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Abstract: In this study, waste cotton fabric was used as cellulose raw material and
pretreated in aqueous NaOH/urea solution system to investigate the effect of
NaOH/urea pretreatment solution on the hydrolysis of cotton fiber. The cotton
fiber was pretreated with different conditions of aqueous NaOH/urea solution,
and the pretreated cotton fiber was hydrolyzed under the same conditions as
the original cotton fiber. The results of characterization analysis showed that water
retention value of pretreated cotton fiber was higher than that of unpretreated sam-
ple. Moreover, the cotton fiber presented both a convoluted structure and a coarser
surface, XRD results suggested that the crystallinity degree of cellulose decreased
dramatically, more cellulose II appeared, and the hydrogen bond is broken.
Among the different pretreatment conditions, the pretreatment effect was the best
when the reaction temperature was 0°C, the solid-liquid ratio was 2:50, and the
NaOH/urea ratio was 7:12. The hydrolysis experiments of pretreated and unpre-
treated cotton fibers showed that when the hydrothermal temperature was 230°C,
the heat preservation was 2 h, and the hydrochloric acid concentration was 5 wt.
%, the glucose yield reached 29.99%. H+ could catalyze the hydrolysis of cotton
fiber more effectively due to damage to crystal structure and hydrogen bonds.

Keywords: Waste cotton fibers; NaOH/urea; pretreatment; hydrolyze; recycling
and reusing

1 Introduction

With the rapid development of economy and the improvement of living standards, the use cycle of
clothing and household textiles is shortened year by year. The output of waste textiles is also increasing
[1]. It is estimated that by 2020, the world will produce 100 million tons of waste textiles every year [2],
whereas the comprehensive utilization rate is only 10%–15% so far. The most important natural fiber in
textile is cotton fiber, and the main component of cotton fiber is cellulose [3], which can be hydrolyzed
into micro molecular oligosaccharides and glucose [4,5]. In addition, cellulose can also be depolymerized
to organic acids such as formic acid [6,7]. It is reported that polyols [8] and furans [9,10] can be prepared
through biomass depolymerization of cellulose, which undoubtedly provides a direction for the reuse of
waste cotton fabrics. However, due to the strong crystal structure and high chemical stability of natural
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cellulose [11], the hydrolysis process is difficult and inefficient, which hinders the degradation and reuse of
waste cotton fabrics [12].

In recent years, in order to reduce the crystallinity of cellulose and improve the hydrolysis efficiency of
cellulose under mild reaction conditions, many cellulose pretreatment technologies have been developed,
which can be divided into chemical and physical methods. The chemical method involves pretreating
cellulose by using concentrated acids such as phosphoric acid and sulfuric acid. Although the purpose of
decrystallization is achieved, the large-scale use of acid causes strong corrosion of equipment and
generates acid residue as waste. The physical method mainly involves solvent pretreatment. Cellulose can
be dissolved in ionic liquids at 80°C [13]. This method has the advantages of non-volatilization, good
chemical stability, thermal stability, and strong solubility. However, ionic liquids cause environmental
problems and unnecessary by-products [14]. Also, the high cost and long-term uncertain biological
toxicity of ionic liquids limit their large-scale applications [6]. In recent years, NaOH/urea solution
system was found to be a new cellulose pretreatment solvent with low cost and no pollution. The
mechanism involved in this pretreatment is that alkali hydrate can penetrate the amorphous region of
cellulose, destroy the adjacent crystalline region, make cellulose swell, and reduce the crystallinity of
cellulose. In addition, the addition of thiourea or urea components can trap free water and prevent the
interaction between cellulose chains through hydrogen bonds [15]. For example, Wang et al. pretreated
cotton fibers with NaOH/urea to different degrees and used the different fiber samples to prepare cellulose
acetate. It was found that the substitution degree was improved compared with unpretreated cotton fibers
[16]. However, the solubility of cellulose in NaOH/urea is related to the polymerization degree of
cellulose. When the polymerization degree of cellulose is higher than 800, its solubility is less than 20%
[17]. The polymerization degree of cotton fiber is above 2000, thus it cannot be completely dissolved and
can only be inflated. In this study, waste cotton fiber was used as the research object for pretreatment
with NaOH/urea solution. The pretreated samples were characterized and their properties were compared
with the unpretreated samples. Furthermore, the changes in cotton fiber in the hydrolysis process after
pretreatment were investigated to promote the recycling and reuse of cotton waste fabric.

2 Materials and Methods

2.1 Materials
In this case, waste cotton fabric was kindly provided by Shanxi Gefulan Textile Co., Ltd. (China). All

fiber samples were cut into small pieces (~2 × 2 cm2), cleaned with water, air dried, and preserved in a
desiccator for use. NaOH, urea and HCI of analytical grade were purchased from Tianjin Zhiyuan
Chemical Reagent Co., Ltd. (China). Glucose assay kits were obtained from Perkin Elmer, USA. Distilled
water for the experiments was prepared in the laboratory.

2.2 Pretreatment of Cotton Fiber
NaOH/urea were measured out in different proportions (mass fraction) and added into a beaker. The

solution was precooled in a constant low-temperature water bath (the aqueous ethylene glycol coolant
used, DCW-2006, Xi’an Bilang Biotechnology Co., Ltd. [China]) for 10 minutes. A certain amount of
waste cotton fabric was added immediately into this precooled solution with mechanical stirring for
10 minutes. Subsequently, the generated fiber/solution mixture was squeezed to remove the cellulose
solution. Then, the reactants were washed for 2–3 times and kept in distilled water at ambient room
temperature until no residual chemicals could be detected in the waste water. Finally, the reactants were
oven-dried in a vacuum oven at 60°C for 6 h and stored for further processing.

2.3 Hydrolysis of Cotton Fiber
In the hydrolysis procedure, 1 g of raw cotton fiber and pretreated cotton fiber respectively were added

into hydrochloric acid solution with various mass fractions. Then, the mixture was placed in a muffle furnace
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and sealed. The filling degree of reaction kettle was 60%. The reaction products were taken out and
centrifuged to separate the solid and liquid phase products. The solid phase products were washed by
ethanol and distilled water for several times and then placed in a drying box to be dried at 120°C for 4 h.
Then they were cooled naturally to room temperature, weighed, bagged and tested.

3 Characterization of Cotton Fiber

3.1 Water Retention Value
The water retention value (WRV) of fiber was determined by centrifugal method. First, 1.5 g of

pretreated cotton fiber (absolutely dry) was measured out and then added into a centrifugal tube with
enough deionized water. It was soaked completely for 10 min. Then, the test tube was placed into the
centrifuge and subjected to centrifugation for 15 min at the speed of 3000 rpm. After removing the free
water in the fiber, it was placed into a weighing bottle and weighed. Finally, the fiber was oven-dried at
(105 ± 1°C) to constant weight and weighed after cooling to room temperature. The WRV for each
sample was calculated according to the following Eq. (1):

W ¼ M1 �M0

M0
� 100% (1)

where M0 and M1 are the dry and wet weights of the cotton fiber, respectively.

3.2 FTIR
FTIR analysis was conducted using an FTIR-1730 spectrometer (PE, USA) over the range of 4000–400

cm-1 and at a resolution of 2 cm-1 over 20 scans. The sample for FTIR analysis was ground, mixed with dried
potassium bromide powder, and compressed into a tablet.

3.3 XRD
The XRD patterns were obtained using an X-ray diffractometer (Y-2000, Dandong, China) equipped

with Cu Kα radiation at the operational conditions of 35 kV and 25 mA. The data were collected in the
2θ range of 5–40° with an interval of 0.04°.

The crystallinity of cotton fiber (CI) was calculated using the peak height in the XRD pattern, as shown
in Eq. (2):

CI ¼ ðI200–IamÞ=I200 � 100% (2)

where I200 is the intensity of major diffraction peak at 2θ = 22.7° corresponding to 200 plane on the surface of
the crystal lattice (20.1° for cellulose II;). Iam is the intensity of the diffraction peak at 2θ ≈ 18° caused by the
amorphous cellulose part between the lattice surfaces 101 and 002 [18]. High CI value indicates high degree
of crystallization of cellulose I or II.

3.4 SEM
The surface morphology of samples was analyzed using a scanning electron microscope (FESEM; JSM-

6700F, JEOL, Tokyo, Japan).

The surface of dried sample was coated with gold and then observed with an accelerating voltage of 7 kV.

3.5 HPLC
The hydrolyzed products of cotton fiber were characterized by high performance liquid chromatography

(HPLC, PerkinElmer, USA) with a refractive index detector (RID). SH1011 chromatographic column
(Shodex, Japan) was used for the separation. The mobile phase was 5 × 10-3 mol H2SO4 solution and the
flow rate was 0.5 mL/min. The sample injection volume was 10 mL and the column temperature was 50°C.
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4 Results and Discussion

4.1 Effects of Different Degrees of NaOH/Urea Preconditioning on Water Retention Value of Cotton

Fiber
The pretreatment conditions are shown in Tab. 1. Water retention value (WRV) is the main indicator of

the swelling degree of cellulose. The reason for fiber swelling lies in the polar hydroxyl groups contained in
the molecular structure of cellulose and hemicellulose and the polar attraction between water molecules [19].
Water molecules enter the amorphous zone of cellulose, which increases the distance between the molecular
chains of cellulose, and causes fiber deformation and swelling. It was found that the WRVof cotton fiber after
NaOH/urea aqueous solution preconditioning was significantly increased. The WRV and loss rate of cotton
fiber after pretreatment with different NaOH/urea aqueous solutions are shown in Fig. 1a. When the NaOH/
urea concentration was 6:14, the WRV was the lowest. However, when the NaOH/urea concentration was
7:12, the WRV was as high as 25.34%, after which it gradually decreased. This is because when the
NaOH content in the system remained constant, the amount of alkali cellulose generated was basically
unchanged, and the synergistic effect of small urea molecules had a corresponding efficiency upper limit.
On the other hand, the excessive alkali content led to the complete infiltration of cellulose by alkali metal
ions. Consequently, the number of hydration ions decreased and the WRV decreased. It should be noted
that the amorphous part of cotton fiber contains cellulose macromolecules with relatively low
polymerization degree, which can be dissolved in the NaOH/urea aqueous solution system, resulting in
loss of the solid-phase cotton fiber. However, the fiber loss rate remained stable at around 10% under
different pretreatment conditions.

In addition, the temperature of pretreatment system had a significant effect on cotton fiber swelling.
When the system was at 0°C, the WRV reached 27.37% (Fig. 1b), but the fiber loss rate was low and the
WRV showed a downward trend. However, when the temperature dropped to −5°C, the WRV gradually
increased and the solubility of cotton fiber also increased correspondingly. This is because the swelling of
cellulose in alkali solution is one of the few swelling processes with negative temperature coefficient
[19]. Thus, the swelling of cellulose can be increased by lowering the temperature of the NaOH/urea

Table 1: Pretreatment conditions of cotton fiber

Sample NaOH/urea (mass fraction) T (°C) Solid/liquid Fiberloss rate (%) WRV (%)

1 6:14 −15 2:50 11.38 16.71

2 7:12 −15 2:50 12.53 25.34

3 7:14 −15 2:50 12.31 20.78

4 8:12 −15 2:50 13.07 20.82

5 8:14 −15 2:50 11.01 18.47

6 7:12 5 2:50 13.41 25.27

7 7:12 0 2:50 10.61 27.37

8 7:12 −5 2:50 11.87 20.82

9 7:12 −10 2:50 12 22.34

10 7:12 0 2:30 10 19.84

11 7:12 0 2:40 11.5 21.07

12 7:12 0 2:60 9 17.43

13 7:12 0 2:70 7.5 15.64
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aqueous solution. By studying the solid-liquid ratio of the pretreatment system, it was found that cotton fibers
had different WRVs at different solid-liquid ratios (Fig. 1c). When the solid-liquid ratio was 2:50, the WRV
was the maximum value of 27.37%. To summarize, the optimal pretreatment conditions for cotton fiber were:
reaction temperature of 0°C, solid-liquid ratio of 2:50, and NaOH/urea ratio of 7:12.

4.2 Effect of Pretreatment on the Surface Morphology of Fibers
Fig. 2 shows the morphology and structure of cotton fibers after different degrees of pretreatment. As

seen from the image, the untreated cotton fibers presented long crystal beams on the surface, were
smooth, flat and straight, and had a complete surface structure (Fig. 2a). After different degrees of NaOH/
urea preconditioning, the surface morphology of cotton fiber changed significantly. Uneven surface of
cotton fiber was observed with increased torsion and increased surface area (Figs. 2b–2j). Figs. 2b–2d
shows the SEM images of cotton fiber after pretreatment with different NaOH/urea ratios. When the
NaOH/urea ratio was 7:12, the fiber presented a helix shape with rough surface. Moreover, cracks and
folds were observed, which were the most serious damages. Figs. 2b–2g shows the SEM images of
pretreated cotton fiber at different temperatures. As can be seen, the cotton fiber surface showed torsion
and curling, and even breakage. It indicates that NaOH/urea solution caused a certain degree of corrosion
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Figure 1: Effects of NaOH/urea ratio (a), reaction temperature (b), and solid/liquid ratio (c) on the fiber loss
rate and WRVof pretreated cotton fiber. Reaction conditions: (a: -15°C, 2:50; b: 7:12, 2:50; c: 0°C, 7:12)
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on the surface of cotton fiber. According to the comparison of Figs. 2e, 2h–2j, when the solid-liquid ratio was
2:50, the change in cotton fiber morphology was most obvious. All these changes are beneficial to increase
the surface area of cotton fiber, improve the accessibility and enhance the hydrolysis reactivity [20].

Figure 2: SEM images of cotton fibers without pretreatment (a), and with pretreatment using aqueous
NaOH/urea solution and with different NaOH/urea ratios (b: 7:12; c: 7:14; d: 8:12), and different
temperatures (e: 0; f: −5°C; g: −10°C), and different solid:liquid ratios (h: 2:30; c: 2:40; b: 2:50; d: 2:70)
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4.3 Effect of Pretreatment on the Crystallization Properties of Fibers
In order to analyze the crystal structure of cotton fiber before and after pretreatment, X-ray diffraction

was performed on the samples. As seen from the XRD pattern in Fig. 3, the diffraction peaks at 2θ of 14.7°,
16.8°, 22.7° and 34.8° corresponded to the crystal layers of (1-01), (101), (200) and (004), respectively,
which are the characteristic crystal peaks of typical cellulose I (Fig. 3a). The cotton fibers after NaOH/
urea pretreatment with different conditions presented obvious diffraction peaks at 2θ = 12.1° and 20.1°,
which were characteristic diffraction peaks of cellulose type II (Figs. 3b–3f). This suggests that a series of
structural changes occurred in the cellulose chain after NaOH/ urea pretreatment of cotton fiber [10].
Cellulose I is natural cellulose while cellulose II is formed by dissolving and regeneration. Intensity of
cellulose I is higher than that of cellulose II. It should be noted that after the pretreatment, the cotton fiber
also showed obvious diffraction peak at 2θ = 22.7°, which is the characteristic peak of cellulose I. It
shows that cellulose I and cellulose II crystals coexisted after the pretreatment of cotton fiber, this is
mainly due to reaction time was short, which was not enough to convert cotton fiber from cellulose I
completely into cellulose II in NaOH/urea pretreatment system. In addition, the crystallinity of raw cotton
fiber was 78.3%, and crystallinity of the pretreated cotton fiber was only 54.9% (according to the height
method [type 2]) when the conditions were: temperature of the entire system at 0°C, the solid-liquid ratio
at 2:50, and NaOH/Urea of 7:12. These results demonstrate that pretreatment process can reduce the
crystallinity of cotton fiber and change the fiber crystal form, thus improving the cotton fiber reaction.

4.4 Effect of Pretreatment on the Chemical Structure of Fibers
As can be seen from Fig. 4, the derivative functional group formed by NaOH/urea solvent system was

-CONH2. The peaks in 1200–1400 cm-1 region (designated as the C–H deformation vibrations, the O-H
bending vibration and the CH2 shimmy motion) are related to crystallinity rather than lattice type [21].
Compared with the raw cotton, the intensity of peaks for cotton fiber after pretreatment became
significantly weaker, which also indicates that the crystallinity was decreased. The peaks at 3411 cm-1 for
the pretreated cotton fiber were shifted to a higher wavenumber (around 3455 cm-1, blue shift) and their
intensity was slightly decreased. This implied that the hydrogen bonds of fiber were broken and their
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Figure 3: XRD patterns of cotton fibers without pretreatment (a) and after pretreatment using aqueous
NaOH/urea solution under the following conditions (b) −15°C, 7:12, 2:50; (c) −10°C, 7:12, 2:50; (d) 0°
C, 7:12, 2:50; (e) 0°C, 7:12, 2:30; (f) 0 °C, 7:12, 2:70
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association degree decreased after the pretreatment. In particular, the peak intensity was the weakest for the
sample pretreated at the reaction temperature of 0°C and NaOH/urea ratio of 7:12.

4.5 Effect of Pretreatment on Cotton Fiber Hydrolysis
The untreated and pretreated cotton fibers were respectively added to 5 wt.% hydrochloric acid solution

and reacted at 230°C for 5 h. The yield of glucose from cotton fiber hydrolysis is shown in Fig. 5a. The
primary hydrolyzed product of cotton fiber was glucose, which is easy to decompose in high-temperature
aqueous solution. Therefore, with the extension of reaction time, the yield of glucose from both samples
showed a trend of first increasing and then decreasing. However, the hydrolysis efficiency of cotton fiber
was improved greatly after pretreatment. The hydrolysis rate reached 6.40% at 0.5 h and reached a peak
of 29.99% at 2 h. Moreover, the untreated cotton fiber reached the maximum hydrolysis rate of only
16.00% at 2.5 h. This was mainly due to the rapid dynamic self-assembly of cellulose macromolecules in
cotton fiber after NaOH/urea pretreatment to form hydrogen bond keyed clathrate. This caused the fibers
to be evenly dispersed in water system, and resulted in the decrease in cotton fiber crystallinity and
partial hydrogen bond damage. These factors promoted the hydrolysis efficiency of cotton.

Fig. 5b shows the glucose yield curve of cotton fiber before and after pretreatment at 5 wt.%
hydrochloric acid concentration for 2 h in the reaction temperature range from 160°C to 260°C. As
observed in the figure, pretreatment was beneficial to reduce the decomposition temperature of cotton
fiber. The untreated cotton fiber generated a large amount of glucose at 180°C, while glucose was
produced from pretreated cotton fiber at 160°C, indicating that pretreatment can significantly reduce the
initial hydrolysis temperature of cotton fiber. With the increase in temperature, the glucose yield of
pretreated cotton fiber increased rapidly, reaching a peak of 29.99% at 230°C, and then began to decrease
due to the accelerated decomposition rate of glucose. The glucose yield of untreated cotton fiber was
16.80% at 260°C, indicating that the pretreatment process could significantly improve the hydrolysis
efficiency of cotton fiber.

Fig. 5c shows the glucose yield curve of cotton fiber before and after pretreatment at the reaction
temperature of 230°C, heat preservation for 2 h and hydrochloric acid concentration of 1–5.5 wt.%. It can
be seen that the yield of glucose from cotton fiber hydrolyzed by pretreatment was higher than that from
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Figure 4: FTIR spectra of cotton fibers without pretreatment (a) and after pretreatment using aqueous
NaOH/urea solution with the following conditions (b) −15°C, 7:12, 2:50; (c) −10°C, 7:12, 2:50; (d) 0°C,
7:12, 2:50; (e) 0°C, 7:12, 2:30; (f) 0°C, 7:12, 2:70
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the untreated cotton fiber with the same acid concentration. Moreover, for the cotton fiber after pretreatment,
glucose yield increased rapidly when the concentration of acid was 1.5–4 wt. %, whereas the glucose yield of
untreated cotton fiber increased faster in the acid concentration range of 2–4.5 wt. %. The results showed that
H+ could catalyze the hydrolysis of cotton fiber more effectively due to some crystal structure and hydrogen
bond damages.

5 Conclusions

Herein, the effects of NaOH/urea pretreatment on the structure and properties of waste cotton fibers were
investigated. It was found that the NaOH/urea system had a weak effect on the dissolution of cotton fibers,
but it could cause full swelling of the cotton fibers. The water retention value of the cotton fibers after
pretreatment with NaOH/urea aqueous system was 27.37%, when the temperature was 0°C, the solid-
liquid ratio was 2:50, and the NaOH/urea ratio was 7:12. Moreover, it was observed that the surface
structure of cotton fiber was damaged, the crystallinity was reduced, and some internal cellulose crystal
forms were changed after pretreatment. The hydrolysis efficiency of cotton fiber after pretreatment was
significantly improved. When the hydrothermal temperature was 230°C, the heat preservation was 2 h,
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production from untreated and pretreated cotton fibers. Conditions: (a: 230°C, 5wt.%; b: 2h, 5wt.%; c:
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and the hydrochloric acid concentration was 5 wt.%, the glucose yield reached 29.99%. The results indicated
that H+ could catalyze the hydrolysis of cotton fiber more effectively due to some damage to the crystal
structure and hydrogen bonds. The proposed pretreatment system can be potentially used as a high value
method to utilize waste cotton fabrics.
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