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Abstract: Workers’ exposure to excessive noise is a big universal work-related
challenges. One of the major consequences of exposure to noise is permanent
or transient hearing loss. The current study sought to utilize audiometric data to
weigh and prioritize the factors affecting workers’ hearing loss based using the
Support Vector Machine (SVM) algorithm. This cross sectional-descriptive study
was conducted in 2017 in a mining industry in southeast Iran. The participating
workers (n = 150) were divided into three groups of 50 based on the sound pres-
sure level to which they were exposed (two experimental groups and one control
group). Audiometric tests were carried out for all members of each group. The
study generally entailed the following steps: (1) selecting predicting variables
to weigh and prioritize factors affecting hearing loss; (2) conducting audiometric
tests and assessing permanent hearing loss in each ear and then evaluating total
hearing loss; (3) categorizing different types of hearing loss; (4) weighing and
prioritizing factors that affect hearing loss based on the SVM algorithm; and
(5) assessing the error rate and accuracy of the models. The collected data were
fed into SPSS 18, followed by conducting linear regression and paired samples
t-test. It was revealed that, in the first model (SPL < 70 dBA), the frequency of
8 KHz had the greatest impact (with a weight of 33%), while noise had the smallest
influence (with a weight of 5%). The accuracy of this model was 100%. In the sec-
ond model (70 < SPL < 80 dBA), the frequency of 4 KHz had the most profound
effect (with a weight of 21%), whereas the frequency of 250 Hz had the lowest
impact (with a weight of 6%). The accuracy of this model was 100% too. In the
third model (SPL > 85 dBA), the frequency of 4 KHz had the highest impact (with
a weight of 22%), while the frequency of 250 Hz had the smallest influence (with a
weight of 3%). The accuracy of this model was 100% too. In the fourth model, the
frequency of 4 KHz had the greatest effect (with a weight of 24%), while the fre-
quency of 500 Hz had the smallest effect (with a weight of 4%). The accuracy of
this model was found to be 94%. According to the modeling conducted using the
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SVM algorithm, the frequency of 4 KHz has the most profound effect on predicting
changes in hearing loss. Given the high accuracy of the obtained model, this algo-
rithm is an appropriate and powerful tool to predict and model hearing loss.

Keywords: Noise; modeling; hearing loss; data mining; support vector machine
algorithm

1 Introduction

Noise exposure is a common consequence of industrialization that there is no significant relationship
between its pressure, frequency, and wavelength ranges; These types of noises (that have no significant
relationship between its characteristics (pressure, frequency, and wavelength ranges)), are produced and
emitted considerably in different industries [1]. In fact, exposure to excessive noise has become a widely-
blamed harmful agent and a major risk factor among workers in various industries [2]. Numerous studies
have shown that harmful factors in the workplace such as noise, vibration, and shift work and so on have
detrimental effects on workers’ health [3–6]. The effects of environmental noise pollution have become
even more profound because of the speedy growth of economy and urbanization [7].

In the US, over 30 million workers are exposed to dangerous noises (85 dB) (A-weighted noise exposure
level normalized to an 8 hour working day) and 7.4–10 million industrial workers are at the risk of hearing
loss caused by occupational noise [8]. In Michigan only, around 86000 people are suffering from noise-
induced hearing loss. Although this hazard can be prevented, hearing loss is a common occupational
disease in the US [9]. In 1990, $200 million were paid in compensation for hearing loss caused by noise
exposure [10]. On the other hand, over the past 10 years, the proportion of the European population at
the risk of exposure to noises above 65 dB has increased from 15% to 26% [11].

Exposure to excessive noise will lead to physiological (high blood pressure, adrenaline secretion, more
likelihood of heart attack, change in respiratory rate and the amount of consumed oxygen, deterioration of the
auditory system, and increase in stomach and intestinal activities) as well as psychological, social, and
economic complications. Furthermore, work efficiency tends to decline in people who are exposed to
excessive noise. Such individuals are also more likely to face problems in their communicative abilities
and understanding of warning/safety sings [12,13]. Many cases of absenteeism in industrial environments
and workers’ report of chronic fatigue and suffering in many indicators of physical health can further be
attributed to excessive noise exposure. Research has also revealed that people who are in contact with
harmful noise demonstrate impaired psychological responses, especially in stressful situations, and report
reduction in the quality and quantity of their sleep [14]. One of the major consequences of exposure to
excessive noise is permanent or transient hearing loss [8].

Noise-induced hearing loss commonly occurs in the first 10–15 years of work if workers are in contact
with high frequency noises (over 4000 Hz). The degree of the influence of excessive noise exposure depends
on various personal and environmental factors. Noise-induced hearing loss classically affects frequencies
less than 3, 4, and 6 KHz first. If exposure to noise prolongs for longer times, individuals’ ability in
hearing higher frequency noises will be impaired too. Thus, audiometry should be conducted for the
definitive diagnosis of hearing loss [9]. Age and work experience are believed to influence both
permanent and transient noise-induced hearing loss [10].

Audiometry is a method for assessing people’s hearing sensitivity, hence shedding light on the nature,
degree, and probable causes of hearing impairment [15,16]. Using this technique, auditory stimuli with
different intensity levels are presented to the person and his/her responses are recorded. The hearing
threshold is determined in the light of the minimum intensity level stimulus to which the person responds
consistently. The output of this diagnostic test, known as audiogram, can be used for adopting appropriate
treatments and hearing aids [16,17].
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Data mining (DM), which is a subfield of computer science and is located at the intersection of artificial
intelligence, machine learning, statistics, and database systems, is a process for detecting patterns in large
data sets. DM is intended to extract information from a set of data and transform it to an easily
understandable structure. The extracted information may include categorization and estimation of
outcomes after an intervention, detection of associations among different variables, or prediction of
deviations [18]. In the current study, DM was adopted for two reasons: first, DM is different from
applying algorithms blindly, hence the usefulness of the extracted information. Thus, successful
application of DM needs appropriate knowledge within the studied domain and clearly stated objectives
[19]. Second, the use of DM in new areas usually casts light on interesting issues that are unknown to
commonly used techniques. This presents opportunities for useful algorithmic development and
extensions [20].

Over the past years, since support vector machines (SVM) has demonstrated appropriate generalization
performance in a wide array of learning problems (e.g., handwritten digit recognition, classification of web
pages, and face detection), researchers in the community of machine learning have become interested in its
application. Problems like multilocal minima, curse of dimensionality, and neural network overfitting are
rarely observed in SVM. Further, originating from statistical learning theory, SVM has a rigid theoretical
basis. Nonetheless, training SVM is still a challenge, particularly for a large-scale learning problem. As a
result, it is necessary to devise a fast training SVM algorithm to be applied to various engineering
problems in our field [21].

Since hearing loss is a widespread disorder caused by excessive noise, it imposes huge costs on
industrial workers or individuals who are in contact with noise. However, few studies have tried to weigh
and prioritize factors affecting workers’ hearing loss based on audiometric findings by the use of SVM
algorithm. Therefore, the present study aimed to:

1- Determine workers’ equivalent sound level and other predictor factors.

2- Assess the hearing loss of both ears.

3- Weigh and prioritize factors that may affect hearing loss based on SVM algorithm.

4- Estimate the error rate and accuracy of the models emerging from the SVM algorithm.

2 Materials and Methods

2.1 Sampling Procedure
The study was conducted in a mining industry in southeast Iran. In the light of individuals’ equivalent

sound level, the findings of previous studies, and the type of algorithm used in modeling hearing loss, three
groups (a control group in the office that was exposed to a low equivalent sound level and two case groups
that were selected from the workshop and were exposed to high equivalent sound level) were generally
involved in the study. Based on the sound equivalent level of the three groups, fifty participants were
included in each group, hence having 150 participants in total [22].

2.2 Research Design
This study adopted a cross-sectional, descriptive, analytical, prospective design. It generally entailed the

following steps: (1) selecting predicting variables to weigh and prioritize factors affecting hearing loss; (2)
conducting audiometric tests and assessing permanent hearing loss in each ear and then evaluating total
hearing loss; (3) categorizing different types of hearing loss; (4) weighing and prioritizing factors that
affect hearing loss based on the SVM algorithm; and (5) assessing the error rate and accuracy of the
models [23].
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2.3 Selecting the Variables Influencing Hearing Loss (PREDICTORS)
Age, work experience, equivalent sound level, and frequency were taken into consideration for weighing

and prioritizing factors that may influence hearing loss among individuals [23,24]. All the participants were
adults with three age ranges, namely 20–35, 35–50, and over 50 years old [23]. With regard to their work
experience, the participants were divided into three groups too: less than 10 years of experience, between
10 and 20 years of experience, and over 20 years of experience [22]. Following ISO 9612, equivalent
sound level was measured using a TES-1345 dosimeter manufactured in Taiwan. Before using the
machine, a CEL 110/2 calibrator (made in the UK) was utilized to calibrate the dosimeter [25,26]. Pure-
toe hearing thresholds were recorded at 250, 500, 1000, 2000, 4000, 6000 and 8000 Hz using a CA 120
clinical audiometer manufactured in Denmark [27,28]. Upon eliminating the effect of age, hearing loss
estimates in four frequencies (500, 1000, 2000, and 4000 Hz) were entered into Eq. (1), hence computing
noise-induced hearing loss (NIHL). Then, Eq. (2) was exploited to calculate permanent hearing loss [28,29].

NIHL ¼ TL500 Hzð Þ þ TL1000 Hzð Þ þ TL2000 Hzð Þ þ TL4000 Hzð Þ
4

(1)

TL: the hearing loss of each ear in a particular frequency (dB)

NIHL: noise-induced hearing loss (dB)

NIHLt ¼
NIHLb � 5ð Þ þ NIHLp

� �
6

(2)

NIHLt: the permanent hearing loss in both ears (dB)

NIHLb: the permanent hearing loss of the better ear (dB)

NIHLp: the permanent hearing loss of the poor ear (dB)

According to the classification proposed by the World Health Organization (WHO), the hearing ability
in the range of 0–25 dBA is regarded as normal hearing, while that in the range of 40–26 dBA is known as
mild injury. In addition, people with hearing thresholds of 41–60 dBA, 61–80 dBA, and over 80 dBA are
believed to suffer from moderate, severe, and profound hearing loss respectively [30].

2.4 Weighing and Prioritizing Factors Affecting Hearing Loss Using SVM
Finally, modeling the hearing loss of workers was done by entering all information about age, work

experience, equivalent sound level and hearing loss frequencies in IBM SPSS Modeler 18.0. The
algorithm’s function is described as follows.

2.4.1 Support Vector Machine Algorithm
A major way through which people perceive the world and receive the required knowledge is learning

from the data. Let fxi; yig, i ¼ 1;…; l, yi 2 f�1; 1g and xi 2 IRn be the training samples where xi is the
training vector and yi is its corresponding target value. To have consistent notations, lowercase bold
letters are used to refer to column vectors (for example, xi), while uppercase bold letters are used to show
matrices. The notation ðAÞij is used to refer to the (i th) rowand the (j th) column element of matrix ðAÞ
[31]. According to Boser et al., the training Support Vector Machine for a pattern recognition problem
can be formulated as the quadratic optimization problem [32]. Its function is showed in Eq. (3):

maximize :
Xl
i¼1

ai � 1

2
aTQa (3)
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subject : 0 � ai � C;Pl
i¼1

yiai ¼ 0;
i ¼ 1;…; l

where a is a vector of length l and its component ai corresponds to a training sample fxi; yig, Q is a l � l
semidefinite kernel matrix, and C is a parameter chosen by the user. A larger C assigns a higher penalty
to the training errors. The training vector xi whose corresponding ai is nonzero is known as support
vector. Support vector machine maps training vector xi into a high-dimensional feature space by the
function �ðxÞ such that ðQÞij ¼ yiyjðKÞij ¼ yiyjKðxi; xjÞ and Kðxi; xjÞ ¼ �T ðxiÞ�ðxjÞ. When the above
optimization problem is solved, we can obtain an optimal hyperplane in a high-dimensional feature space
to make a distinction between the two-class samples. The decision function is given by Eqs. (4) and (5):

f ðxÞ ¼ sgn
Xl
i¼1

yiaiK xi; xð Þ � b

 !
; (4)

where

sgnðuÞ ¼ 1; u. 0;

�1;
for

u, 0:
ð5Þ

�

In the latter algorithm, a technique presented by Keerthi et al. is used to choose the two variables for
optimization and determine the stopping conditions. First, training patterns are split into five sets [33,34]:

1: I0 ¼ i : 0, ai ,Cf g;
2: I1 ¼ i : yi ¼ 1; ai ¼ 0f g;
3: I2 ¼ i : yi ¼ �1; ai ¼ Cf g;
4: I3 ¼ i : yi ¼ 1; ai ¼ Cf g;
5: I4 ¼ i : yi ¼ �1; ai ¼ 0f g:

Then, we define them in Eq. (6):

bup ¼ Fi�up ¼ min Fi : i 2 I0 [ I1 [ I2f g;
blow ¼ Fi�low ¼ max Fi : i 2 I0 [ I3 [ I4f g; (6)

where Fi ¼
Pl

j¼1 yjajK xj; xi
� �� yi. As demonstrated by Keerthi et al., conditions for an optimal solution to

(Eq. (3)) hold at some a if and only if blow � bup. Additionally, the worst violating pair of patterns
i� up; i� lowð Þ are chosen for optimization, which may result in a measurable rise in the objective
function [33].

2.4.2 Assessing the Accuracy of the Model Generated by SVM Algorithm
In categorization algorithms, which are used for classifying discrete output variables, criteria such as

accuracy, confusion matrix, sensitivity, features, etc. are used for conducting assessment. In the current
study, accuracy and confusion matrix were utilized. Confusion matrix is a square matrix whose
dimensions are equal to the number of output categories. In this matrix, the main diameter indicates the
percentage of accurate predictions. According to Eq. (7), accuracy of the model is obtained by dividing
the percentage of correct predictions by all predictions [35].
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Accuracy ¼ True Postive casesþ True Negative cases
All cases

(7)

2.5 Ethical Considerations
Ethical approval was sought from the Ethics Committee of Kerman University of Medical Sciences (ID:

IR.KMU.REC. 1396.2458). In addition, all the participants signed a written consent form prior to the study.

2.6 Data Analysis
The collected data were fed into the Statistical Package for Social Sciences (SPSS) version 18 (SPSS,

Inc., Chicago, Illinois, USA).The obtained mean scores, standard deviations, and correlation coefficients
were analyzed using linear regression and paired samples t-test. Also, IBM SPSS Modeler 18.0 was used
to model changes in hearing loss.

3 Results

3.1 Demographic Information
Tab. 1 demonstrates the participants’ demographic information.

3.2 Measuring Equal Sound Level
The participants in the first group were exposed to equal sound level of less than 70 dB, while those in

the second and third groups were exposed to equal sound levels of 70–80 dB and over 85 dB respectively.
The mean scores and standard deviations of equivalent sound level for the three groups respective were 70 ±
3 dB, 77.62 ± 4.43 dB, and 89.7 ± 3.03 dB.

3.3 The Results of Hearing Loss
Tab. 2 displays the results related to hearing loss of workers’ both ears. The results are divided into

5 categories in the light of the degree of hearing loss. The results of paired samples t-test showed no
significant difference in the hearing loss of right and left ears of participants in the three groups in similar
frequencies (P > 0.05).

3.4 Modeling Hearing Loss Changes
In this study, four different models of hearing loss changes were calculated. The first model represents

the audiometric data of the first group (SPL < 70 dBA), the second model entails the audiometric data of the
second group (70 < SPL < 80 dBA), the third model demonstrates the audiometric data of workers in the thrid
group (SPL > 85 dBA), and the fourth model is based on the audiometric data of all participating workers.

Table 1: Demographic information of the study sample (n = 150)

Variables Mean SD*

The first group (n = 50)
(SPL < 70 dBA)

Age 37.66 9.91

Work Experience 9.1 4.9

The second group (n = 50)
(SPL 70–80 dBA)

Age 35.56 11.45

Work Experience 8.48 5.38

The Third group (n = 50)
(SPL > 85 dBA)

Age 41.76 10.93

Work Experience 11.34 5.32
* SD = Standard deviation
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3.4.1 The First Model: Modeling Hearing Loss Changes Based on Audiometric Data of Workers in the

First Group (SPL < 70 dBA)
Fig. 1 demonstrates the output model presented by IBM SPSSModeler 18.0 for the hearing loss changes

of workers in the first group. It is observed that the frequency of 8 KHz with a weight of 33% had the greatest
influence, while noise (with a weight of 5%) had the lowest impact.

Tab. 3 illustrates the results of the corresponding confusion matrix. The model presented an accurate
prediction for all workers whose hearing loss was normal or mild. The accuracy of SVM algorithm in
this modeling was equal to 100%.

3.4.2 The Second Model: Modeling Hearing Loss Changes Based on Audiometric Data of Workers in the

Second Group (70 < SPL < 80 dBA)
Fig. 2 demonstrates the output model presented for the hearing loss changes of workers in the second

group. As observed, the frequencies of 4 KHz (with a weight of 21%) and 1 KHz (with a weight of 18%)
had the highest impact. Frequencies of 2 KHz and 500 Hz came third and fourth in that order. Finally, the
frequency of 250 KHz (with a weight of 6%) had the lowest influence.

This model accurately predicted the hearing loss of workers in the normal, mild, and moderate
categories. The accuracy of SVM algorithm in this modeling was found to be 100%. The results of the
confusion matrix corresponding to the algorithm of the second model are presented in Tab. 4.

Table 2: Classification the participants’ hearing loss (n = 150)

Normal
(0–25 dB)

Mild
(26–40 dBA)

Moderate
(41–60 dBA)

Severe
(61–80 dBA)

Profound
(80 dBA <)

The first group (n = 50)
(SPL < 70 dBA)

40 participants
(80%)

10 participants
(20%)

– – –

The second group (n = 50)
(SPL 70–80 dBA)

37 participants
(74%)

10 participants
(20%)

3 participants
(6%)

– –

The Third group (n = 50)
(SPL > 85 dBA)

29 Participant
(58%)

15 Participant
(30%)

4 Participant
(8%)

2 Participant
(4%)

–

33

14 12
8 7 5

0

20

40

60

80

100

8 KHz 4 KHZ 2 KHz 1 KHz Work
Experience/
Age/ 250 Hz/

500 Hz

Noise

W
ei

g
h

t 
(%

)

Variables

Figure 1: The first model: the weight (%) of hearing loss predicting variables for participants in the first
group (SPL < 70 dBA)
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3.4.3 The Third Model: Modeling Hearing Loss Changes Based on Audiometric Data of Workers in the

Third Group (SPL > 85 dBA)
The results of modeling hearing loss changes among the members of the third group (SPL > 85 dBA) are

demonstrated in Fig. 3. The frequency of 4 KHz had the biggest impact with a weight of 22%. Age, work
experience, and the frequency of 2 KHz equally occupied the second position (with weights of 13%
each). Finally, the frequency of 250 KHz had the smallest impact with a weight of 3%.

The results of the corresponding confusion matrix are presented in Tab. 5. Accordingly, the model
accurately predicts hearing loss among workers with normal, mild, moderate, and severe hearing loss.
The accuracy of SVM algorithm in this modeling is 100%.

3.4.4 The Fourth Model: Modeling Hearing Loss Changes Based on Audiometric Data of Workers in

all Groups
The results of the fourth model (which included the data of all the 150 participants) are presented in

Fig. 4. It is observed that the frequency of 4 KHz (with a weight of 24%) had the greatest impact on

Table 3: The confusion matrix of SVM algorithm for the first model

Observed Predicted Severity of NIHL

Normal Mild

Normal 100% 0.0%

Mild 0.0% 100%

21 18 17
10 7 6

0

20

40

60

80

100

4 KHz 1 KHz 2 KHz 500 Hz 8 KHz/
Work

Experience/
Age/ Noise

250 Hz

W
ei

g
h

t 
(%

)

Variables

Figure 2: The second model: the weight (%) of hearing loss predicting variables for participants in the
second group (70 < SPL < 80 dBA)

Table 4: The confusion matrix of SVM algorithm for the second model

Observed Predicted Severity of NIHL

Normal Mild Moderate

Normal 100% 0.0% 0.0%

Mild 0.0% 100% 0.0%

Moderate 0.0% 0.0% 100%
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hearing loss, followed by the frequencies of 2 KHz, 1 KHz, and 8 KHz in that order. Conversely, the
frequency of 500 Hz had the smallest influence (with a weight of 4%).

Tab. 6 contains the results of the corresponding confusion matrix. Accordingly, the model accurately
predicts hearing loss among workers with normal, moderate, and severe hearing loss. However, with
regard to workers with mild hearing loss, the model predicted that 25.71% of them had normal in terms
of their hearing ability and the rest (74.28%) had mild hearing loss. The algorithm accuracy in this regard
is 94%, with an error rate of 6%.

22
13 11 9 7 3

0

20

40

60

80

100

4 KHz 2 KHz/ Work
Experience/

Age

1 KHz Noise/ 8
KHz

500 Hz 250 Hz
W

ei
g

h
t 

(%
)

Variables

Figure 3: The third model: the weight (%) of hearing loss predicting variables for participants in the third
group (SPL > 85 dBA)

Table 5: The confusion matrix of SVM algorithm for the third model

Observed Predicted Severity of NIHL

Normal Mild Moderate Severe

Normal 100% 0.0% 0.0% 0.0%

Mild 0.0% 100% 0.0% 0.0%

Moderate 0.0% 0.0% 100% 0.0%

Severe 0.0% 0.0% 0.0% 100%

24 22 20

7 6 5 4

0

20

40

60

80

100

4 KHz 2 KHz 1 KHz 8 KHz Work
Experience/
Age/ 250 Hz

Noise 500 Hz

W
ei

g
h

t 
(%

)

Variables

Figure 4: The fourth model: the weight (%) of hearing loss predicting variables for participants in the three
groups
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4 Discussion

This study used SVM algorithm to weigh and prioritize the factors that affect workers’ hearing loss
based on audiometric findings. The factors such as age, work experience, A-weighted equivalent sound
pressure levels and frequencies were considered predictor factors. There were severity hearing loss (target
factor) in the second and third groups. The results showed that the average exposure to equal level sound
for the first, second, and third groups were 70 ± 3 dBA, 77.62 ± 4.43 dBA, and 89.7 ± 3.03 dBA
respectively. It was also discovered that, in the first two groups, age and work experience had significant
correlations with hearing loss. More specifically, the correlation coefficients for the relationship between
age and hearing loss were r = 0.385 (P = 0.008) for the first group and r = 0.394 (P = 0.008) for the
second one. Additionally, the correlation coefficients for the relationship between work experience and
hearing loss were r = 0.362 (P = 0.014) for the first group and r = 0.32 (P = 0.038) for the second group.
However, no significant association was detected between age/experience and hearing loss in the third
group. That is, the correlation coefficient of the relationship between age and hearing loss was r = 0.189
(P = 0.277), while that of the association between experience and hearing loss was r = 0.28 (P = 0.076).
The results of Pearson correlation and linear regression further revealed a statistically considerable
relationship between noise exposure and hearing loss for all the participants (n = 150) (r = 0.414, P = 0.0001).

In a descriptive, analytical, cross-sectional study, Halvani et al. [9] examined the correlation between
noise exposure and hearing loss among the workers of a textile factor, Taban-e-Yazd. They investigated
hearing loss in the left and right ears of 100 workers who worked in spinning, knitting, and mechanical
sectors of the factory. In this study, the workers were exposed to noises with frequencies of 250 Hz,
500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, and 8000 Hz and their hearing ability was measured using
audiometric tests. The results showed that, keeping the work experience constant, a rise of one unit in the
sound pressure level would lead to 18% noise-induced hearing loss. Also, a rise of one unit in the work
experience would result in 37% noise-induced hearing loss [9]. In line with these findings, the results of
the current study also indicated that the likelihood of hearing loss goes up as a result of increasing work
experience. In another study, Tajic et al. (2008) examined the effect of noise pollution on the auditory
system of workers in a metal factory in Arak. The participants worked in the sheet metal manufacturing,
assembly, and welding sectors. The results demonstrated that the highest degree of hearing loss was
recorded among workers in the age range of 41–50 years with 21–30 years of work experience. They
also discovered significant relationships between hearing loss, on the one hand, and sound pressure level,
age, and work experience, on the other [36]. The results of the present study are in agreement with the
findings reported by Tajic et al. [36], meaning that the rise of age, work experience, and sound pressure
level would lead to higher possibility of hearing loss.

According to the models generated by the SVM algorithm, in the first model (SPL < 70 dBA), the
frequency of 8 KHz had the highest weight (33%), whereas noise had the smallest weight (5%) (Fig. 1).
This model accurately predicted the hearing loss of people with normal hearing ability or mild hearing

Table 6: The confusion matrix of SVM algorithm for the fourth model

Observed Predicted Severity of NIHL

Normal Mild Moderate Severe

Normal 100% 0.0% 0.0% 0.0%

Mild 25.71% 74.28% 0.0% 0.0%

Moderate 0.0% 0.0% 100% 0.0%

Severe 0.0% 0.0% 0.0% 100%
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loss, with the accuracy of the SVMmodel being 100% (Tab. 3). (It means 0.33 8 KHz + 0.14 4 KHz + 0.12 2
KHz + 0.08 1 KHz + 0.07 work experience & age & 250 Hz & 500 Hz + 0.05 noise = 100% normal hearing
loss). In the second model (70 < SPL < 80 dBA), the frequency of 4 KHz had the most profound effect on
hearing loss (with a weight of 21%), while the frequency of 250 Hz exerted the smallest amount of influence
(with a weight of 6%) (Fig. 2). Also, the accuracy of the SVM algorithm was 100% (Tab. 4). (It means 0.21 4
KHz + 0.18 1 KHz + 0.17 2 KHz + 0.1 500 Hz + 0.07 work experience & age & noise & 8 KHz + 0.06 250
Hz = 100% normal hearing loss). In the third model (SPL > 85 dBA), the biggest influence on hearing loss
belonged to the frequency of 4 KHz (with a weight of 22%), while the smallest one was observed in the case
of work experience (with a weight of 6%) (Fig. 3). This model accurately predicted hearing loss among
people with normal hearing ability as well as individuals with mild, moderate, and severe hearing loss.
The accuracy of the corresponding algorithm was 100% (Tab. 5). (It means 0.22 4 KHz + 0.13 2 KHz &
work experience & age + 0.11 1 KHz + 0.09 8 KHz & noise + 0.07 500 Hz + 0.03 250 Hz = 100%
normal or mild hearing loss). In the fourth model, the frequency of 4 KHz exerted the greatest influence
on hearing loss (with a weight of 24%), while the frequency of 500 Hz had the smallest impact (with a
weight of 4%) (Fig. 4). This model accurately predicted the degree of hearing loss among people with
normal hearing ability as well as individuals with moderate or severe hearing loss. With regard to
workers with mild hearing loss, the model predicted that 25.71% of them enjoyed normal hearing ability
and the rest (74.28%) had mild hearing loss. The accuracy of the corresponding algorithm was 94% and
the error rate was 6% (Tab. 6). (It means 0.24 4 KHz + 0.22 2 KHz + 0.2 1 KHz + 0.07 8 KHz + 0.06
250 Hz & work experience & age + 0.05 noise + 0.04 500 Hz = 94% normal or mild hearing loss).

Dubno et al. [37] aimed to categorize audiometric phenotypes caused by aging through using animal
models. They gathered audiograms from 338 samples classified into four phenotypes (older normal,
metabolic, sensory, metabolic + sensory). Accuracy of the QDA analysis, SVM algorithm, and RF were
found to be 93.2%, 89.9%, and 89.3% respectively. The accuracy indices obtained in their study is
relatively low compared to the ones obtained in the current research, in which the accuracy of the first
three models was 100% and the accuracy of the fourth one was 94%. Acir et al. [38] conducted a study
entitled “automatic classification of auditory brainstem responses using SVM-based feature selection
algorithm for threshold detection”. In their study, the findings were classified according to the SVM
algorithm, with the reported accuracy being 96.2%. The accuracy obtained in the current study is as high
as the one reported by Acir et al. [38].

Wang et al. [39] carried out another study entitled “wavelet entropy and directed acyclic graph support
vector machine for detection of patients with unilateral hearing loss in MRI scanning”. They scanned
49 patients using MRI and subsequently classified them into three groups; the first group included
14 people with right ear hearing loss (RHL), the second one included 15 members with left ear hearing
loss (LHL), and the third group, which comprised 20 individuals, functioned as the control group (HC).
They selected wavelet entropy (WE) from the MRI of each participant and subsequently submitted it to a
directed acyclic graph support vector machine method (DAG-SVM). The accuracy of DAG-SVM method
for the RHL, LHL and HC groups were found to be 97.14%, 96.33%, and 96.73% respectively [39]. The
accuracy indices obtained in the current study are high (close to 100%), like the ones obtained by Wang
et al. [39] Taylor et al. [40] conducted another study entitled “Audio Gene: predicting hearing loss
genotypes from phenotypes to guide genetic screening”. They intended to describe the algorithm
underlying Audio Gene by employing a software system which utilized machine learning techniques.
These techniques used phenotypic information derived from audiograms to estimate the genetic cause of
hearing loss in people segregating ADNSHL. The results indicated that Audio Gene had an accuracy of
68% in predicting the causative gene within its top three predictions. In contrast, the accuracy reported
for a majority classifier was found to be 44%. The accuracy indices reported in their study was relatively
low, while the ones obtained in the current research were high.
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Majumder et al. [22] used both unsupervised (i.e., Expectation Maximization (EM), K-means, Linear
Vector Quantization (LVQ), and Self Organization Map (SOM)) and supervised (i.e., Naïve Bayes,
Instance-based (IB), Back Propagation Network (BPN), and Radial Basis Function (RBF)) data mining
procedures to model hearing loss changes using audiometric data among professional drivers. They
concluded that, save for RBF, all data mining algorithms demonstrated relatively high adaptation and
performance for the right ear. Likewise, in the current study, the models generated by the SVM algorithm
showed high accuracy. Noma et al. [41] intended to predict hearing loss symptom using audiometric data
and FP-Growth technique. The findings indicated that, in five different models, the accuracy rates were
100%, 99.5%, 98.25%, and 94.6% with frequencies higher than 10. In this study, save for the last
algorithm, all the other FP-Growth algorithms had high accuracy. Likewise, in the current study, the
accuracy of the first three models was 100%, while that of the last one was 94%.

In this study, some variables that had not been investigated in previous research were weighed and
prioritized. They included various sound pressure levels, frequencies (250 Hz, 500 Hz, 1 KHz, 2 KHz,
4 KHz, and 8 KHz), age, and work experience. Most of the studies investigating hearing loss have only
reported the error rate and accuracy of the model, without mentioning anything about the weight and the
effect size of different variables. One of the limitations of the current study was the problems the
researchers encountered to convince the stakeholders in the industry and participants to cooperate with
the research team.

5 Conclusion

This study focused on weighing factors that can cause hearing loss. According to the obtained results, in
the first model, out of all the predictors (age, work experience, equal sound level, and frequency), the
frequency of 8 KHz had the greatest impact (with a weight of 33%), while noise registered the smallest
effect (with a weight of 5%). The accuracy of this model in predicting hearing loss was 100%. In the
second model, the frequency of 4 KHz had the biggest impact (with a weight of 21%), whereas the
frequency of 250 Hz had the smallest influence (with a weight of 6%). The accuracy of this model was
100% too. In the third model, the frequency of 4 KHz had the highest impact (with a weight of 22%),
while the frequency of 250 Hz had the lowest effect (with a weight of 3%), with the accuracy of this
model being 100% as well. In the fourth model, the frequency of 4 KHz had the greatest impact (with a
weight of 24%), while the frequency of 500 Hz exerted the smallest effect (with a weight of 4%). The
accuracy of this model was found to be 94%. Based on the accuracy indices obtained from these models,
SVM algorithm can be regarded as an appropriate and powerful instrument to predict and model hearing loss.
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