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Abstract: The steel-bamboo composite structure is a newly developed structure,
combining phyllostachys pubescens (also called Moso bamboo) plywood and
cold-formed thin-walled steel with structural adhesive. The reliability of steel-
bamboo interface is the premise of composite effect. 13 specimens were prepared
to investigate the failure modes and mechanism of the steel-bamboo interface on
the basis of push-out test, and the strain difference analysis method was proposed
to study the distribution of shear stress. The results show that the main failure
modes of steel-bamboo interface are adhesion failure and splitting of bamboo ply-
wood. The shear stress is not evenly distributed along the longitudinal direction of
the interface, showing a shape of “larger at two ends and smaller in the middle”.
The lower end of the interface is the initial location of the interface failure and the
shear stress concentration degree is positively correlated with the thickness of the
externally bonded bamboo plate. The shear resistance of steel-bamboo interface
can be enhanced by improving the adhesion between steel and structural adhesive
and ameliorating the quality of bamboo products.

Keywords: Cold-formed thin-walled steel; bamboo plywood; strain difference;
steel-bamboo interface; push-out test

1 Introduction

China is rich in bamboo plant resources and ranks first in the world in terms of bamboo species, planting
area, storage volume and felling volume [1]. In recent years, more and more attention has been paid to the
application of environment-friendly bamboo materials, which has the advantages of rapid growth, high yield,
high strength, excellent rigidity, natural degradation and non-pollution when compared with traditional
building materials. Xiao et al. [2], Huang et al. [3] and Li et al. [4] have systematically studied the
mechanical properties of modified bamboo and a variety of modern bamboo structure building systems
have been developed [5–10]. The application of bamboo in practical projects after reasonable design will
help to promote green and sustainable development of construction industry [11].

In order to make a difference in the application status of bamboo in the form of raw bamboo or simple
processing in the construction industry and to improve the additional value and technical content of bamboo,
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the steel-bamboo composite structure was proposed, which combined bamboo plywood and cold-formed
thin-walled steel with structural adhesive. Components of steel-bamboo composite structure are
characterized by flexible cross section, light weight and excellent mechanical properties. The composite
building has the advantages of green, energy saving and good aseismic performance [12]. So far, a large
number of experimental studies have been carried out on steel-bamboo composite components, including
composite columns [13], composite beams [14,15], composite slabs [16,17], composite walls [18] and
composite joints [19]. Results show that the reliable bonding between bamboo and steel is the basic
premise of the composite effect of steel-bamboo composite structure, therefore, the research on shear
stress of steel-bamboo interface is of great significance.

Both steel-bamboo composite structure and steel reinforced concrete (SRC) structure are modern
composite structure. The bonding theory has always been an important research field of SRC structures,
its research route and achievements have great reference significance for the study of steel-bamboo
interface shear stress. Scholars represented by Bryson et al. [20] used push-out test and short column test
to study the bonding performance between steel and concrete. It is found that the push-out test can better
simulate the bond-slip stress state and more accurately measure the interfacial bonding strength [20].
Hawkins fabricated 22 specimens for push-out test, taking the steel section, concrete type and the degree
of encasement for the steel section into consideration, then a procedure was proposed for predicting the
behavior up to collapse of the beam [21]. Hamdan et al. [22] examined the effects of surface condition
and transverse stirrup ratio on the bonding strength of steel reinforced concrete by push-out test, results
showed that increasing the transverse stirrup ratio and sand blasting on the surface of the steel can
significantly improve the bond strength of the steel reinforced concrete. Wium investigated the
mechanism of force transfer from steel to concrete in composite columns by means of several tests on
short composite columns, it is reported that shear resistance is closely related to the dimension of the
embedded steel section [23]. Zhang has carried out a series of push-out test and short column test on the
bond-slip behavior of steel reinforced high-strength concrete, showing that the bonding stress is
exponentially distributed and the distribution in various parts of the cross section of steel is uneven [24].
Zhao has made a systematic and further study on the bond-slip problem of steel reinforced concrete,
independently developed the built-in steel-concrete electronic slip sensor, which solved the difficult
problem about the measurement of internal slip and obtained the position function which illustrates the
local bonding stress-slip constitutive relationship [25,26]. Zheng carried out a large number of tests on
bond-slip behaviors of SRC specimens, put forward the distribution characteristics, composition and
transforming mechanism of the bond stress on the steel-concrete surface, which provide a theoretical
basis for the numerical analysis of SRC composite structures [27,28].

In this paper, 13 specimens in 6 groups were designed and fabricated for the push-out test. The failure
modes of steel-bamboo interface and the longitudinal strain distribution of specimen were analyzed,
furthermore, on the basis of the strain difference method and data fitting, calculation methods of shear
stress at the steel-bamboo interface and bearing capacity were established respectively.

2 Specimens and Loading

2.1 Specimens
To study the shear bonding properties of the steel-bamboo interface, it should be designed as close as

possible to the pure shear stress state, therefore the push-out test is a preferable method to simulate this
state [29]. When designing the test scheme, two problems need to be noticed: the thickness of the cold-
formed thin-walled steel is relatively small, so it is prone to buckling easily under compression; the lower
end of the specimen has a high local stress thus the premature failure of the material at the lower end
should be avoided. After a series of scheme comparison, the structure of the push-out specimen is
determined, shown in Fig. 1.
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Thirteen specimens were designed and fabricated in the test. According to the different thickness of the
bamboo plywood, they were divided into 6 groups, which are denoted as TZb, TZe, TZf, TZg, TZh and TZi,
parameters of the specimens are shown in Tab. 1. The bonding interface is 500 mm in length and the short
column is 100 mm higher at the top and 100 mm lower at the bottom than bamboo plywood C. In Fig. 1, the
black solid line indicates two cold-formed thin-walled steel placed face to face. According to ISO 6892-1
“Metallic materials-Tensile testing-Part 1: Method of test at room temperature” and ISO 16978 “Wood-
based panels-Determination of modulus of elasticity in bending and of bending strength”, mechanical
properties of the steel and bamboo plywood in the test were investigated. The inner dimension of the
2 mm thick steel is 120 mm × 60 mm, and the modulus of elasticity and yield strength are 177 GPa and
260 MPa respectively.

The fabrication of the specimen is described as follows: first, the cold-formed thin-walled steel was bent
into U shape and two pieces of bamboo plywood Awere adhesively bonded to internal web surface of the U
shape steel. Then, two pieces of bamboo plywood B were attached to the steel flanges to form the short
column. Finally, two pieces of bamboo plywood C were respectively bonded to the external surface of
the steel web and the lower end of the bamboo plywood C was reinforced to prevent compression failure.
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Figure 1: Cross section and dimensions of push-out specimen (a) Cross section of the short column (b)
Schematic diagram of specimen
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Strain gauges were equally spaced on the surface of bamboo plywood C and bamboo plywood A at the
corresponding positions.

The curing of the structural adhesive refers to the process in which the adhesive transforms from liquid
state to solid state by applying certain pressure on the bonding surface under appropriate temperature for a
period of time. Therefore, special attention should be paid during the specimen fabrication: (1) the structural
adhesive should be applied at room temperature; (2) afterwards, a certain amount of heavy objects should be
evenly placed on the steel-bamboo interface, however, they should not be too heavy or it may lead to
excessive overflow of the internal colloid; (3) then, the specimen was stationary placed in the laboratory
for 48 hours for curing. In addition, at the beginning of interfacial bonding, the surface of the thin-walled
steel and bamboo plywood should be sanded and polished, then wipe the surface with anhydrous alcohol,
which can not only make the surface of the two materials have a certain degree of roughness, but also
remove surface pollutants and oxidation layer, so as to obtain good bonding effect. During the curing
process, the structural adhesive is in a liquid state before cured, it is necessary to use clamps to fix the
adherends on both sides of the adhesive, the fabrication process and the specimens are shown in Fig. 2.

2.2 Test Schemes and Test Contents
Test was carried out in the civil engineering laboratory of Ningbo University and the loading instrument

was an electro-hydraulic servo universal testing machine, of which the hinged support end plate with
automatic centering function was in contact with the upper end of the specimen, as the movable
automatic centering base contacted the lower end. To prevent the specimen from unexpected falling
during the test, iron blocks were arranged on both sides at the reinforced end of bamboo plywood C. The
loading process was controlled by a computer that the load of each stage is increased by 10 kN and
maintained for 3 minutes. The strain data were collected three times for every stage using DH3816 static
strain testing system. Before the formal loading, a preloading of 5 kN was performed to check whether
the instrument and equipment were all in a normal state.

3 Failure Modes of Specimens

According to references [30–34], there are four common modes of bonding failure: (1) adhesion failure,
which occurs between adhesive layer and adherends; (2) cohesion failure, which happens inside the adhesive
layer; (3) destruction of the adherends; (4) multiple failure, in which various failure modes are found
simultaneously.

Table 1: Parameters of specimens

Specimen Quantity Thickness
of bamboo
plywood
A/B (mm)

Thickness
of bamboo
plywood
C (mm)

Elastic
modulus
of bamboo
plywood
C (MPa)

Dimension
of steel (mm)

Yield
strength
of steel
(MPa)

Elastic
modulus
of steel
(GPa)

Overlap
length
(mm)

TZb 3 26 26 6554 120 × 60 × 2 260 177 500

TZe 2 10 18 4931 120 × 60 × 2 260 177 500

TZf 2 10 22 9640 120 × 60 × 2 260 177 500

TZg 2 22 22 9640 120 × 60 × 2 260 177 500

TZh 2 18 22 9640 120 × 60 × 2 260 177 500

TZi 2 22 18 4931 120 × 60 × 2 260 177 500
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On the basis of above-mentioned classification of bonding failure, there are two failure modes for steel-
bamboo push-out specimen, including adhesion failure and destruction of the adherends. Fig. 3a illustrates
adhesion failure of specimen TZb-2, deformation of bamboo plywood C and short column were small in the
initial loading stage, due to the limitation of bamboo plywood production technology, there was a certain

Figure 2: Fabrication process of specimens (a) Bonding of bamboo plywood A and steel (b) Bonding of
bamboo plywood C and short column (c) Cross section of specimen (d) Completed specimens

Figure 3: Failure modes of specimens (a) Adhesion failure (b) Destruction of the adherends
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clearance between bamboo strands, which was gradually compacted with the increasing load. When the load
increased to 80% of the ultimate load, obvious extrusion deformation was found at the lower end of bamboo
plywood C accompanied with slight degumming sound. As the load was about to reach the ultimate load, two
pieces of bamboo plywood C were progressively separated from the short column along with continuous
degumming sound. Meanwhile, the short column finally fell to the ground as the load instantly attenuated
to zero. The failure exhibited obvious brittle characteristics, and more adhesive remained on the surface
of bamboo plywood C. Fig. 3b shows the destruction of the adherends in specimen TZf-1, which was
caused by inadequate bearing capacity of the bamboo plywood. The preliminary experimental phenomena
were similar to adhesion failure. When the load reached a certain value, longitudinal cracks appeared at
the lower end of the bamboo plywood C. As the load increased, the crack developed continuously along
the longitudinal direction until penetrating cracks were formed, which eventually results in the transverse
connection failure.

4 Analysis of Bonding Shear Stress

To analyze the structure, the coordinates in Fig. 4 is built. The origin of the coordinate is set at the upper
end of the bonding interface. The following assumptions are adopted in the analysis process:

1. Only axial compression deformation is considered for bamboo plywood C and short column.

2. In the pre-experiment, strain gauges are attached on the internal surface of the steel and the external
surface of the bamboo plate A in short column, data of strain gauges at corresponding positions are
highly consistent during the test. Thus, it can be concluded that the short column conforms to the
plane section assumption.

3. According to references [34,35], only the longitudinal shear deformation is considered for the adhesive
layer and the shear stress remains constant along the direction of thickness and width in the adhesive
layer, while other factors are neglected.
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Figure 4: Free body diagrams
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Based on assumption Eq. (2), the composite elastic modulus Esc of the short column can be expressed as

Esc¼EsCsþEbCb (1)

where Es and Eb are the elastic modulus of cold-formed thin-walled steel and bamboo plywood, Cs and Cb

respectively represent the area proportion of thin-walled steel and bamboo plywood in cross section of the
short column.

According to the analysis of the infinitesimal element shown in Fig. 4, the predict model of shear bond
stress distribution can be derived as follows.

The equilibrium relationship between internal forces can be obtained according to Fig. 4.

Nc þ tbdx ¼ Nc þ dNc (2)

Nsc ¼ 2tbdxþ Nsc þ dNsc (3)

where Nc and Nsc are axial force of the bamboo plywood C and short column respectively. s is the shear bond
stress in the adhesive layer and b is width of the bamboo plywood C as well as the web height of the cold-
formed thin-walled steel.

Then, the constitutive relationships can be expressed as

ec ¼ Nc= EbAcð Þ (4)

esc ¼ Nsc= EscAscð Þ (5)

s ¼ G � c (6)

The longitudinal strains of bamboo panel C and the short column are denoted as ec and esc respectively.
The cross-sectional areas of bamboo panel C and the short column are presented as Ac and Asc respectively.
The shear elastic modulus is G and the shear strain of adhesive is c.

Further, geometric relations can be expressed as

ec ¼ duc=dx (7)

esc ¼ dusc=dx (8)

c ¼ s=d (9)

s ¼ uc � usc (10)

where uc and usc are the longitudinal displacement of the bamboo plywood C and the short column at the
same position on both sides of the interface, s is the relative displacement and d is the thickness of the
adhesive layer.

Define the strain difference function as

f xð Þ ¼ ec � esc (11)

Substitution of Eqs. (7), (8) and (10) into Eq. (11) yields

f xð Þ ¼ duc=dx� dusc=dx ¼ ds=dx (12)

Then, substitute Eqs. (6) and (9) into Eq. (12) to obtain the following expression:
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f xð Þ ¼ d s � d=Gð Þ=dx ¼ d=Gð Þ � ds=dx ¼ 1=kð Þ � ds=dx (13)

where k ¼ G=d.

Further, taking derivative with respect to x in Eq. (13),

d2s=dx2 ¼ kdf xð Þ=dx ¼ kd ec � escð Þ=dx (14)

Substitution of Eqs. (4), (5) into Eq. (14) yields

d2s=dx2 ¼ k 1=EbAc � dNc=dx� 1=EscAsc � dNsc=dxð Þ (15)

Substitution of Eqs. (2), (3) into Eq. (15) yields

d2s=dx2 ¼ kbs 1=EbAc þ 2=EscAscð Þ ¼ kbs=EA (16)

where 1=E ¼ A= EbAcð Þ þ 2A= EscAscð Þ and A ¼ 2Ac þ Asc.

The strain difference function f(x) in Eq. (13) is differentiated with respect to x to obtain:

df xð Þ=dx ¼ 1=kð Þ � d2s=dx2 ¼ 1=kð Þ � kbs=EA ¼ bs=EA (17)

Then, the general solution of Eq. (16) can be obtained

s ¼ p1exp �vxð Þ þ p2exp vxð Þ (18)

where v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kb= EAð Þp

, p1 and p2 are undetermined parameters.

Substitution of Eq. (18) into Eq. (13) yields

f xð Þ ¼ �p1vexp �vxð Þ þ p2vexp vxð Þ½ �=k (19)

To consider other influencing factors on the distribution of strain difference, the parameter q4 is
introduced. The dimensionless form of the strain difference function can be expressed as

f xð Þ ¼ �q1exp �q3x=Lð Þ þ q2exp q3x=Lð Þ þ q4 (20)

where q1 ¼ p1v=k, q2 ¼ p2v=k, q3 ¼ v.

According to the strains of the bamboo plywood C and the short column at the same longitudinal
position measured in the experiment, the strain difference can be calculated. Meanwhile, the
undetermined parameters q1, q2, q3 and q4 can be obtained through curve fitting, then the distribution of
longitudinal shear stress can be obtained according to Eq. (13) or Eq. (17). However, considering the
calculation error caused by derivation is smaller than that caused by integral, and the derivative
calculation is more convenient, therefore Eq. (17) is adopted. Finally, the nominal shear bond stress �s can
be derived as

�s ¼ k1exp �k3x=Lð Þ þ k2exp k3x=Lð Þ (21)

where �s ¼ s=sm, sm ¼ N= 2bLð Þ, and N is the load applied on the top of the short column, k1, k2 and k3 are
defined as characteristic coefficients of shear bond stress which can be expressed as k1 ¼ 2q1q3EA=N ,
k2 ¼ 2q2q3EA=N , k3 ¼ q3.

Taking specimen in TZb group as an example, the process of solving shear bond stress by strain
difference is explained in detail. The strain-load curves of bamboo plate C and the short column are
shown in Fig. 5. The strain of the specimen basically shows a linear relationship with the load, indicating
that the specimen can maintain a good linear elasticity throughout the whole loading process, which
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brings a certain convenience to the study of interfacial bonding properties that the plastic mechanical
behavior of materials can be neglected.

The strain distribution curves of specimen TZb-1 at different load levels are shown in Fig. 6. Due to the
existence of interfacial shear bond stress, strain of bamboo plywood C is smaller at the upper end and
presents an increasing trend toward the lower end, which is consistent with the fact that the lower end
contacts the loading plate while the upper end is free. However, the strain distribution characteristic of the
short column is just on the contrary. The appearance of the strain distribution curve is similar to that of
exponential curve, indicating that the distribution of shear bond stress at steel-bamboo interface is not
uniform. For bamboo plywood C and the short column which only consider the axial compression
deformation, distributions of strain, stress and the internal force are similar in curve characteristics,
therefore the distribution of the strain can also reflect the distribution characteristics of the stress and the
internal force.
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Figure 5: Strain-load curves of specimen TZb-1 (a) strain-load curve of bamboo plywood C (b) strain-load
curve of the short column
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According to the measured strains along the longitudinal direction, the strain of bamboo plate C is
subtracted from the strain of the short column at the corresponding position to obtain the strain difference
at each measuring point, shown in Fig. 7. Further, a curve fitting with 4 undetermined parameters is
performed according to Eq. (20). Then, the distribution of the nominal shear bond stress can be obtained
by substituting it into Eq. (21).

Substitution of Eqs. (9) and (10) into Eq. (6) yields

s ¼ G � uc � uscð Þ=d (22)

Taking derivative with respect to x in Eq. (22),

ds=dx ¼ G=d � ec � escð Þ (23)

It should be noted that the pressure is positive during the formula derivation, while the collected strains
is specified to be negative, so that the formula and the strain difference are opposite in signs. It can be seen
that the shear bond stress decreases gradually from the upper end of the interface to the middle, and increases
gradually from the middle to the lower end.

Under the loads of 20 kN, 40 kN, 60 kN and 80 kN, the strain difference distribution curves and the
fitting curve of specimen TZb-1 are shown in Fig. 8, among which the red line represents the fitting
curve and the solid black line represents the strain difference distribution obtained by connecting the
original data with smooth curves. Comparison shows that fitting curves are close to the test curves, which
implies the fitting effect is desirable. The above is the whole fitting process of specimen TZb-1 and the
analysis method of the remaining specimens is similar to this process.

Parameters qi obtained by curve fitting are shown in Tab. 2, which were substituted into the expression to
calculate the characteristic coefficients of shear bond stress ki, it is found that the fluctuation of ki values
under various loads is relatively small. Therefore, the nominal shear stress distribution of specimens in
TZb group can be obtained by taking the average value of ki under various loads, shown in Fig. 9. As
can be seen from the figure, the distribution of shear bond stress in TZb group is close to each other. The
distribution of shear bond stress along the longitudinal interface is uneven, with obvious stress
concentration at the end. The maximum stress is close to the lower end of bamboo plate C, while the
stress value and variation range in the middle are relatively small. This also coincides with the fact that
the failure begins near the lower end of the adhesive layer during the test.
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For specimens in group TZe, TZf, TZg, TZh and TZi, which includes two specimens in each group,
taking the average strains of specimens in same group at the corresponding location to calculate the strain
differences, as shown in Fig. 10. It can be concluded that the overall shape of the strain difference
distribution is same, the maximum strain difference occurred at the lower end of the interface is greater
than that at the upper end, and the middle area of the interface is the low stress area. According to the
method mentioned above, the undetermined coefficient qi and characteristic coefficient ki are determined
respectively. As shown in Fig. 11, the shear bond stress distribution of specimens in each group is
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Figure 8: Comparison of fitting curves and raw data of TZb-1

Table 2: Parameters of specimens TZb-1

Specimens Load (kN) q1(10
–6) q2 (10

–6) q3 q4 (10
–6) k1 k2 k3

TZb-1 50 –175.43 –1.16 6.96 98.20 0.778 0.017 6.96

60 –218.33 –1.51 6.89 114.44 0.776 0.012 6.89

70 –262.84 –1.70 6.95 132.03 0.795 0.009 6.95

80 –307.05 –2.02 6.94 156.01 0.799 0.011 6.94
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Figure 9: Distribution of nominal shearing stress in TZb group
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obtained and the shear stress concentration level is positively correlated with the thickness of the externally
bonded bamboo plate.

5 Analysis of Bearing Capacity

In the above analysis, it can be seen that the stiffness of bamboo plywood C and short column is one of
the influencing factors of shear stress distribution. So that the stiffness ratio of bamboo plate C and short
column is defined as �:
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� ¼ 2EbAc=EscAsc (24)

As the distribution of shear stress is determined by the characteristic coefficient ki, combined with the
above analysis process, it can be found that the characteristic coefficient k1 and k2 is positively correlated
with 1=�, while k3 is positively correlated with

ffiffiffiffiffiffiffiffiffiffiffiffi
EscAsc

p
. Thus, characteristic coefficient ki are fitted in the

following forms:

k1 ¼ exp k3ð Þ=r�þ s (25)

k2 ¼ exp �k3ð Þ=m�þ n (26)

k3 ¼ w=
ffiffiffiffiffiffiffiffiffiffiffiffi
EscAsc

p
(27)

where r, s, m, n and w are undetermined coefficients. Finally, characteristic coefficients are determined as
follows:

k1 ¼ exp k3ð Þ=8�þ 40 (28)

k2 ¼ 15exp �k3ð Þ=�þ 1 (29)

k3 ¼ 32:6=
ffiffiffiffiffiffiffiffiffiffiffiffi
EscAsc

p
(30)

Divide both ends of Eq. (21) by k2exp k3x=Lð Þ yields
�s=k2exp k3x=Lð Þ ¼ k1=k2 � exp �2k3x=Lð Þ þ 1 (31)

Considering the maximum shear stress is located at the lower end of the interface where x=L, thus

�smax=k2exp k3ð Þ ¼ k1=k2 � exp �2k3ð Þ þ 1 (32)

Substitution of Eqs. (28)–(30) into right side of Eq. (32) yields

�smax=k2exp k3ð Þ ¼ �þ 1ð Þ=30 4�þ 20ð Þ þ 1 (33)

Considering the first item of Eq. (33) is approximately equal to zero, then it can be simplified as

�smax ¼ k2exp k3ð Þ (34)

Since �s ¼ s=sm, sm ¼ N= 2bLð Þ, when �s increased to its maximum value �smax, the load N reached Nmax,
so that the bearing capacity Nmax can be expressed as:

Nmax ¼ 2bL �þ 1ð Þ�smax=15 (35)

In Tab. 3, the theoretical bearing capacities of specimens in each group are calculated in accordance with
Eq. (35), which agrees well with the experimental results.

Table 3: Theoretical and experimental bearing capacities

Specimens TZb TZe TZf TZg TZh TZi

Nmax (kN) 93.15 94.44 97.57 96.67 100.99 94.00

Nexp (kN) 130 110 120 130 100 80

Nmax/ Nexp 0.72 0.86 0.81 0.74 1.01 1.18
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6 Conclusions

On the basis of the elasticity theory, a strain difference analysis method for solving the shear bond stress
and a calculation method for bearing capacity are proposed. The following conclusions can be drawn from
the study:

1. When the thin-walled steel and bamboo plywood are only sanded on the surface and bonded with
structural adhesive, the failure of the interface exhibits obvious brittle characteristics. The main failure
modes of steel-bamboo interface are the adhesion failure and the splitting of bamboo plywood along
the longitudinal direction.

2. The shear bond stress distributes unevenly along the longitudinal direction. The stress value in the middle
of the adhesive layer is small, and the value and variation range become greater at both ends. The
maximum value occurred near the lower end of the adhesive layer, it is the position where failure
initiates. Measures should be taken to strengthen the end of the interface in engineering application to
improve the shear resistance of the interface.

3. The distribution pattern of shear bond stress is basically the same for specimens made of bamboo plywood
and thin-walled steel with different thickness. The distribution of nominal shear stress at the end of the
two groups is significantly different. The amplification effect of nominal shear stress at the end is
positively correlated with the thickness of bamboo plywood C.

4. According to the failure phenomena of specimens and the distribution characteristics of interfacial shear
stress, the shear resistance of steel-bamboo interface can be increased by improving the bonding
performance between thin-walled steel and structural adhesives, and the quality enhancement of
bamboo plywood is also effective. The failure of the steel-bamboo interface should be ductile, which
can be achieved through the development and application of new structural adhesives, as well as the
innovation of combination method for steel-bamboo interface.

5. A calculation method of bearing capacity is proposed on the basis of maximum shear stress. The
calculated value is in good agreement with the experimental results, which also proves the validity of
the calculation method for shear stress.
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