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Abstract: Huffman [Huffman (1952)] encoding is one of the most known compression 
algorithms. In its basic use, only one encoding is given for the same letter in text to 
compress. In this paper, a text compression algorithm that is based on Huffman encoding 
is proposed. Huffman encoding is used to give different encodings for the same letter 
depending on the prefix preceding it in the word. A deterministic finite automaton (DFA) 
that recognizes the words of the text is constructed. This DFA records the frequencies for 
letters that label the transitions. Every state will correspond to one of the prefixes of the 
words of the text. For every state, a different Huffman encoding is defined for the letters 
that label the transitions leaving that state. These Huffman encodings are then used to 
encode the letters of the words in the text. This algorithm was implemented and 
experimental study showed significant reduction in compression ratio over the basic 
Huffman encoding. However, more time is needed to construct these codes. 
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1 Introduction 
Text compression is a well-known problem in computer science [Bell, Cleary and Witten 
(2018); Salomon (2007)]. Huffman encoding [Huffman (1952)] is one of the most known and 
efficient text compression algorithms. The idea of the Huffman encoding is to encode more 
frequently used letters in the text with shorter codes and less frequently used ones with longer 
codes. The literature is rich with variations of Huffman encodings. A recent survey paper 
about Huffman encoding, mechanisms and variants can be found in Moffat [Moffat (2019)]. 
A comparative study of a number of text compression algorithms was conducted by 
Shanmugasundaram et al. [Shanmugasundaram and Lourdusamy (2011)]. Dath et al. [Dath 
and Panicker (2017)] did a word by word compression instead of byte by byte compression. 
A byte by byte instead of bit by bit decoding of Huffman-encoded text was proposed by 
Choueka et al. [Choueka, Klein and Perl (1985)]. Chung et al. [Chung and Wu (1999)] 
represented a Huffman tree with an array data structure to achieve faster decoding. Enhancing 
compression by composing Lempel Ziv after Huffman compression was proposed by 
Saravanan el al. [Saravanan and Surender (2013)]. Klein et al. [Klein, Saadia and Shapira 
(2019)] proposed a new dynamic Huffman encoding that performs at least as good as static 

 
1 Al-Ahliyya Amman University, Amman, 19328, Jordan. 
 * Corresponding Author: Majed AbuSafiya. Email: majedabusafiya@gmail.com. 
Received: 19 November 2019; Accepted: 19 February 2020. 



18                                         CMC, vol.64, no.1, pp.17-30, 2020 

Huffman encoding. Double Huffman encoding, where compression is applied on the code of 
the letter, can be found in Knuth et al. [Knuth (1985); Vitter (1987); Arshad, Saleem and 
Khan (2016)]. Javed et al. [Javed and Nadeem (2000)] proposed an adaptive Huffman 
encoding scheme where the codes are adjusted during the compression process. Tseng et al. 
[Tseng, Jiang, Pan et al. (2012)] enhanced Huffman encoding for the purposes of encryption 
along with compression. An improved Huffman coding method for information storage in 
DNA was described in Ailenberg et al. [Ailenberg and Rotstein (2009)]. Finite automata was 
used for compression in the work of Culik et al. [Culik and Kari (1993); Hafner, Albert, 
Frank et al. (1998)] and both for images and videos and not for text. It is known that lossy 
compression gives better compression ratios than lossless compression. However, lossy 
compression is suitable for images and videos but not suitable for text data. Cellular automata 
was used in text compression by Khan et al. [Khan, Choudhury, Dihidar et al. (1999)].  
To contrast the proposed approach with related work, it can be seen that a lot of the 
related work is directed towards enhancing Huffman encoding. Examples of these 
enhancements include: more optimized implementations, composition with other 
compression algorithms, and adaptation. On the other hand, the proposed algorithm did 
not change or enhance the Huffman encoding. It just used it in a different way, and 
specifically for natural language text documents, to get better compression ratios. Instead 
of using one Huffman encoding to encode the letters of the text, multiple Huffman 
encodings are used. Huffman encoding, to encode a letter, depends on the prefix that 
precedes this letter in the word being encoded. A deterministic finite automaton (DFA) 
[Hopcroft and Ullman (1979)] that recognizes the words of the text document is 
constructed while maintaining the frequencies of letters that cause a transition. This 
frequency information is used to generate different Huffman encodings for every state in 
the DFA for the set of letters that may cause a transition from that state. 
This work may be confused with what is called adaptive Huffman encoding. The multiple 
Huffman encoding that is proposed in this paper is not based on adapting Huffman code 
while the data is streamed. The Huffman encoding that will be used to code a given letter 
will depend on the prefix that precedes that letter in its word.  
This paper is organized as follows: Section 2 describes the proposed algorithm. Section 3 
shows an example that illustrates the proposed algorithm. Section 4 presents the 
experimental study that was conducted to compare the proposed approach with the 
normal Huffman encoding. The paper ends with conclusions and a set of references. 

2 Proposed algorithm 
The proposed algorithm is shown Fig. 1. In the following subsections, these steps will 
be elaborated. 

 
Figure 1: The proposed algorithm 

COMPRESS(T) 
1 DFA=BUILD-DFA(T) 
2 BUILD-FREQUENCY-LISTS(DFA) 
3 BUILD-HUFFMAN-CODES(DFA) 
4 ENCODE(T) 
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2.1 Building deterministic finite automaton for input Text 
Before presenting the algorithm to build the DFA of the input text T, a number of fields 
are defined for the states of the DFA. These fields are shown in Tab. 1. 

Table 1: The fields of a state s of the DFA 
Field Name Initial value Description 

s.string empty string The string that transfers the DFA from the start state to s. 
s.transitions {} The set of transitions from state s to some other state. 

s.frequency 0 The number of times the state s is visited while scanning the words of 
the text to build the DFA. 

s.frequencyList < > A list of frequency records (s', s'.frequency) with a record for every 
transition from s to s' 

s.nextState(l) null returns the state s' in case there is a transition from s to s' labeled with 
letter l and null otherwise. 

s.isFinal false is true if s is a final state and false otherwise. 
 

The algorithm BUILD-DFA(T) is shown in Fig. 2. The input is the text to compress T. 
The DFA is initialized by creating its start state. There is a loop where the words of T are 
taken one at a time, appended by a space character and then added to the DFA. The 
algorithm for adding a word to the DFA will be explained below. The reason for adding a 
space is to mark the end of the word.  

 
Figure 2: BUILD-DFA(T) algorithm 

The algorithm in Fig. 3 shows how a word from T is added to the DFA. It starts by setting 
the currentState to be the start state of the DFA. The loop takes the letters of the word, 
one letter (l) every iteration. It looks for a transition from currentState that is labeled with 
(l). If no such transition exits, nextState will be null. This requires creating nextState 
setting its string field to be string field of the currentState appended with (l) and then 
adding it the DFA.states. Also, a new transition from the currentState to nextState that is 
labeled with (l) will be created and then added to the currentState.transitions. At the end 
of each iteration, the frequency field for the nextState is incremented and then 
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currentState becomes the nextState. This should be done in every iteration, whether 
nextState was created or found. Once the loop terminates, all the letters of the word are 
consumed including the appended space, and currentState is set to be a final state. 

 
Figure 3: ADD-TO-DFA (word) Algorithm 

To illustrate this algorithm with an example, let T=<ab ac>. Fig. 4 shows the DFA after 
adding the word ab. Note the appended space. The string and frequency fields are shown 
for all states. For example, s2.string is “ab” which transfers the DFA from the start state s0 
to s2. The string field of the start state (s0) is the empty string. Final states are distinguished 
with a different color. The frequency fields are all set to 1 because each of these states was 
visited once. 

 
Figure 4: DFA after adding “ab” 

Next word to add is “ac” with appended space. The currentState is set to s0. The word 
length is 3. So the loop will iterate three times. In the first iteration, next letter will be ‘a’. 
The algorithm finds a transition from s0 with ‘a’. A nextState is found which is s1. The 
frequency field for s1 is incremented and currentState becomes s1. In the second iteration, 
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no transition from s1 with letter ‘c’ is found. So, a new state will be created which is s4. The 
frequency field is set to 1. Then, the space letter will be processed and s5 will be created. 
When the loop terminates, s5 is set to be a final state. The DFA will look as shown in Fig. 5. 

 
Figure 5: DFA after adding the word “ac” 

2.2 Building frequency lists 
The second step of the main algorithm (Fig. 1) is to build the frequencyList field for 
every non-final state s. One frequency record is created for every transitions from s. This 
record is composed of a letter (l) and the frequency of the next state that is reachable 
from s with (l). For example, the frequency lists for the states of the DFA in Fig. 5 are 
shown in Tab. 2. It can be noticed that final states have no frequency lists.  

Table 2: Frequency List for DFA states 

State State’s string Frequency List 
s0 “” <(a, 2)> 
s1 a <(b, 1),(c, 1)> 
s2 ab <(space, 1)> 
s4 ac <(space, 1)> 

 
The algorithm that builds frequency lists (Fig. 6) goes through all the non-final states of 
the DFA and build the frequency list for each state. Final states have no transitions. 
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Figure 6: BUILD-FREQUENCY-LISTS for the DFA states 

The loop iterates through the states of the DFA. For every non-final state of the DFA, it 
iterates through all the transitions of state. For every transition, a frequency record is 
created and added to the frequency list of state. This record is composed of two fields: the 
letter that labels the transition and the frequency of the nextState that is reachable through 
this transition.  

2.3 Building a Huffman encoding for every non-final state 
The third step of the main algorithm is to define Huffman codes for every non-final state of 
the DFA (Fig. 7). The algorithm iterates through all the non-final states of the DFA. It 
builds treeNodeVector for the current state. This vector is the basis to build the Huffman 
encoding for the current state. The treeNodeVector is transformed to a Huffman tree by the 
BUILD-HUFFMAN-TREE algorithm. Finally, treeNodeVector is used to generate the 
encodings of the letters of state (the letters that label transitions from the current state).  
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Figure 7: BUILD-HUFFMAN-CODES for the DFA states 

This algorithm uses the TreeNode data structure. This data structures is needed to build 
the Huffman tree and its fields are shown in Tab. 3.  

Table 3: The fields of TreeNode t 

Field Name Type Description 

t.leftChild TreeNode Points to the left child tree node of t. 

t.rightChild TreeNode Points to the right child tree node of t. 

t.frequency int contains a letter frequency if t is a leaf or the sum of the 
frequencies of its direct children if it is an internal node. 

t.letter string contains a letter if t is a leaf node or the concatenation of its 
left and right children letter fields if it is an internal node. 

t.bit char The Huffman code which will be 0 or 1. It will be 0 if t is a 
left child of its parent and 1 if t is a right child of its parent 

 
BUILD-TREE-NODE-VECTOR algorithm is shown in Fig. 8. It builds treeNodeVector 
for a state and this vector will become latter the Huffman tree of this state. Initially this 
vector is empty. The algorithm goes through the records in the state’s frequency list. It 
will create newTreeNode for every frequency record and copy the letter and the 
frequency fields to newTreeNode. The newTreeNode will be inserted into the 
treeNodeVector such that treeNodeVector stays sorted according to the frequency field.  
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Figure 8: BUILD-TREE-NODE-VECTOR 

Returning to the BUILD-HUFFMAN-CODES algorithm in Fig. 7. After building the 
treeNodeVector for the current non-final state, this treeNodeVector is transformed to a 
Huffman tree by BUILD-HUFFMAN-TREE algorithm (Fig. 9). The treeNodeVector is 
already sorted according to the frequency field. So, the first two tree nodes of this vector 
have the least frequency values. We will refer to them as minTreeNode and 
nextMinTreeNode. The bit field of these two tree nodes will be set to 0 and 1 respectively. 
A newTreeNode will be created with leftChild field is set to be minTreeNode and 
rightChild field is set to be nextMinTreeNode. The frequency field for the newTreeNode is 
set to be the sum of the frequency fields of these two nodes. They are then removed from 
treeNodeVector and newTreeNode is inserted such that treeNodeVector stays sorted. The 
loop will iterate until the treeNodeVector contains one tree node only (the root of the 
Huffman tree of the corresponding state). 
The last step of building the Huffman codes for the states, is to define the codes for the 
letters with transitions from the current state (Fig. 7). This is done exactly as done in the 
known Huffman algorithm and will not be presented here.  
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Figure 9: BUILD-HUFFMAN-TREE algorithm 

2.4 Encoding the text 
The last step in the main algorithm is to encode the text using the calculated Huffman 
codes (Fig. 1). The ENCODE algorithm (Fig. 10) takes as input the text to compress. The 
output will be the code string textCode. Initially, textCode is the empty string. It goes 
through the words in T a word by word and appends a space character to the end of the 
current word. Always at the beginning of the outer loop, currentState is set to be the start 
state of the DFA. The inner loop will generate the code for word. It iterates through the 
letters of word, use the Huffman tree of the currentState to get the code of the current 
letter, append the code of the letter to textCode and finally update currentState to be the 
next state reachable from currentState with the current letter.  
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Figure 10: ENCODE(T) algorithm 

3 Example 
Let T=<ab bd ac ab be bd ac>, in the following example, T is compressed using 
Huffman encoding, T is compressed using the proposed algorithm and the two 
compressions are compared.  

3.1 Huffman encoding 
The first step is to calculate the frequency of the letters in T. The frequencies of the letters 
are: freq(a)= 4, freq(b)=5, freq(c)=2, freq(d)=2, freq(e)=1 and freq(space)=6. The space is 
defined as a letter and will be encoded as well. 

 
Figure 11: Huffman tree 

The second step is to build the Huffman tree (Fig. 11). The internal nodes contain the 
accumulative frequencies. The Huffman encoding for the letters are defined as follows: 



Text Compression Based on Letter’s Prefix in the Word                    27 

code(a)=011, code(b)=01, code(c)=11111, code(d)=0111, code(e)=01111, code(space)=0. 
So, the encoding of T will be 011010-0101110-011111110-011010-01011110-0101110-
011111110. Hyphens are used to separate the code of the words for illustration.  
The compression ratio can be calculated as follows. The size of the original file is 20 
character. The size of one character is 2 bytes assuming the Unicode encoding. So the 
total size of the document is 40 bytes. The Huffman code length is 52 bits which equals 
6.5 bytes. So the compression ratio is 16%. 

3.2 The proposed approach 
The first step is to build a DFA that recognizes the words of T. It is shown in Fig. 12. The 
number of the final states equals the number of distinct words in T. The space is 
considered as part of the word preceding it. While building the DFA, the frequencies for 
every transition that was visited is recorded in frequency list of the state. The state with 
string field “a” has frequency=4 because there are four words from T that transfers the 
DFA to the state named a from the start state. However, the state whose string is ab has 
frequency 2 because there are two words in T that start with ab.  

 
Figure 12: DFA that recognizes T=<ab bd ac ab be bd ac> 

The second step is to build the frequency lists for every non final state. Tab. 4 shows the 
frequency lists for the states of the DFA.  

Table 4: Frequency lists for the DFA states in Fig. 12 
State string Frequency List Letter Encoding 

“” < (b,3), (a,4) > code(b)=0 
code(a)=1 

a < (c,2), (b,2) > code(c)=0 
code(b)=1 

b < (e,1), (d,2) > code(e)=0 
code(d)=1 

ab < (space), 2> code(space)=0 
ac < (space), 2> code(space)=0 
bd < (space), 2> code(space)=0 
be < (space), 1> code(space)=0 
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The third step is to build different Huffman encodings for the letters that label the 
transitions for each state. In this example, Huffman trees are composed at most of three 
nodes because T is too simple. That is why all letters are encoded with one bit only. It can 
be noticed that the same letter may have different encodings depending on the prefix that 
precedes it in the word. For example, the code of b when it is the first letter in the word is 
0 (Tab. 4: row 1). However, its code when it is the second letter and an a precedes it in 
the word will be 1 (Tab. 4: row 2). These codes are shown in bold in Tab. 4. Using these 
encodings, the text is encoded as follows: 110-010-100-110-000-010-100. For example, 
the word bd is encoded as follows: the encoding of letter b when it is the first letter of the 
word is 0, the encoding of d when it is preceded by the prefix b is 1, the encoding of the 
space when it is preceded by bd is 0, so the encoding of bd is 010. 
The compression ratio can be calculated as follows. The total size of the document is 40 
bytes as explained above. The text code length is 21 bits which equals about 3 bytes. So 
the compression ratio is 7.5%. 

4 Experimental study 
We have implemented this algorithm and applied its compression on the text of the Quran. 
The size of T is 411082 characters, each character is two bytes (Unicode encoding). So 
the size of the text in bytes is 822164. The frequencies of the different Arabic letters in 
the text were found and then used to generate Huffman encoding. The Huffman encoding 
was found in a form of a string of 0’s and 1’s. To find the size of the compressed text in 
bytes, the binary encoding string length was divided by 8. The compression ratio was 
calculated by finding the ratio of the size of the compressed text to the size of the original 
text in bytes. The results are summarized in Tab. 5. 

Table 5: Experimental results for a T of 822164 characters 

 Huffman Encoding Proposed Encoding 
Size (bytes) 184,798 114580 

Compression Rate 22.5% 13.9% 
Compression Time 

(milliseconds) 115  617 

 
It is obvious that the compression ratio of the proposed encoding is much better than the 
ratio of the normal Huffman encoding. However, we found the time needed to encode, 
using the proposed approach, took significantly longer time than the normal Huffman 
encoding time.  
It is widely known that Huffman encoding gives an optimal or very close to optimal 
compression. Does this contradict our results? The answer is no. Huffman encoding gives 
the optimal compression under the assumption of a very generic context where no 
constraints are assumed about the letters. The only constraint is that they are randomly 
located in a string with varying frequencies. However, in natural language text, there are 
many implicit and complex constraints that are completely ignored by the Huffman 
encoding in its native generic form. A natural language text contains words with lengths 
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that follow a statistical distribution. The natural language text is not composed of 
randomly selected letters (from some alphabet) that are randomly placed in a string. 
There are many constraints regarding the length of the words and the likelihood that a 
letter may exist in a given location within a given sequence of surrounding letters. Our 
proposed approach has considered some of these constraints when using Huffman 
encoding and this is the reason behind these better results. 

5 Conclusions 
In this paper, a text compression algorithm is proposed that is based on Huffman 
encoding. Instead of having one encoding for a text letter, a letter will have different 
encodings depending on the prefix that precedes it in the word. The proposed approach 
showed significant improvement in the compression ratio compared to the normal 
Huffman encoding. This is because letters have varying probabilities of existence in a 
word after a given prefix of that word. Also some letters are unlikely to appear after a 
given prefix in natural language words. One important lesson we learned from this work 
is that considering the constraints of natural languages, it may open the door for 
improvements on string algorithms in general. As for future work, we look forward to 
optimize the implementation to give better compression time.  
 
Conflicts of Interest: The authors declare that they have no conflicts of interest to report 
regarding the present study. 
 
References 
Ailenberg, M; Rotstein, O. (2009): An improved Huffman coding method for archiving 
text, images, and music characters in DNA. Biotechniques, vol. 47, no. 3, pp. 747-754. 
Arshad, R.; Saleem, A.; Khan, D. (2016): Performance comparison of Huffman coding 
and double Huffman coding. Sixth International Conference on Innovative Computing 
Technology. 
Bell, T.; Cleary, J.; Witten, I. (1990): Text Compression. Prentice Hall. 
Choueka, Y.; Klein, S.; Perl, Y. (1985): Efficient variants of Huffman codes in high 
level languages. Proceedings of ACM SIGIR Conference on Research and Development 
in Information Retrieval, pp. 122-130. 
Chung, K.; Wu, J. (1999): Level-compressed Huffman decoding. IEEE Transactions on 
Communications, vol. 47, no. 10, pp. 1455-1457. 
Culik, K.; Kari, J. (1993): Image compression using weighted finite automata. 
Computer & Graphics, vol. 17, no. 3, pp. 305-313. 
Dath, D.; Panicker, V. (2017): Enhancing adaptive Huffman coding through word by 
word compression for textual data. International Conference on Communication and 
Signal Processing, pp. 1048-1051. 
Hafner, U.; Albert, J.; Frank, S.; Unger, M. (1998): Weighted finite automata for 
video compression. IEEE Journal on Selected Areas in Communications, vol. 16, no. 1, 
pp. 108-119. 



30                                         CMC, vol.64, no.1, pp.17-30, 2020 

Hopcroft, J.; Ullman, J. (1979): Introduction to Automata Theory, Languages and 
Computation. Edison Wesley. 
Huffman, D. (1952): A method for the construction of minimum redundancy codes. 
Proceedings of the Institute of Radio Engineers, vol. 40, no. 9, pp. 1098-1101. 
Javed, M.; Nadeem, M. (2000): Data compression through adaptive Huffman coding 
schemes. Proceedings of Intelligent Systems and Technologies for the New Millennium, 
pp. 187-190. 
Khan, A.; Choudhury, P.; Dihidar, K.; Verma, R. (1999): Text compression using 
two-dimensional cellular automata. Computers & Mathematic with Applications, vol. 37, 
no. 6, pp. 115-127. 
Klein, S.; Saadia, S.; Shapira, D. (2019): Better than optimal Huffman coding? 
Proceedings of Data Compression Conference, pp. 582-582. 
Knuth, D. (1985): Dynamic Huffman coding. Journal of Algorithms, vol. 6, no. 2, pp. 
163-180. 
Moffat, A. (2019): Huffman coding. ACM Computing Surveys, vol. 52, no. 4, pp. 1-35. 
Salomon, D. (2007): Data Compression. Springer, London. 
Saravanan, C.; Surender, M. (2013): Enhancing efficiency of Huffman coding using 
Lempel Ziv Coding for image compression. International Journal of Soft Computing and 
Engineering, vol. 2, no. 6, pp. 38-41. 
Shanmugasundaram, S.; Lourdusamy, R. (2011): A comparative study of text 
compression algorithms. International Journal of Wisdom Based Computing, vol. 1, no. 3, 
pp. 68-76. 
Tseng, K.; Jiang, J.; Pan, J.; Tang, L.; Hsu, C. et al (2012): Enhanced Huffman 
coding with encryption for wireless data broadcasting system. Proceedings of 
International Symposium on Computer, Consumer and Control. pp. 622-625. 
Vitter, J. (1987): Design and analysis of dynamic Huffman codes. Journal of the ACM, 
vol. 34, no. 4, pp. 825-845.  


	Majed AbuSafiya0F , *
	1 Introduction
	2 Proposed algorithm
	2.2 Building frequency lists
	2.3 Building a Huffman encoding for every non-final state
	2.4 Encoding the text
	3.1 Huffman encoding

	4 Experimental study
	5 Conclusions
	References

