

Computers, Materials & Continua CMC, vol.64, no.1, pp.297-312, 2020

CMC. doi:10.32604/cmc.2020.09758 www.techscience.com/journal/cmc

Efficient Hierarchical Multi-Server Authentication Protocol for
Mobile Cloud Computing

Jiangheng Kou1, Mingxing He1, *, Ling Xiong1, Zihang Ge2 and Guangmin Xie1

Abstract: With the development of communication technologies, various mobile devices
and different types of mobile services became available. The emergence of these services
has brought great convenience to our lives. The multi-server architecture authentication
protocols for mobile cloud computing were proposed to ensure the security and
availability between mobile devices and mobile services. However, most of the protocols
did not consider the case of hierarchical authentication. In the existing protocol, when a
mobile user once registered at the registration center, he/she can successfully authenticate
with all mobile service providers that are registered at the registration center, but real
application scenarios are not like this. For some specific scenarios, some mobile service
providers want to provide service only for particular users. For this reason, we propose a
new hierarchical multi-server authentication protocol for mobile cloud computing. The
proposed protocol ensures only particular types of users can successfully authenticate
with certain types of mobile service providers. The proposed protocol reduces computing
and communication costs by up to 42.6% and 54.2% compared to two superior protocols.
The proposed protocol can also resist the attacks known so far.

Keywords: Multi-server authentication, cryptography, hierarchical authentication,
mobile cloud computing.

1 Introduction
With the development of mobile technology and communication technology, a variety of
mobile devices appear in our lives like laptops, tablets, mobile phones, etc. According to
a recent report from Pew Research Center [Silver (2019)], it is estimated that more than 5
billion people have mobile devices and over half of these connections are smartphones.
People in advanced economies are more likely to have mobile phones in particular.
China, a country with a huge population in the world, has about 900 million mobile users,
which brings a huge opportunity for the development of mobile cloud computing. With
the increase of mobile users, a variety of mobile cloud services appear in our lives, such
as mobile banking, mobile online shopping, mobile online game, and mobile TV, which

1 School of Computer and Software Engineering, Xihua University, Chengdu, 610039, China.
2 Illinois Institute of Technology, Miles (Main) Campus, Chicago, 60616, USA.
* Corresponding Author: Mingxing He. Email: he_mingxing64@aliyun.com.
Received: 17 January 2020; Accepted: 04 March 2020.

298 CMC, vol.64, no.1, pp.297-312, 2020

all can be accessed from anywhere at any time. The revolution in wireless
communication and mobile technology brings great benefits to mobile users.
The traditional single-server architecture for mobile cloud computing was proposed
[Lamport (2019); Shen, Tan, Wang et al. (2015); Li, Dai, Tian et al. (2009)] to allow users
to use the services remotely. However, due to the increasing number of mobile users and
mobile service providers, traditional single-server architecture becomes inefficient [He,
Zeadally, Kumar et al. (2016)] because of the limitation of computation and
communication capabilities. For changing this situation, researchers introduced the multi-
server architecture for mobile cloud computing. A multi-server architecture for mobile
cloud computing is shown in Fig. 1.

Figure 1: Network model

With the development of multi-server architecture for mobile cloud computing, multi-
server architecture authentication protocol for mobile cloud computing has been widely
implemented. However, there exist some security issues which any adversary can easily
intercept, modify, replay, and delay the transmission of messages [Fang, Li, Yun et al.
(2019)]. Security is an important aspect of the authentication protocol for mobile cloud
computing, and a good protocol must give solutions to these security issues [Gopinath
and Bhuvaneswaran (2019); Jiang, Liu, Yang et al. (2019); Kou, Shi, Zhang et al.
(2019)]. The current authentication protocols can be divided into two types [Odelu, Das,
Kumari et al. (2017)]: (i) authentication protocol with online registration center [Yoon
and Yoo (2013); He and Wang (2015); Odelu, Das and Goswami (2015); Chandrakar and
Om (2017); Feng, He, Zeadally et al. (2018); Amin, Kumar, Biswas et al. (2018)], (ii)
authentication protocol without online registration center [Choi, Hwang, Lee et al.
(2005); Tsai and Lo (2015); Tseng, Huang, Tsai et al. (2016); Odelu, Das, Kumari et al.
(2017); He, Zeadally, Kumar et al. (2016); Xie, Wong, Wang et al. (2017); Xiong, Peng,
Peng et al. (2017a); Xiong, Peng, Peng et al. (2017b); Jiang, Ma and Wei (2018);
Chatterjee, Roy, Das et al. (2018)].
Because the second type of authentication protocols have many advantages, in recent years,
many researchers have been working on it and have proposed many protocols that improve

Efficient Hierarchical Multi-Server Authentication Protocol 299

performance and security [He, Zeadally, Kumar et al. (2016)]. However, there is a
situation, in the second type of authentication protocol, that has not been considered. In the
second type authentication protocol, there is no registration center involved in the
authentication phase; therefore, no third party can verify the authentication of the mobile
users accurately. When a mobile user registers at the registration center, he/she can
authenticate with all mobile service providers who have registered at the registration center
and free access to the resources provided by mobile service providers. The lake of this
function prevents the deployment of the existed protocol in various real-time applications.
Fig. 2 shows an environment that particular mobile users are authenticated with different
level mobile service providers, which cannot be achieved by existing protocols.
It remains a significant challenge to construct a hierarchical multi-server authentication
protocol for mobile cloud computing with better efficiency and security to protect the
authorized users’ rights for various practical mobile applications.

Figure 2: Hierarchical authentication model

1.1 Organization of the paper
The remainder of this paper is sketched as follows. Section 2 discusses the related work.
Section 3 describes our contribution. Section 4 describes preliminaries. In Section 5, we
show the details of the proposed protocol. Section 6 gives out the formal security proof of
the proposed protocol. Section 7 presents a comparison of our protocol with two superior
protocols on security, computation, and communication. Section 8 concludes the paper.

2 Related work
When people realized that the single-server architecture is not efficient enough for practical
use, research on multi-server architecture began. Li et al. [Li, Dai, Tian et al. (2009)] found
that the protocols in single-server architecture cannot apply to multi-server architecture.
Hence, they proposed a multi-server architecture authentication protocol using neural
network. In recent years many improvements in the authentication protocol of multi-server

300 CMC, vol.64, no.1, pp.297-312, 2020

architecture have been made by researchers. However, these protocols transmit the user’s
identity without protection; therefore, they cannot provide user anonymity.
Yoon et al. [Yoon and Yoo (2013)] proposed a biometrics-based authentication protocol
which can resist smart card stolen attack. He et al. [He and Wang (2015)] constructed the
first truly three-factor authentication protocol for the multi-server environment. Odelu et
al. [Odelu, Das and Goswami (2015)] proposed an improved protocol to solve the
security problems in He et al. [He and Wang (2015)]. Chandrakar et al. [Chandrakar and
Om (2017)] proposed a new security-enhanced three-factor protocol to get more security.
Feng et al. [Feng, He, Zeadally et al. (2018)] proposed an enhanced protocol that can
resist several attacks and have user anonymity. Amin et al. [Amin, Kumar, Biswas et al.
(2018)] proposed a lightweight authentication protocol that has lower computational and
communication costs. However, the previous protocols require that the registration center
be always be online, which increases communication costs and complexity.
To address the above problems, Choi et al. [Choi, Hwang, Lee et al. (2005)] proposed the
first authentication protocol without the online registration center. Tseng et al. [Tseng,
Huang, Tsai et al. (2016)] proposed a list-free ID-based authentication protocol using
bilinear pairings for multi-server architecture. However, Tseng et al. [Tseng, Huang, Tsai et
al. (2016)] did not provide credentials privacy and un-traceability for users. Odelu et al.
[Odelu, Das, Kumari et al. (2017)] and He et al. [He, Zeadally, Kumar et al. (2016)]
proposed new protocols that saved the computation and communication costs, and fixed the
security problems. Xie et al. [Xie, Wong, Wang et al. (2017)] proposed an enhanced
protocol. Afterward, Xiong et al. [Xiong, Peng, Peng et al. (2017a)] proposed an enhanced
protocol for distributed mobile cloud and at the same time Xiong et al. [Xiong, Peng, Peng
et al. (2017b)] proposed a new lightweight Anonymous Authentication Protocol. Jiang et al.
[Jiang, Ma and Wei (2018)] performed a security analysis of Tsai et al. [Tsai and Lo (2015)]
protocol and pointed out their defects. Chatterjee et al. [Chatterjee, Roy, Das et al. (2018)]
proposed a biometric-based protocol using the chaotic map to enhance the security of
multi-server architecture. These protocols did bring more security to the authentication, but
cannot effectively control the user’s access rights. So registered users can have access to all
registered service providers, which seems unreasonable in practical applications.

3 Our contribution
Our contributions in this paper are presented as follows.
The proposed protocol embeds an authentication right parameter into the user’s private
key to achieve hierarchical authentication functionality that is not implemented by other
protocols. In the proposed protocol, at the authentication phase, the session key is
established between the service provider and user without involving the RC. This process
significantly reduces communication costs and makes the authentication process faster
and more efficient. The proposed protocol can satisfy the security requirement of multi-
server architecture and is provably secure in the general security model. The proposed
protocol reduces computing costs and communication costs by up to 42.6% and 54.2%
compared to two top protocols.

Efficient Hierarchical Multi-Server Authentication Protocol 301

4 Preliminaries
In this section, we introduce the mathematical preliminaries of the proposed protocol.
Let 𝔾𝔾1 and 𝔾𝔾2 be an additive cyclic group and a multiplicative cyclic group, both of them
has a large prime order 𝑞𝑞. Let 𝑒̂𝑒:𝔾𝔾1 × 𝔾𝔾1 → 𝔾𝔾2 denote a bilinear map. Suppose 𝑃𝑃 is a
generator of 𝔾𝔾1, 𝑔𝑔 is a generator of 𝔾𝔾2. A bilinear map 𝑒̂𝑒 has properties below.
• Bi-linearity: For all 𝑃𝑃,𝑄𝑄 ∈ 𝔾𝔾1 and for all 𝑎𝑎, 𝑏𝑏 ∈ 𝑍𝑍𝑞𝑞∗, 𝑒̂𝑒(𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏) = 𝑒̂𝑒(𝑃𝑃,𝑄𝑄)𝑎𝑎𝑎𝑎.
• Computability: There exists an algorithm that can successfully compute 𝑒̂𝑒(𝑃𝑃,𝑄𝑄) for all
𝑃𝑃,𝑄𝑄 ∈ 𝔾𝔾1.
• Non-degeneracy: There exists 𝑃𝑃,𝑄𝑄 ∈ 𝔾𝔾1 such that 𝑒̂𝑒(𝑃𝑃,𝑄𝑄) ≠ 1, where 1 is the identity
element of 𝔾𝔾2.
We list the hard problems that we used in the proposed protocol as follows.
• Discrete Logarithm (DL) Problem: Given an element 𝑥𝑥 ∈ 𝔾𝔾2, it is hard to compute
𝑎𝑎 ∈ 𝑍𝑍𝑞𝑞∗ such that 𝑥𝑥 = 𝑔𝑔𝑎𝑎.
• Computational Diffie-Hellman (CDH) Problem: Given two elements 𝑔𝑔𝑎𝑎,𝑔𝑔𝑏𝑏 ∈ 𝔾𝔾2, it
is hard to compute 𝑔𝑔𝑎𝑎⋅𝑏𝑏 ∈ 𝔾𝔾2, where 𝑎𝑎 and 𝑏𝑏 are unknown and randomly choose from 𝑍𝑍𝑞𝑞∗.
• Modified Bilinear Inverse Diffie-Hellman with 𝑘𝑘 value (k-mBIDH) Problem:
Given 𝑘𝑘 elements {𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑘𝑘}�𝛼𝛼𝑖𝑖 ∈ 𝑍𝑍𝑞𝑞∗� and 𝑘𝑘 + 2 elements �𝜏𝜏 ⋅ 𝑃𝑃, 𝜂𝜂 ⋅ 𝑃𝑃, 1

𝜏𝜏+𝛼𝛼1
⋅

𝑃𝑃, 1
𝜏𝜏+𝛼𝛼2

⋅ 𝑃𝑃, … , 1
𝜏𝜏+𝛼𝛼𝑘𝑘

⋅ 𝑃𝑃� each of them is in 𝔾𝔾1, it is hard to compute 𝑒̂𝑒(𝑃𝑃,𝑃𝑃)
𝜂𝜂

𝜏𝜏+𝛼𝛼, where
𝛼𝛼 ∉ {𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑘𝑘}, 𝜏𝜏 and 𝜂𝜂 are two unknown elements in 𝑍𝑍𝑞𝑞∗.

5 The proposed protocol
5.1 Registration center initialization phase
The registration center 𝑅𝑅𝑅𝑅 runs the generation function 𝐺𝐺𝐺𝐺𝐺𝐺(1𝑛𝑛) which takes security
parameter 𝑛𝑛 ∈ 𝑍𝑍+ as input and outputs parameters as follows.
• Step 1: 𝑅𝑅𝑅𝑅 chooses the bilinear map groups 𝔾𝔾1 and 𝔾𝔾2 with a prime order 𝑞𝑞 , the
generator 𝑃𝑃 ∈ 𝔾𝔾1 and 𝑔𝑔 = 𝑒̂𝑒(𝑃𝑃,𝑃𝑃) ∈ 𝔾𝔾2, where 𝑒̂𝑒:𝔾𝔾1 × 𝔾𝔾1 → 𝔾𝔾2 is a bilinear map.
• Step 2: 𝑅𝑅𝑅𝑅 chooses cryptographic hash functions 𝐻𝐻1: {0,1}∗ → 𝑍𝑍𝑞𝑞∗ , 𝐻𝐻2:𝔾𝔾2 → 𝑍𝑍𝑞𝑞∗ ,
𝐻𝐻3: {0,1}∗ → 𝔾𝔾1, 𝐻𝐻4: {0,1}∗ → {0,1}𝑛𝑛.
• Step 3: 𝑅𝑅𝑅𝑅 chooses a random number 𝑠𝑠 from 𝑍𝑍𝑞𝑞∗ as master key, computes the
corresponding public key 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑠𝑠𝑠𝑠 ∈ 𝔾𝔾1 and selects a set of authentication right
parameters {𝜑𝜑1,𝜑𝜑2,⋯ ,𝜑𝜑𝑛𝑛}, each parameter 𝜑𝜑𝑖𝑖 represents the authentication right level.
• Step 4: 𝑅𝑅𝑅𝑅 publishes �𝔾𝔾1,𝔾𝔾2, 𝑞𝑞, 𝑒̂𝑒,𝑃𝑃,𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑔𝑔,𝐻𝐻1,𝐻𝐻2,𝐻𝐻3,𝐻𝐻4�.

5.2 Mobile user registration phase
If a mobile user 𝑈𝑈𝑖𝑖 wants to register at the registration center 𝑅𝑅𝑅𝑅, the following steps are
executed. The main steps are provided in Tab. 1.
• Step 1: 𝑈𝑈𝑖𝑖 sends his/her identity 𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 to 𝑅𝑅𝑅𝑅 via a secure channel.

302 CMC, vol.64, no.1, pp.297-312, 2020

• Step 2: 𝑅𝑅𝑅𝑅 selects the authentication right parameter 𝜑𝜑𝑖𝑖 according to mobile user’s
level, and computes the 𝑈𝑈𝑖𝑖’s private key 𝑑𝑑𝑈𝑈𝑖𝑖 = 1

𝑠𝑠+𝐻𝐻1(𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖∥𝑒𝑒∥𝜑𝜑𝑖𝑖)
⋅ 𝑃𝑃, where 𝑒𝑒 is the expire

date of the private key. 𝑅𝑅𝑅𝑅 sends 𝑑𝑑𝑈𝑈𝑖𝑖 to 𝑈𝑈𝑖𝑖 via a secure channel.
• Step 3: 𝑈𝑈𝑖𝑖 computes (𝜎𝜎𝑖𝑖 ,𝜃𝜃𝑖𝑖) ← 𝑓𝑓(𝑏𝑏𝑖𝑖) using fuzzy-extractor generation procedure 𝑓𝑓(⋅)
[Dodis, Reyzin and Smith (2004)], where 𝜎𝜎𝑖𝑖 is a biometric key, 𝜃𝜃𝑖𝑖 is public reproduction
parameter and 𝑏𝑏𝑖𝑖 is his/her personal biometrics. 𝑈𝑈𝑖𝑖 computes 𝐴𝐴 = 𝑑𝑑𝑈𝑈𝑖𝑖 ⊕ 𝐻𝐻3(𝑝𝑝𝑝𝑝 ∥ 𝜎𝜎𝑖𝑖)
and 𝐵𝐵 = 𝐻𝐻4�𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ 𝑝𝑝𝑝𝑝 ∥ 𝜎𝜎𝑖𝑖� , where 𝑝𝑝𝑝𝑝 is his/her password. Finally, 𝑈𝑈𝑖𝑖 stores
{𝜃𝜃𝑖𝑖,𝐴𝐴,𝐵𝐵, 𝑒𝑒,𝑓𝑓(⋅),𝑓𝑓−1(⋅), 𝑡𝑡,𝐻𝐻1,𝐻𝐻2,𝐻𝐻3,𝐻𝐻4} on its mobile device, where 𝑡𝑡 is the threshold in
fuzzy extractor, 𝑓𝑓(⋅) is the probabilistic generation procedure for outputting 𝜎𝜎𝑖𝑖 and 𝜃𝜃𝑖𝑖 ,
𝑓𝑓−1(⋅) is the deterministic reproduction procedure that can recover 𝜎𝜎𝑖𝑖 and 𝜃𝜃𝑖𝑖 from a new
personal biometrics input.

Table 1: Mobile user registration phase

Mobile user 𝑈𝑈𝑖𝑖 Registration center 𝑅𝑅𝑅𝑅

𝐼𝐼𝐼𝐼𝑈𝑈𝑖𝑖 →

 Compute 𝑑𝑑𝑈𝑈𝑖𝑖 = 1
𝑠𝑠+𝐻𝐻1(𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖∥𝑒𝑒∥ 𝜑𝜑𝑖𝑖)

⋅ 𝑃𝑃

 ← 𝑑𝑑𝑈𝑈𝑖𝑖

computes (𝜎𝜎𝑖𝑖 ,𝜃𝜃𝑖𝑖) ← 𝑓𝑓(𝑏𝑏𝑖𝑖)

𝐴𝐴 = 𝑑𝑑𝑈𝑈𝑖𝑖 ⊕ 𝐻𝐻3(𝑝𝑝𝑝𝑝 ∥ 𝜎𝜎𝑖𝑖),

𝐵𝐵 = 𝐻𝐻4(𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ 𝑝𝑝𝑝𝑝 ∥ 𝜎𝜎𝑖𝑖)

Stores {𝜃𝜃𝑖𝑖 ,𝐴𝐴,𝐵𝐵, 𝑒𝑒, 𝑓𝑓(⋅), 𝑓𝑓−1(⋅), 𝑡𝑡,𝐻𝐻1,𝐻𝐻2,𝐻𝐻3,𝐻𝐻4}

5.3 Mobile service provider registration phase
If a mobile service provider 𝑆𝑆𝑗𝑗 wants to register at the 𝑅𝑅𝑅𝑅 , the following steps are
executed. The main steps are provided in Tab. 2.
• Step 1: 𝑆𝑆𝑗𝑗 sends his/her identity 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗 to 𝑅𝑅𝑅𝑅 via a secure channel.

• Step 2: 𝑅𝑅𝑅𝑅 computes the private key 𝑑𝑑𝑆𝑆𝑗𝑗 = 1
𝑠𝑠+𝐻𝐻1(𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗)

⋅ 𝑃𝑃 for 𝑆𝑆𝑗𝑗 and sends 𝑑𝑑𝑆𝑆𝑗𝑗 to him

via a secure channel.
• Step 3: Finally, 𝑆𝑆𝑗𝑗 saves 𝑑𝑑𝑆𝑆𝑗𝑗.

Table 2: Mobile service provider registration phase
Mobile service provider 𝑆𝑆𝑗𝑗 Registration center 𝑅𝑅𝑅𝑅

𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗 →

 Computes private key 𝑑𝑑𝑆𝑆𝑗𝑗 = 1
𝑠𝑠+𝐻𝐻1(𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗)

⋅ 𝑃𝑃

 ← 𝑑𝑑𝑆𝑆𝑗𝑗

Stores 𝑑𝑑𝑆𝑆𝑗𝑗

Efficient Hierarchical Multi-Server Authentication Protocol 303

5.4 Mobile user and mobile service provider authentication phase
In this part, we will show the mutual authentication between a mobile user and a mobile
service provider without involving the 𝑅𝑅𝑅𝑅. The main steps are provided in Tab. 3.
• Step 1: 𝑈𝑈𝑖𝑖 first inputs his/her biometrics 𝑏𝑏𝑖𝑖, identity 𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 and password 𝑝𝑝𝑤𝑤 to mobile
device. Mobile device computes 𝜎𝜎𝑖𝑖 = 𝑓𝑓−1(𝜃𝜃𝑖𝑖,𝑏𝑏𝑖𝑖) and 𝐵𝐵∗ = 𝐻𝐻4(𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ 𝑝𝑝𝑝𝑝 ∥ 𝜎𝜎𝑖𝑖) , and

verifies the validity of inputted biometrics and password by computing 𝐵𝐵∗ =? 𝐵𝐵 . If it
holds, mobile device retrieves 𝑈𝑈𝑖𝑖’s private key by computing 𝑑𝑑𝑈𝑈𝑖𝑖 = 𝐴𝐴⊕𝐻𝐻3(𝑝𝑝𝑝𝑝 ∥ 𝜎𝜎𝑖𝑖).
Then 𝑈𝑈𝑖𝑖 selects a random number 𝑟𝑟1 ← 𝑍𝑍𝑞𝑞∗ , computes 𝑔𝑔1 = 𝑔𝑔r1 , 𝐶𝐶 = 𝑟𝑟1 ⋅ (𝐻𝐻1(𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗)𝑃𝑃 +
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝) by using the identity of 𝑆𝑆𝑗𝑗. Next 𝑈𝑈𝑖𝑖 computes 𝐷𝐷 = 𝐻𝐻1(𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ e ∥ 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗 ∥ 𝑔𝑔1), 𝐸𝐸 =

(𝑟𝑟1 + 𝐷𝐷) ⋅ 𝑑𝑑𝑈𝑈𝑖𝑖 and 𝐹𝐹 = �𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ 𝑒𝑒 ∥ 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗� ⊕𝐻𝐻2(𝑔𝑔𝑟𝑟1) . Finally, 𝑈𝑈𝑖𝑖 sends login message
𝐶𝐶,𝐸𝐸,𝐹𝐹 to 𝑆𝑆𝑗𝑗.
• Step 2: After receiving {𝐶𝐶,𝐸𝐸,𝐹𝐹}, 𝑆𝑆𝑗𝑗 retrieves 𝑔𝑔1 using his/her private key 𝑑𝑑𝑆𝑆𝑗𝑗 as 𝑔𝑔1 =
𝑔𝑔r1 = 𝑒̂𝑒�𝐶𝐶,𝑑𝑑𝑆𝑆𝑗𝑗� . 𝑆𝑆𝑗𝑗 retrieves 𝐷𝐷, 𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 , 𝑒𝑒, 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗 by computing 𝐹𝐹 ⊕𝐻𝐻2(𝑔𝑔1) . 𝑆𝑆𝑗𝑗 computes

𝑒̂𝑒�𝐸𝐸,𝐻𝐻1�𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ 𝑒𝑒 ∥ 𝜑𝜑𝑖𝑖� ⋅ 𝑃𝑃 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝� =? 𝑔𝑔1 ⋅ 𝑔𝑔𝐷𝐷 . If both are equal, means 𝑈𝑈𝑖𝑖 can
authenticate with 𝑆𝑆𝑗𝑗. Then 𝑆𝑆𝑗𝑗 selects a random number 𝑟𝑟2 ← 𝑍𝑍𝑞𝑞∗ and computes 𝑔𝑔2 = 𝑔𝑔r2,
the session key is set as 𝑠𝑠𝑠𝑠 = 𝐻𝐻2�𝑔𝑔1

r2� = 𝐻𝐻2(𝑔𝑔r1𝑟𝑟2) . Finally, 𝑆𝑆𝑗𝑗 calculates 𝐺𝐺 =
𝐻𝐻4 �𝑠𝑠𝑠𝑠 ∥ 𝑔𝑔1 ∥ 𝑔𝑔2 ∥ 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗 ∥ 𝐶𝐶� and sends 𝑔𝑔2 and 𝐺𝐺 to 𝑈𝑈𝑖𝑖.

• Step 3: Upon receiving 𝑔𝑔2 and 𝐺𝐺 , 𝑈𝑈𝑖𝑖 computes 𝑠𝑠𝑠𝑠 = 𝐻𝐻2�𝑔𝑔2
𝑟𝑟1� = 𝐻𝐻2(𝑔𝑔r1𝑟𝑟2) , 𝐺𝐺∗ =

𝐻𝐻4�𝑠𝑠𝑠𝑠 ∥ 𝑔𝑔1 ∥ 𝑔𝑔2 ∥ 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗 ∥ 𝐶𝐶� and checks whether 𝐺𝐺 and 𝐺𝐺∗ are equal. If both are not
equal, 𝑈𝑈𝑖𝑖 aborts the session. Otherwise, 𝑈𝑈𝑖𝑖 confirms 𝑆𝑆𝑗𝑗 as a valid service provider and
sets 𝑠𝑠𝑠𝑠 as the session key between 𝑈𝑈𝑖𝑖 and 𝑆𝑆𝑗𝑗.

Table 3: Mobile user and mobile service provider authentication phase

Mobile user 𝑈𝑈𝑖𝑖 Mobile service provider 𝑆𝑆𝑗𝑗

𝑟𝑟1 ← 𝑍𝑍𝑞𝑞∗ ,𝑔𝑔1 = 𝑔𝑔𝑟𝑟1

𝐶𝐶 = 𝑟𝑟1 ⋅ �𝐻𝐻1 �𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗� ⋅ 𝑃𝑃 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝�

𝐷𝐷 = 𝐻𝐻1�𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ 𝑒𝑒 ∥ 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗 ∥ 𝑔𝑔1�

𝐸𝐸 = (𝑟𝑟1 + 𝐷𝐷) ⋅ 𝑑𝑑𝑈𝑈𝑖𝑖

𝐹𝐹 = �𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ 𝑒𝑒 ∥ 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗� ⊕ 𝐻𝐻2(𝑔𝑔1)

𝐶𝐶,𝐸𝐸,𝐹𝐹 →

 Retrieves 𝑔𝑔1 = 𝑔𝑔𝑟𝑟1 = 𝑒̂𝑒�𝐶𝐶,𝑑𝑑𝑆𝑆𝑗𝑗�

 �𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ 𝑒𝑒 ∥ 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗� = 𝐹𝐹 ⊕𝐻𝐻2(𝑔𝑔1)

 𝑒̂𝑒�𝐸𝐸,𝐻𝐻1�𝐼𝐼𝐷𝐷𝑈𝑈𝑖𝑖 ∥ 𝑒𝑒 ∥ 𝜑𝜑𝑖𝑖� ⋅ 𝑃𝑃 + 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝� =? 𝑔𝑔1 ⋅ 𝑔𝑔𝐷𝐷

 Accept/reject

 𝑟𝑟2 ← 𝑍𝑍𝑞𝑞∗ ,𝑔𝑔2 = 𝑔𝑔𝑟𝑟2

304 CMC, vol.64, no.1, pp.297-312, 2020

 𝑠𝑠𝑠𝑠 = 𝐻𝐻2�𝑔𝑔1
𝑟𝑟2�

 𝐺𝐺 = 𝐻𝐻4�𝑠𝑠𝑠𝑠 ∥ 𝑔𝑔1 ∥ 𝑔𝑔2 ∥ 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗 ∥ 𝐶𝐶�

 ← 𝐺𝐺,𝑔𝑔2

Computes 𝑠𝑠𝑠𝑠 = 𝐻𝐻2�𝑔𝑔2
𝑟𝑟1�

𝐺𝐺∗ = 𝐻𝐻4�𝑠𝑠𝑠𝑠 ∥ 𝑔𝑔1 ∥ 𝑔𝑔2 ∥ 𝐼𝐼𝐷𝐷𝑆𝑆𝑗𝑗 ∥ 𝐶𝐶�

Checks 𝐺𝐺∗ =? 𝐺𝐺

Accept/reject 𝑠𝑠𝑠𝑠

6 Formal security analysis
We present a security model for the proposed protocol based on previous security model
[Canetti and Krawczyk (2001)]. In this model, an adversary can control the
communications between different parties and knows all public parameters. 𝒜𝒜 can make
queries to all hash functions.
There are 𝑈𝑈𝑖𝑖 and 𝑆𝑆𝑗𝑗 at the authentication phase of our protocol. The security of the
proposed protocol is defined by a game played between an adversary 𝒜𝒜 and a challenger
𝒞𝒞. Let 𝛱𝛱𝛬𝛬𝑙𝑙 denote the 𝑙𝑙th instance of the participant of 𝛬𝛬 ∈ �𝑈𝑈𝑖𝑖 , 𝑆𝑆𝑗𝑗� respectively. In this
game, 𝒜𝒜 can issue queries to 𝒞𝒞 and get answers from it as follows.
• 𝐻𝐻𝑖𝑖�𝑞𝑞𝑗𝑗�: At any time 𝒜𝒜 issues query 𝑞𝑞𝑗𝑗 where 𝑞𝑞𝑗𝑗 can be any string, 𝒞𝒞 picks a random
number 𝑟𝑟𝑗𝑗 ∈ 𝑍𝑍𝑞𝑞∗ and stores < 𝑞𝑞𝑗𝑗, 𝑟𝑟𝑗𝑗 > into list ℋ𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , where 𝑖𝑖 ∈ {1,2,3,4} and 𝑗𝑗 ∈
{𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑛𝑛)}. Finally, 𝒞𝒞 sends 𝑟𝑟𝑗𝑗 to 𝒜𝒜.

• 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸�𝑈𝑈𝑖𝑖 , 𝑆𝑆𝑗𝑗�: This query simulates the passive attacks and allows 𝒜𝒜 to learn all
transmitted messages between 𝑈𝑈𝑖𝑖 and 𝑆𝑆𝑗𝑗.
• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆() : This query simulates active attacks. In this query 𝒜𝒜 can modify the
transmitted messages between 𝑈𝑈𝑖𝑖 and 𝑆𝑆𝑗𝑗. The oracle returns the corresponding response
to 𝒜𝒜.
• 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(): This query allows 𝒜𝒜 to learn the session-specific ephemeral secrets
held by the oracle, and the output should not have the long-term secret key of 𝑈𝑈𝑖𝑖 or 𝑆𝑆𝑗𝑗.
• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(): This query allows 𝒜𝒜 to lean session key which created by oracle.
• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(): This query shows the perfect forward secrecy of the session key on
oracle; In this query, 𝒜𝒜 can obtain long-term private key of 𝑈𝑈𝑖𝑖 or 𝑆𝑆𝑗𝑗.
• 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(): This query clears the session key of a completed session created by oracle.
• 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(): This query returns a session key or a random string.
After issuing the queries above, 𝒜𝒜 outputs 𝑏𝑏′, where 𝑏𝑏′ is about the coin 𝑏𝑏 produced in
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇() . 𝒜𝒜 violates the authentication key agreement (AKA) of the proposed protocol,
if 𝒜𝒜 can guess 𝑏𝑏 correctly. If Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆] denotes the probability that 𝒜𝒜 violates the AKA
of the proposed protocol, the advantage of 𝒜𝒜 violates the AKA of the proposed protocol
becomes 𝐴𝐴𝐴𝐴𝐴𝐴(𝒜𝒜) = |2 Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆] − 1|. The proposed protocol is secure under random
oracles if 𝐴𝐴𝐴𝐴𝐴𝐴(𝒜𝒜) < 𝜖𝜖, where 𝜖𝜖 is an extremely small number.

Efficient Hierarchical Multi-Server Authentication Protocol 305

Let 𝒜𝒜 be a polynomial time adversary and he/she can make no more than 𝑞𝑞𝑠𝑠 Send
queries, 𝑞𝑞𝑒𝑒 Excution queries, and 𝑞𝑞ℎ Hash queries. We have the advantage of 𝒜𝒜 as
follows.

𝐴𝐴𝐴𝐴𝐴𝐴(𝒜𝒜) ≤ 𝑂𝑂(𝑞𝑞𝑠𝑠+𝑞𝑞𝑒𝑒)2

2𝑝𝑝
+ 𝑂𝑂�𝑞𝑞ℎ

2�
2𝑛𝑛

+ 𝑂𝑂(𝑞𝑞𝑠𝑠)
2𝑛𝑛+𝑝𝑝

+ 𝑂𝑂�𝑞𝑞ℎ ⋅ 𝐴𝐴𝐴𝐴𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡′)� (1)

where 𝑡𝑡′ = 𝑂𝑂�𝑡𝑡 + (𝑞𝑞𝑠𝑠 + 𝑞𝑞𝑒𝑒)𝑇𝑇exp� and 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒notes the group exponentiation operation in
bilinear pairing groups.
We define a sequence of games, starting with the real attack 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒0 to 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒4. For each
game, we give an event 𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑖𝑖 denotes 𝒜𝒜 successfully guessed 𝑏𝑏 in the 𝑖𝑖𝑡𝑡ℎ instance of game.
𝐆𝐆𝐆𝐆𝐆𝐆𝐞𝐞𝟎𝟎: This game shows the advantage that 𝒜𝒜 violates the real game of the proposed
protocol. From the definition, we have,
𝐴𝐴𝐴𝐴𝐴𝐴(𝒜𝒜) = |2 Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐0] − 1| (2)
𝐆𝐆𝐆𝐆𝐆𝐆𝐞𝐞𝟏𝟏: In this game, we simulate all the oracles for each query and keep lists to store
the results of the oracles. 𝐿𝐿𝐻𝐻 stores the results from 𝐻𝐻𝑖𝑖. 𝐿𝐿𝒜𝒜 denotes 𝒜𝒜 queries the random
oracles. 𝐿𝐿𝑇𝑇 denotes the transcript in this channel. 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒0 and 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒1 are
indistinguishable. Therefore, we have,
Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐1] = Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐0] (3)
𝐆𝐆𝐆𝐆𝐆𝐆𝐞𝐞𝟐𝟐 : In this game, we simulate all random oracles in 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒1 , but avoid some
collisions in the transcripts and hashes which is queried by 𝒜𝒜. The 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒1 and 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒2
are indistinguishable unless the collisions of the group points and hash value occurred.
According to the birthday paradox, we have,

|Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐2] − Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐1]| ≤ 𝑂𝑂�(𝑞𝑞𝑠𝑠+𝑞𝑞𝑒𝑒)2�
2𝑝𝑝

+ 𝑂𝑂�𝑞𝑞ℎ
2�

2𝑛𝑛
 (4)

𝐆𝐆𝐆𝐆𝐆𝐆𝐞𝐞𝟑𝟑: In this game, we abort the process if 𝒜𝒜 has been successfully guessing the value
without the help of random oracle. This only happens in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 queries. Therefore 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒2
and 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒3 are perfectly indistinguishable unless 𝑈𝑈𝑖𝑖 rejects the response from 𝒜𝒜 . We
get,

|Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐3] − Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐2]| ≤ 𝑂𝑂(𝑞𝑞𝑠𝑠)
2𝑛𝑛+𝑝𝑝

 (5)

Game4: In this game, we consider the session-key security. The purpose of this game is
that 𝒜𝒜 cannot obtain past session keys even if the secret information of 𝑈𝑈𝑖𝑖 and 𝑆𝑆𝑗𝑗 is
leaked. The session key is computed as 𝐻𝐻4(𝑔𝑔𝑟𝑟1⋅𝑟𝑟2). The advantage that 𝒜𝒜 guesses session
key correctly is equals to 𝒞𝒞 break the CDH problem. Therefore 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒3 and 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒4 is
indistinguishable if the CDH problem holds. So, we have
| Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐4]− Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐3] | ≤ 𝑂𝑂�𝑞𝑞ℎ ⋅ 𝐴𝐴𝐴𝐴𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡′)�. (6)
In 𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒4, all of the random oracles are simulated. The advantage of 𝒜𝒜 guess 𝑏𝑏 correctly
is listed as follows.

Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐4] = 1
2
 (7)

Therefore, we get the equation as follows:

306 CMC, vol.64, no.1, pp.297-312, 2020

|Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐4] − Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐1]| ≤ |Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐4] − Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐3]| + |Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐3] − Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐1]| ≤
|Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐4] − Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐3]| + |Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐3] − Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐2]| + |Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐2]− Pr[𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐1]| (8)

|Pr [𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐1] − 1/2| ≤ 𝑂𝑂(𝑞𝑞𝑠𝑠+𝑞𝑞𝑒𝑒)2

2𝑝𝑝
+ 𝑂𝑂�𝑞𝑞ℎ

2�
2𝑛𝑛

+ 𝑂𝑂(𝑞𝑞𝑠𝑠)
2𝑛𝑛+𝑝𝑝

+ 𝑂𝑂�𝑞𝑞ℎ ⋅ 𝐴𝐴𝐴𝐴𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡′)� (9)

Finally, we get equation 𝐴𝐴𝐴𝐴𝐴𝐴(𝒜𝒜) ≤ 𝑂𝑂(𝑞𝑞𝑠𝑠+𝑞𝑞𝑒𝑒)2

2𝑝𝑝
+ 𝑂𝑂�𝑞𝑞ℎ

2�
2𝑛𝑛

+ 𝑂𝑂(𝑞𝑞𝑠𝑠)
2𝑛𝑛+𝑝𝑝

+ 𝑂𝑂�𝑞𝑞ℎ ⋅ 𝐴𝐴𝐴𝐴𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡′)�.

6.1 Security experiment
We show the formal security analysis above, which can prove the theoretical security of
the proposed protocol. In this part, we demonstrate that the proposed protocol passes
security verification.
For formal security verification, we use the broadly accepted ProVerif tool that can
explore the complete state space of security protocols. ProVerif uses the Dev-Yao model
as the base model to simulate attacks on security protocols [Roy, Das, Chatterjee et al.
(2019)]. First, we declare parameters, constants, open channels, functions, etc., which
used in the proposed protocol. Second, we create two separate subprocesses to simulate
the authentication process of the mobile user and the mobile service provider. Third, we
set attackers that attack the proposed protocol. Finally, we execute the simulation by
running ProVerif in our experiment environment. We show the result as follows.
1) RESULT not attacker(r1[]) is true.
2) RESULT not attacker(r2[]) is true.
3) RESULT not attacker(dSj[]) is true.
4) RESULT not attacker(dUi[]) is true.
5) RESULT event(evUserEndAuth(x)) ==> event(evUserEndParamGen(x)) is true.
6) RESULT inj-event(evUserEndAuth(x_21)) ==> event(evServerEndAuth(x_21)) is true.
7) RESULT inj-event(evServerEndAuth(x_22)) ==> event(evUserEndParamGen(x_22))
is true.
The above result shows that the adversary cannot get security parameters r1, r2, dUi , dSj,
and he/she cannot pass the authentication verification. Therefore, the proposed protocol
passes the security verification.

6.2 Security requirements comparison
In this part, we compare security requirements between the proposed protocol and other
protocols in Tab. 4. For simplicity, we denote SR-1 to SR-11 as security requirements
described in Tab. 4.

Efficient Hierarchical Multi-Server Authentication Protocol 307

Table 4: Security requirements
Notation Functionality Odelu et al. He et al. Ours

SR-1 Single Registration Yes Yes Yes

SR-2 Mutual Authentication Yes Yes Yes

SR-3 User Anonymity Yes Yes Yes

SR-4 Un-traceability Yes Yes Yes

SR-5 Session Key Agreement Yes Yes Yes

SR-6 Perfect Forward Secrecy Yes Yes Yes

SR-7 Stolen Device Attack Yes Yes Yes

SR-8 No Verifier Table Yes Yes Yes

SR-9 No Online Registration Center Yes Yes Yes

SR-10 The Resistance of Various Attacks Yes Yes Yes

SR-11 Hierarchical Authentication No No Yes

According to Tab. 4, both He et al. and Odelu et al.’s protocol cannot provide
hierarchical authentication for limiting user access to service providers. In contrast, the
proposed protocol can satisfy all eleven security requirements.

7 Performance comparison
In this part, we show the computation and communication costs of the proposed protocol.
We will also compare its performance with other protocol. For the purpose of getting a
trusted security level (1024-bit RSA algorithm), an Ate pairing: 𝑒̂𝑒:𝔾𝔾1 × 𝔾𝔾1 → 𝔾𝔾2 is used.
𝔾𝔾1 with order 𝑞𝑞 is generated by a point on a super-singular elliptic curve 𝐸𝐸�𝐹𝐹𝑝𝑝�:𝑦𝑦2 =
𝑥𝑥3 + 1 which is defined on the finite field 𝐹𝐹𝑝𝑝. Order 𝑞𝑞 is a 160-bit prime number and 𝑝𝑝 is
a 512-bit prime number.

7.1 Computation cost comparison
We give the running time of various operations performed in the proposed protocol, and
we compare the results with He and Odelu. In this section, we use the following notations
for the following running times in this paper:
• 𝑇𝑇𝑏𝑏𝑏𝑏: The running time of a bilinear pairing operation.
• 𝑇𝑇𝑠𝑠𝑠𝑠: The running time of a scalar multiplication operation in 𝔾𝔾1.
• 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚: The running time of a map-to-point hash function in 𝔾𝔾1.
• 𝑇𝑇𝑝𝑝𝑝𝑝: The running time of a point addition operation in 𝔾𝔾1.
• 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒: The running time of an exponentiation operation in 𝔾𝔾2.
• 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚: The running time of a multiplication operation in 𝔾𝔾2.
• 𝑇𝑇ℎ: The running time of a general hash operation.

308 CMC, vol.64, no.1, pp.297-312, 2020

The above operations are implemented with MIRACL library on a Samsung Galaxy S5
with Quad-core 2.45 GHz processor, 2-gigabyte memory running in Android 4.4.2, and a
personal computer with I5-4460S 2.9 GHz processor, 4-gigabyte memory running in
Windows 8. The running time of those operations is listed in Tab. 6.

Table 6: The running time of related operations (Millisecond)

 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑏𝑏𝑏𝑏 𝑇𝑇𝑠𝑠𝑠𝑠 𝑇𝑇𝑝𝑝𝑝𝑝 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇ℎ

User 33.582 32.713 13.405 0.081 2.249 0.008 0.056

Server 5.493 5.427 2.165 0.013 0.339 0.001 0.007

Based on the running time of the user and the service provider, we compare the
computation costs of the proposed protocol with He and Odelu, the result described in
Tab. 7 and Fig. 3.

Figure 3: Computation cost comparison

Table 7: The running time of related operations (millisecond)

 Odelu et al. He et al. Ours

User
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 4𝑇𝑇ℎ + 3𝑇𝑇𝑠𝑠𝑠𝑠 +
2𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 = 78.519

2𝑇𝑇𝑠𝑠𝑠𝑠 + 𝑇𝑇𝑝𝑝𝑝𝑝 + 2𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 +
8𝑇𝑇ℎ = 31.837

3𝑇𝑇𝑠𝑠𝑠𝑠 + 2𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑇𝑇𝑝𝑝𝑝𝑝 + 4𝑇𝑇ℎ =
45.242

Server
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 4𝑇𝑇ℎ + 4𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 +
𝑇𝑇𝑠𝑠𝑠𝑠 + 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 2𝑇𝑇𝑏𝑏𝑏𝑏 =
19.897

𝑇𝑇𝑏𝑏𝑏𝑏 + 4𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 + 2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 +
5𝑇𝑇ℎ = 6.82

2𝑇𝑇𝑏𝑏𝑏𝑏 + 4𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑇𝑇𝑠𝑠𝑠𝑠 + 𝑇𝑇𝑝𝑝𝑝𝑝 +
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 6𝑇𝑇ℎ = 14.44

7.2 Communication cost comparison
According to the description of the trusted security level, 𝑞𝑞 is a 160-bits prime number
and 𝑝𝑝 is a 512-bits prime number. The size of an element in 𝔾𝔾1,𝔾𝔾2 is 1024 bits. The size
of the hash function’s output is 160 bits, identity parameter and expire parameter are both

Efficient Hierarchical Multi-Server Authentication Protocol 309

32 bits. In our protocol, on the mobile user side, message 𝐶𝐶,𝐸𝐸,𝐹𝐹 requires
320+320+96=736; on the mobile service provider side, message 𝐺𝐺,𝑔𝑔2 requires
160+512=672. The total communication cost is 1408 bits. The communication round
comparison shows in Fig. 4. and communication cost comparison shows in Fig. 5.

Figure 4: Communication round comparison

Figure 5: Communication cost comparison

8 Conclusion
In the past few years, many authentication protocols for mobile cloud computing have been
proposed. However, they cannot provide hierarchical authentication functionality. This
paper shows a novel authentication protocol with reasonable computation and
communication costs and has implemented hierarchical authentication functionality, which
restricts mobile user access to mobile service provider. The security proof has demonstrated
that our protocol is provably secure. The computation and communication costs show the
proposed protocol is suitable for the application of mobile cloud computing.

310 CMC, vol.64, no.1, pp.297-312, 2020

Funding Statement: This work is funded by the Chengdu Science and Technology
Bureau No. 2016-XT00-00015-GX and the Civil Aviation Administration of China No.
PSDSA201802.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Amin, R.; Kumar, N.; Biswas, G. P.; Iqbal, R.; Chang, V. (2018): A light weight
authentication protocol for IoT-enabled devices in distributed cloud computing
environment. Future Generation Computer Systems—the International Journal of
Escience, vol. 78, no. 3, pp. 1005-1019.
Canetti, R.; Krawczyk, H. (2001): Analysis of key-exchange protocols and their use for
building secure channels. Advances in Cryptology-Eurocrypt. Springer, Berlin, Heidelberg.
Chandrakar, P.; Om, H. (2017): A secure and robust anonymous three-factor remote
user authentication scheme for multi-server environment using ECC. Computer
Communications, vol. 110, no. 15, pp. 26-34.
Chatterjee, S.; Roy, S.; Das, A. K.; Chattopadhyay, S.; Kumar, N. et al. (2018):
Secure biometric-based authentication scheme using Chebyshev chaotic map for multi-
server environment. IEEE Transactions on Dependable and Secure Computing, vol. 15,
no. 5, pp. 824-839.
Choi, K.; Hwang, J.; Lee, D.; Seo, I. (2005): ID-based authenticated key agreement for
low-power mobile devices. Information Security and Privacy, vol. 3574, no. 12, pp. 494-
505.
Dodis, Y.; Reyzin, L.; Smith, A. (2004): Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. Advances in Cryptology-Eurocrypt, pp. 523-540.
Fang, L.; Li, Y.; Yun, X.; Wen, Z.; Ji, S. et al. (2019): A novel authentication scheme
to prevent multiple attacks in SDN-based IoT Network. IEEE Internet of Things Journal,
DOI: 10.1109/JIOT.2019.2944301.
Feng, Q.; He, D.; Zeadally, S.; Wang, H. (2018): Anonymous biometrics-based
authentication scheme with key distribution for mobile multi-server environment. Future
Generation Computer Systems—the International Journal of Escience, vol. 84, pp. 239-
251.
Gopinath, V.; Bhuvaneswaran, R. S. (2018): Design of ECC based secured cloud
storage mechanism for transaction rich applications. Computers, Materials & Continua,
vol.57, no. 2, pp. 341-352.
He, D.; Wang, D. (2015): Robust biometrics-based authentication scheme for
multiserver environment. IEEE Systems Journal, vol. 9, no. 3, pp. 816-823.
He, D.; Zeadally, S.; Kumar, N.; Wu, W. (2016): Efficient and anonymous mobile user
authentication protocol using self-certified public key cryptography for multi-server

Efficient Hierarchical Multi-Server Authentication Protocol 311

architectures. IEEE Transactions on Information Forensics and Security, vol. 11, no. 9,
pp. 2052-2064.
Jiang, Q.; Ma, J.; Wei, F. (2018): On the security of a privacy-aware authentication
scheme for distributed mobile cloud computing services. IEEE Systems Journal, vol. 12,
no. 2, pp. 2039-2042.
Jiang, X; Liu, M.; Yang, C.; Liu, Y.; Wang, R. (2019): A blockchain-based
authentication protocol for WLAN mesh security access, Computers, Materials &
Continua, vol. 58, no. 1, pp. 45-59.
Kou, L.; Shi, Y.; Zhang, L.; Liu, D.; Yang, Q. (2019): A lightweight three-factor user
authentication protocol for the information perception of IoT, Computers, Materials &
Continua, vol. 58, no. 2, pp. 545-565.
Kumari, S.; Das, A. K.; Li, X.; Wu, F.; Khan, M. K. et al. (2018): A provably secure
biometrics-based authenticated key agreement scheme for multi-server environments.
Multimedia Tools and Applications, vol. 77, no. 2, pp. 2359-2389.
Lamport, L. (1981): Password authentication with insecure communication.
Communications of the ACM, vol. 24, no. 11, pp. 770-772.
Li, H.; Dai, Y.; Tian, L.; Yang, H. (2009): Identity-based authentication for cloud
computing. Cloud Computing. Springer, Berlin, Heidelberg.
Miracle. (2015): BWorld Robot Control Software. https://github.com/miracl/MIRACL.
Odelu, V.; Das, A. K.; Goswami, A. (2015): A secure biometrics-based multi-server
authentication protocol using smart cards. IEEE Transactions on Information Forensics
and Security, vol. 10, no. 9, pp. 1953-1966.
Odelu, V.; Das, A. K.; Kumari, S.; Huang, X.; Wazid, M. (2017): Provably secure
authenticated key agreement scheme for distributed mobile cloud computing services.
Future Generation Computer Systems—the International Journal of Escience, vol. 68,
pp. 74-88.
Roy, S.; Das, A. K.; Chatterjee, S.; Kumar, S.; Chattopadhyay, S. et al. (2019):
Provably secure fine-grained data access control over multiple cloud servers in mobile
cloud computing based healthcare applications. IEEE Transactions on Industrial
Informatics, vol. 15, no. 1, pp. 457-468.
Shen, J.; Tan, H.; Wang, J.; Wang, J.; Lee, S. (2015): A novel routing protocol
providing good transmission reliability in underwater sensor networks. Journal of
Internet Technology, vol. 16, no. 1, pp. 171-178.
Silver, L. (2019): Smartphone ownership is growing rapidly around the world, but not
always equally. https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-
is-growing-rapidly-around-the-world-but-not-always-equally/.
Tsai, J.; Lo, N. (2015): A privacy-aware authentication scheme for distributed mobile
cloud computing services. IEEE Systems Journal, vol. 9, no. 3, pp. 805-815.
Tseng, Y. M.; Huang, S. S.; Tsai, T. T.; Ke, J. H. (2016): List-free id-based mutual
authentication and key agreement protocol for multi-server architectures. IEEE
Transaction on Emerging Topics in Computing, vol. 4, no. 1, pp. 102-112.

312 CMC, vol.64, no.1, pp.297-312, 2020

Xie, Q.; Wong, D. S.; Wang, G. L.; Tan, X.; Chen, K. F. et al. (2017): Provably secure
dynamic ID-based anonymous two-factor authenticated key exchange protocol with
extended security model. IEEE Transactions on Information Forensics and Security, vol.
12, no. 6, pp. 1382-1392.
Xiong, L.; Peng, D.; Peng, T.; Liang, H. (2017a): An enhanced privacy-aware
authentication scheme for distributed mobile cloud computing services. KSII
Transactions on Internet and Information Systems, vol. 11, no. 12, pp. 6169-6187.
Xiong, L.; Peng, D. Y.; Peng, T.; Liang, H. B.; Liu, Z. C. (2017b): A lightweight
anonymous authentication protocol with perfect forward secrecy for wireless sensor
networks. Sensors, vol. 17, no. 11, pp. 1-28.
Xu, G.; Qiu, S.; Ahmad, H.; Xu, G.; Guo, Y. et al. (2018): A multi-server two-factor
authentication scheme with un-traceability using elliptic curve cryptography. Sensors,
vol. 18, no. 7, pp. 1-19.
Yoon, E. J.; Yoo, K. Y. (2013): Robust biometrics-based multi-server authentication
with key agreement scheme for smart cards on elliptic curve cryptosystem. Journal of
Supercomputing, vol. 63, no. 1, pp. 235-255.

	Efficient Hierarchical Multi-Server Authentication Protocol for Mobile Cloud Computing
	Jiangheng Kou0F , Mingxing He1, *, Ling Xiong1, Zihang Ge2 and Guangmin Xie1

	1 Introduction
	1.1 Organization of the paper

	2 Related work
	3 Our contribution
	4 Preliminaries
	5 The proposed protocol
	5.1 Registration center initialization phase
	5.4 Mobile user and mobile service provider authentication phase

	6 Formal security analysis
	6.1 Security experiment
	6.2 Security requirements comparison

	7 Performance comparison
	7.1 Computation cost comparison
	7.2 Communication cost comparison

	8 Conclusion
	References

