 
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|Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐4] − Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐1]| ≤ |Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐4] − Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐3]| + |Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐3] − Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐1]| ≤
|Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐4] − Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐3]| + |Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐3] − Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐2]| + |Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐2]− Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐1]|       (8) 

|Pr [𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐1] − 1/2| ≤ 𝑂𝑂(𝑞𝑞𝑠𝑠+𝑞𝑞𝑒𝑒)2

2𝑝𝑝
+ 𝑂𝑂�𝑞𝑞ℎ

2�
2𝑛𝑛

+ 𝑂𝑂(𝑞𝑞𝑠𝑠)
2𝑛𝑛+𝑝𝑝

+ 𝑂𝑂�𝑞𝑞ℎ ⋅ 𝐴𝐴𝐴𝐴𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡′)�          (9) 

Finally, we get equation 𝐴𝐴𝐴𝐴𝐴𝐴(𝒜𝒜) ≤ 𝑂𝑂(𝑞𝑞𝑠𝑠+𝑞𝑞𝑒𝑒)2

2𝑝𝑝
+ 𝑂𝑂�𝑞𝑞ℎ

2�
2𝑛𝑛

+ 𝑂𝑂(𝑞𝑞𝑠𝑠)
2𝑛𝑛+𝑝𝑝

+ 𝑂𝑂�𝑞𝑞ℎ ⋅ 𝐴𝐴𝐴𝐴𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡′)�. 

6.1 Security experiment 
We show the formal security analysis above, which can prove the theoretical security of 
the proposed protocol. In this part, we demonstrate that the proposed protocol passes 
security verification. 
For formal security verification, we use the broadly accepted ProVerif tool that can 
explore the complete state space of security protocols. ProVerif uses the Dev-Yao model 
as the base model to simulate attacks on security protocols [Roy, Das, Chatterjee et al. 
(2019)]. First, we declare parameters, constants, open channels, functions, etc., which 
used in the proposed protocol. Second, we create two separate subprocesses to simulate 
the authentication process of the mobile user and the mobile service provider. Third, we 
set attackers that attack the proposed protocol. Finally, we execute the simulation by 
running ProVerif in our experiment environment. We show the result as follows. 
1) RESULT not attacker(r1[]) is true. 
2) RESULT not attacker(r2[]) is true. 
3) RESULT not attacker(dSj[]) is true. 
4) RESULT not attacker(dUi[]) is true. 
5) RESULT event(evUserEndAuth(x)) ==> event(evUserEndParamGen(x)) is true. 
6) RESULT inj-event(evUserEndAuth(x_21)) ==> event(evServerEndAuth(x_21)) is true. 
7) RESULT inj-event(evServerEndAuth(x_22)) ==> event(evUserEndParamGen(x_22)) 
is true. 
The above result shows that the adversary cannot get security parameters r1, r2, dUi , dSj, 
and he/she cannot pass the authentication verification. Therefore, the proposed protocol 
passes the security verification. 

6.2 Security requirements comparison 
In this part, we compare security requirements between the proposed protocol and other 
protocols in Tab. 4. For simplicity, we denote SR-1 to SR-11 as security requirements 
described in Tab. 4. 

 
 
 
 
 



 
 
 
Efficient Hierarchical Multi-Server Authentication Protocol                                307 

Table 4: Security requirements 
Notation Functionality Odelu et al. He et al. Ours 

SR-1 Single Registration Yes Yes Yes 

SR-2 Mutual Authentication Yes Yes Yes 

SR-3 User Anonymity Yes Yes Yes 

SR-4 Un-traceability Yes Yes Yes 

SR-5 Session Key Agreement Yes Yes Yes 

SR-6 Perfect Forward Secrecy Yes Yes Yes 

SR-7 Stolen Device Attack Yes Yes Yes 

SR-8 No Verifier Table Yes Yes Yes 

SR-9 No Online Registration Center Yes Yes Yes 

SR-10 The Resistance of Various Attacks Yes Yes Yes 

SR-11 Hierarchical Authentication No No Yes 

According to Tab. 4, both He et al. and Odelu et al.’s protocol cannot provide 
hierarchical authentication for limiting user access to service providers. In contrast, the 
proposed protocol can satisfy all eleven security requirements. 

7 Performance comparison 
In this part, we show the computation and communication costs of the proposed protocol. 
We will also compare its performance with other protocol. For the purpose of getting a 
trusted security level (1024-bit RSA algorithm), an Ate pairing: 𝑒̂𝑒:𝔾𝔾1 × 𝔾𝔾1 → 𝔾𝔾2 is used. 
𝔾𝔾1 with order 𝑞𝑞 is generated by a point on a super-singular elliptic curve 𝐸𝐸�𝐹𝐹𝑝𝑝�:𝑦𝑦2 =
𝑥𝑥3 + 1 which is defined on the finite field 𝐹𝐹𝑝𝑝. Order 𝑞𝑞 is a 160-bit prime number and 𝑝𝑝 is 
a 512-bit prime number. 

7.1 Computation cost comparison 
We give the running time of various operations performed in the proposed protocol, and 
we compare the results with He and Odelu. In this section, we use the following notations 
for the following running times in this paper: 
• 𝑇𝑇𝑏𝑏𝑏𝑏: The running time of a bilinear pairing operation. 
• 𝑇𝑇𝑠𝑠𝑠𝑠: The running time of a scalar multiplication operation in 𝔾𝔾1. 
• 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚: The running time of a map-to-point hash function in 𝔾𝔾1. 
• 𝑇𝑇𝑝𝑝𝑝𝑝: The running time of a point addition operation in 𝔾𝔾1. 
• 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒: The running time of an exponentiation operation in 𝔾𝔾2. 
• 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚: The running time of a multiplication operation in 𝔾𝔾2. 
• 𝑇𝑇ℎ: The running time of a general hash operation. 
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The above operations are implemented with MIRACL library on a Samsung Galaxy S5 
with Quad-core 2.45 GHz processor, 2-gigabyte memory running in Android 4.4.2, and a 
personal computer with I5-4460S 2.9 GHz processor, 4-gigabyte memory running in 
Windows 8. The running time of those operations is listed in Tab. 6. 

Table 6: The running time of related operations (Millisecond) 

 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑏𝑏𝑏𝑏 𝑇𝑇𝑠𝑠𝑠𝑠 𝑇𝑇𝑝𝑝𝑝𝑝 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇ℎ 

User 33.582 32.713 13.405 0.081 2.249 0.008 0.056 

Server 5.493 5.427 2.165 0.013 0.339 0.001 0.007 

Based on the running time of the user and the service provider, we compare the 
computation costs of the proposed protocol with He and Odelu, the result described in 
Tab. 7 and Fig. 3. 

 
Figure 3: Computation cost comparison 

Table 7: The running time of related operations (millisecond) 

 Odelu et al. He et al. Ours 

User 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 4𝑇𝑇ℎ + 3𝑇𝑇𝑠𝑠𝑠𝑠 +
2𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 = 78.519  

2𝑇𝑇𝑠𝑠𝑠𝑠 + 𝑇𝑇𝑝𝑝𝑝𝑝 + 2𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 +
8𝑇𝑇ℎ = 31.837  

3𝑇𝑇𝑠𝑠𝑠𝑠 + 2𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑇𝑇𝑝𝑝𝑝𝑝 + 4𝑇𝑇ℎ =
45.242  

Server 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 4𝑇𝑇ℎ + 4𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 +
𝑇𝑇𝑠𝑠𝑠𝑠 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 2𝑇𝑇𝑏𝑏𝑏𝑏 =
19.897  

𝑇𝑇𝑏𝑏𝑏𝑏 + 4𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 + 2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 +
5𝑇𝑇ℎ = 6.82  

2𝑇𝑇𝑏𝑏𝑏𝑏 + 4𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑇𝑇𝑠𝑠𝑠𝑠 + 𝑇𝑇𝑝𝑝𝑝𝑝 +
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 6𝑇𝑇ℎ = 14.44  

7.2 Communication cost comparison 
According to the description of the trusted security level, 𝑞𝑞 is a 160-bits prime number 
and 𝑝𝑝 is a 512-bits prime number. The size of an element in 𝔾𝔾1,𝔾𝔾2 is 1024 bits. The size 
of the hash function’s output is 160 bits, identity parameter and expire parameter are both 
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32 bits. In our protocol, on the mobile user side, message 𝐶𝐶,𝐸𝐸,𝐹𝐹  requires 
320+320+96=736; on the mobile service provider side, message 𝐺𝐺,𝑔𝑔2  requires 
160+512=672. The total communication cost is 1408 bits. The communication round 
comparison shows in Fig. 4. and communication cost comparison shows in Fig. 5. 

 
Figure 4: Communication round comparison 

 
Figure 5: Communication cost comparison 

8 Conclusion 
In the past few years, many authentication protocols for mobile cloud computing have been 
proposed. However, they cannot provide hierarchical authentication functionality. This 
paper shows a novel authentication protocol with reasonable computation and 
communication costs and has implemented hierarchical authentication functionality, which 
restricts mobile user access to mobile service provider. The security proof has demonstrated 
that our protocol is provably secure. The computation and communication costs show the 
proposed protocol is suitable for the application of mobile cloud computing. 
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