
Computers, Materials & Continua CMC, vol.63, no.2, pp.979-993, 2020

CMC. doi:10.32604/cmc.2020.06478 www.techscience.com/journal/cmc

Massive Files Prefetching Model Based on LSTM Neural Network
with Cache Transaction Strategy

Dongjie Zhu1, Haiwen Du6, Yundong Sun1, Xiaofang Li2, Rongning Qu2,

Hao Hu1, Shuangshuang Dong1, Helen Min Zhou3 and Ning Cao4, 5, *

Abstract: In distributed storage systems, file access efficiency has an important impact
on the real-time nature of information forensics. As a popular approach to improve file
accessing efficiency, prefetching model can fetches data before it is needed according to
the file access pattern, which can reduce the I/O waiting time and increase the system
concurrency. However, prefetching model needs to mine the degree of association
between files to ensure the accuracy of prefetching. In the massive small file situation,
the sheer volume of files poses a challenge to the efficiency and accuracy of relevance
mining. In this paper, we propose a massive files prefetching model based on LSTM
neural network with cache transaction strategy to improve file access efficiency. Firstly,
we propose a file clustering algorithm based on temporal locality and spatial locality to
reduce the computational complexity. Secondly, we propose a definition of cache
transaction according to files occurrence in cache instead of time-offset distance based
methods to extract file block feature accurately. Lastly, we innovatively propose a file
access prediction algorithm based on LSTM neural network which predict the file that
have high possibility to be accessed. Experiments show that compared with the
traditional LRU and the plain grouping methods, the proposed model notably increase the
cache hit rate and effectively reduces the I/O wait time.

Keywords: Massive files, prefetching model, cache transaction, distributed storage
systems, LSTM neural network.

1 Introduction
For law enforcement agencies and other digital forensic practitioners, the distributed

1 School of Computer Science and Technology, Harbin Institute of Technology, Weihai, 264209, China.
2 School of Science, Harbin Institute of Technology, Weihai, 264209, China.
3 School of Engineering, Manukau Institute of Technology, Auckland, 2241, New Zealand.
4 College of Mathematics and Computer Science, Xinyu University, Xinyu, 338004, China.
5 College of Information Engineering, Sanming University, Sanming, 365004, China.
6 School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China.
*Corresponding Author: Ning Cao. Email: ning.cao2008@hotmail.com.
Received: 01 March 2019; Accepted: 27 November 2019.

980 CMC, vol.63, no.2, pp.979-993, 2020

storage system must meet the high concurrency needs of multi-user and multi-application
situations since there is a need of timely acquisition and preservation of data from cloud
storage [Jonas, Pu, Venkataraman et al. (2017); Quick and Choo (2013)]. As the data
storage medium of the cloud computing platform, distributed storage system is widely
used in internet companies like Facebook, Netflix, Yahoo and Amazon to manage the
massive unstructured data [Bende and Shedge (2016)]. Storage systems like HDFS
[Shvachko, Kuang, Radia et al. (2010)] and Weil et al. [Weil, Brandt, Miller et al. (2006)]
can provide high-performance file access in most instances. However, there exists
massive amount of small multimedia data and new small multimedia data keeps growing
exponentially. Until 2017, Spotify and Yahoo store about 50% of small files with a size
less than 1 MB and the number of I/O operations on small files accounts for about 50%
of the total number of I/O operations [Niazi, Ismail, Haridi et al. (2017)]. Distributed
storage systems meet serious performance problems when processing massive small files.
For example, HDFS can put excessive pressure on Namenode when index massive small
files [Sheoran, Sethia and Saran (2017)]. As for Openstack Swift, it creates high CPU and
I/O load when assigning updates in this situation [Gracia-Tinedo, Sampé, Zamora et al.
(2017)]. It will seriously affect the file access efficiency of distributed storage systems.
Researchers have done a lot of works in optimizing the read performance of massive
small files in distributed storage systems. [Cassell, Szepesi, Summers et al. (2018)] shows
that prefetching technology can reduce CPU load and increase storage system
concurrency. However, the prefetching technique can reduce response delay only when
the number of prefetched files far exceeds the user’s reading demand. Otherwise, the
computational overhead of the prefetch operation itself will offset or even exceed the
overhead saved on I/O [Li, Shen and Papathanasiou (2007)]. Therefore, the model for
prefetching in units of files does not apply in this situation. Consequently, a group based
prefetching model that merge the files into groups and prefetch the files in the unit of
groups is proposed by Zhu et al. [Zhu, Du, Qiao et al. (2018)], which can solve the above
problems effectively. Grouping model needs to calculate the similarity between files.
However, the model will consume too much computing resources in massive small files
situation. Therefore, it is necessary to design an efficient and accurate file group access.
In this paper, we propose a massive files prefetching model based on long short-term
memory (LSTM) neural network [Sundermeyer, Schlüter and Ney (2012)] with cache
transaction strategy. Firstly, we propose a file partitioning algorithm based on temporal
locality and spatial locality, which divides files into file blocks according to spatial space
locality and number of accesses. Secondly, we propose a file block feature extracting
algorithm based on cache transactions. Lastly, we propose a file access prediction
algorithm based on LSTM neural network, which takes the file block feature as the input
of LSTM neural network and output the file block that have high possibility to be
accessed at the next moment.

2 Related work
2.1 File block partitioning
Most file relevance calculation methods use the file as basic unit and the degree of
association is calculated by defining the distance between files [Tamersoy, Tamersoy and

Massive Files Prefetching Model Based on LSTM Neural Network 981

Chau (2014); Wildani and Miller (2016)]. However, there are billions of files on a
distributed storage system, each file to be analyzed needs to be calculated once with each
other. For n files, since the time complexity is 2()O n , the calculation takes a long time.
Moreover, the relationship between files is time-sensitive, the strength of the relationship
will gradually decrease over time [Xiao, Wang, Liu et al. (2018)]. Therefore, there is a
need for an efficient way to determine the relationship between files.
We conducted a statistical analysis of the access of the files and found that the files have
obvious spatial and temporal locality characteristics, as shown in Fig. 1. It can be seen
that for most correlated file, the total number of accesses and the disk offset where they
are saved is alike. We call these files have OA Similarity (Offset-Access Similarity).
Therefore, we propose a cluster-based method for preliminary block partitioning of files
with OA Similarity and the partition result block is called OA Block. Since the time
complexity of the clustering method is ()O kn , the time complexity can be greatly
reduced, where k is the number of clusters we specified. In the test dataset, the
distribution of raw offset and access times data is shown in Fig. 2. Accordingly, there
needs an efficient file block partitioning method according to the offset access
distribution.

Figure 1: Time / Offset Distribution of trace Figure 2: OA Similarity distribution

2.2 Cache transaction and file distance calculation
OA Similarity cannot fully reflect the association between files since the number of
access can only represent a statistical feature, it lacks features that reflect the temporal
locality of the files. Therefore, we still need to mine relationship according to the
temporal locality. The traditional classification model generally uses the time interval
[Du, Li, Mao et al. (2016)] or the number of file access intervals [Yang, Karimi,
Sæmundsson et al. (2017)] as the distance to define the association between files, as
shown in Fig. 3.
However, these calculation methods have their inherent limitations. The time interval

982 CMC, vol.63, no.2, pp.979-993, 2020

based distance calculation methods overlook the relationship between the overall access
speed of the file system and the files access time interval. e.g., in the case of a situation
which the file system is frequently accessed, two files that are accessed between 20 ms
should have lower degrees of association compared with the infrequently accessed file
system. The file access intervals based distance calculation method cannot perceive the
size of files. Supposing that cache size is 4 MB, files A, B and C with sizes of 1 MB, 3
MB and 1 MB are accessed sequentially showed in Fig. 4, it is clear that file A and C
have no possibility to appear in cache together. Therefore, files A and C have no
association although there is only 1 interval between their accesses.

A

B

D

C

Distance in
Offset and Time

Figure 3: Distance calculation method of traditional classification model

Cache (4 MB)

File B
(3 MB)

File C
(1 MB)

File A
(1 MB)

Figure 4: File A is swapped out from cache when file C is accessed
Here, we propose the concept of cache transaction, a cache transaction can be understood
as a snapshot of all the files in the cache. As shown in Fig. 5, we assume that the cache
transaction space boundary size is M, the cache transaction is recorded every M sized
data is accessed. For all files in a cache transaction, one relationship strength is added
between each pair of them. This method can minimize the amount of calculations while
ensuring that the relationships between files are fully exploited.

Massive Files Prefetching Model Based on LSTM Neural Network 983

Cache (Max size 2 MB, M = 1 MB)

Tansaction 3 (1MB ≥ M)Tansaction 2 (1.25MB ≥ M)Tansaction 1 (1.25MB ≥ M)

Time

File A File B File A File D File C File B File F File B File G File D

Tansaction 4 (1MB ≥ M)

File A File B File E

File B
(256 KB)

File F
(512 KB)

File A
(512 KB)

File D
(256 KB)

File C
(256 KB)

File G
(512 KB)

File E
(256 KB)

Swapped out Not cached In different tansaction

Figure 5: A sample of file transaction calculation process

2.3 LSTM and plain file grouping
File grouping algorithm can organize related files into groups, but the max size of
grouped file has a limit in space (generally 1/10 of the cache size). The reason is that
when a large file groups is read, excessive files is put to cache. The function of cache will
be affected since the files will fill almost the entire cache space. Therefore, the mining
result of the file grouping algorithm is a short-term relationship of files that lacks a
predictive approach to access trends. In addition, the method we proposed above is a
spatial-locality-first partitioning method. The relationships between the files that has a
large offset space distance are neglected as shown in Fig. 6.
LSTM neural network is a method for classifying samples using time series data.
Compared with the traditional Recurrent Neural Network (RNN) model, the introduced
forgetting gate solves the gradient disappearing problem. Therefore, for the timing
characteristics of file access, we propose an LSTM-based file access prediction algorithm
that uses file block access data to predict the next accessed file block. However, in a
distributed storage system, it is difficult to extract features since the file has only Size and
Offset info. If one-hot file block representation is used, information such as the number
of file occurrences and file access characteristics cannot be indicated. In this study, we
propose a file block feature extraction method based on cache transactions to vectorize
the feature of file blocks. Using the vectorized file block feature as the input vector of the
LSTM, the neural network is trained so that it can output more accurate predict result.

984 CMC, vol.63, no.2, pp.979-993, 2020

A
B

C

D

A
B

D

AC A

Time

Of
fs
et

A, B, C are close in Offset, but not in access time

B, D are close in access time, but their relation is not mined

Figure 6: Files B and D should have relation in access time, but they are divided into
different file blocks according to disk offset

3 Models design
In this section, we will introduce the designation of proposed model. The calculating method
of OA Blocks is detailed in 3.1, the cache transaction based file feature extracting method is
introduced in 3.2 and the LSTM based file block predicting model is presented in 3.3.

3.1 File blocking algorithm based on spatial and temporal locality
In this module, we propose a spatial locality file blocking algorithm based on OA
similarity, which classifies files similar to offset and access Times. For file, we define its
coordinate (),

i i iF F FH O A= where
iFO is disk offset the iF saved and

iFA is times iF is

accessed in trace. Subsequently, we normalize the points and cluster the files according to
the coordinate values.
However, the distribution of the file accesses number exhibits a normal distribution
feature, where 80% files having fewer than 50 accesses. If we cluster these file directly,
most files will be concentrated in low-access area since that points is denser in that area,
so that a large scale low-access files will be grouped in few groups. What’s more, for two
files iF and jF ,

i jF FO O≈ , we assume two cases. In the first case, the number of visits

10
iFA = and 100

jFA = , in the other case, 1000
iFA = an 1090

jFA = . In both cases, iF

and jF have the same distances. But it is clear that in the second case, the probability of

iF and jF being associated is greater than in the first case. Therefore, we propose a
coordinate scaling method that uses a distance correction function to scale the A
coordinate values.

()iF is file with thi order by access times. The correction function enlarges the difference

Massive Files Prefetching Model Based on LSTM Neural Network 985

degree of the A coordinate value of the file with a low number of access times and
reduces the difference degree of the A coordinate of the file with a high number of
access times. The result is shown in Figs. 7 and 8.

Figure 7: Result before coordinate scaling Figure 8: Result after coordinate scaling

3.2 File access relationship classification
According to the concept of the cache transaction we proposed in 2.2, we build an
inverted index on the occurrence of files in cache transactions. As shown in Fig. 9.

T0 T1 T4 T5 T7 T10 …… T146

T4 T5 T14 T19 T26 T77 …… T128

T0 T69 T143

T0 T1 T4 T5 T7 T9 …… T146

File A File X File T File U File O File P …… File H

File E File R File A File X File V File N …… File Z

File A File X File S File Q File R File C …… File YT0

T1

TN

……

File A

File B

File C

File X

……

Transactions

File Characteristics

Figure 9: Inverted index for files with cache transaction
We define a vector T to represent the occurrence of a file in transactions.

986 CMC, vol.63, no.2, pp.979-993, 2020

For file aF , () 1
aFT i = if aF occurs in the thi transaction, otherwise () 0

aFT i = . We
calculate the vector T for the same category of files after the first classification and
define the distance D between files, see Eq. (1).

,i j i jF F F FD T T ω= − ∗ (1)

LSTM Neuron

xt

st-1

ht-1

ht

st

ht

Figure 10: LSTM neuron structure
We propose an improved hierarchical clustering method to classify the vectors F . Due to
the errors caused by random fluctuations, files with a large number of access times
should be less sensitive to transaction differences. Therefore, we dynamically adjust the
clustering stop condition t according to the dimension of T . Finally, we get all file
blocks 1 2{ , ,..., }mB B B B= , where m is the total number of file blocks.

3.3 File access prediction algorithm based on LSTM
We propose a file access prediction algorithm based on LSTM neural network. The input
vector is the cache transaction feature of the file block.
For cache transaction feature of file blocks, it has same calculation method with cache
transaction feature of files. For a file block aB , () 1

aBT i = if any file x aF B∈ and xF

occurs in the thi transaction, otherwise () 0
aBT i = .

When the tht file block in time sequence tB is read, the transaction feature of the
previous 1K − file blocks and the transaction feature of the file block

tBT are combined

into an input matrix
1 2

(, ,...,)
t k t k tB B BE T T T
− + − +

= where the transaction feature of tB is its
occurrence in all transactions. Each column of the matrix represents the feature of the file
blocks in the time series. The LSTM neural network can learn the temporal access
association between file blocks through the learning process. The structure of LSTM
neuron is shown in Fig. 10.
The output layer of the LSTM network uses feedforward neural network which maps the
intermediate LSTM outputs to a single value, i.e., the next accessed file block and the
short-term LSTM based file predicting framework is given as Fig. 11.

Massive Files Prefetching Model Based on LSTM Neural Network 987

1 0 1……

0 0 1

0 0 1

…
…

1 1 0

……

……

…
…

…
…

Tp-k+1 Tp-k+2 Tp

……

……

……

Input Martix

LSTM Layer

LSTM Layer

Feed Forward Neural Network

Next Accessed File Block Bp+1

…… ……

xp-k+1 xp-k+2 xp

hp-k+1 hp-k+2 hp

Figure 11: Proposed LSTM based predicting framework

The training process of LSTM based predicting method can be described as following
steps as Tab. 1.

Table 1: LSTM training process

Steps Description

Step 1 Input a new file block iB .

Step 2 Get the feature of iB as
iBT according to cache transaction.

Step 3 Input
iBT to LSTM neural network.

Step 4 Check the size of LSTM input number, if size is less than K, go to Step 1.
Step 5 Calculate according to ordinary LSTM neural network layer by layer
Step 6 Predict the next accessed file by a feed forward neural network.
Step 7 Update each of the weights in the network according to ordinary LSTM.

4 Experiment
In this section, we adopt the architecture in Fig. 12 to implement the cache model. The
model we proposed runs and is trained on storage server. The storage server reads the
disk I/O access logs actively to train the prefetching model. The file reading process of
model can be described as following: Firstly, when a new I/O request arrives, the cache
model checks if the file is already in the cache. If it is, the file is returned. If the file is not
in the cache, all of files that contained in the file block are prefetched into the cache for
subsequent requests and the cache transaction feature of file block is put to LSTM neural
network for predicting next file block to be accessed. Then the predicted file block is
prefetched to cache.

988 CMC, vol.63, no.2, pp.979-993, 2020

Storage Server

Proxy Server

Cache

Prefetching
model

① File Request

Client

Disk② check cache

⑤ response fi le

③ cache missing

④ prefetching group files

Disk I/O trace

update

File read process

Model training process K-means

Hierarchical Clustering
& Cache Transaction

LSTM Neural Network

Spatial locality groups

Final groups

Request

Request

……

Figure 12: The architecture we implement the entire cache model
In order to prove that our proposed model can be applied to various situations, we use the
trace that are available on the Internet and have been tested in similar studies to evaluate
the effectiveness of our model.
We write code in Python to test our model. The improved k-means algorithm ran 3
minutes, file block feature extract algorithm took less than 1 minute minutes with
optimization and LSTM training process ran 20 minutes on a server with 16-core Xeon
E5-2620 v4 processor and 64 GB of RAM. However, we did not use GPU to optimize the
LSTM training process since our model runs on storage nodes. The training process may
take less time if GPU is used.
The first trace is Florida International University (FIU) [Narayanan, Donnelly and
Rowstron (2008)] and traces researchers’ local storage. This is a multiuser, multi-
application trace, with activities including developing, testing, experiments, technical
writing and plotting. There are 17,836,701 access times and over 33% of accesses were to
duplicate blocks. The second trace is 1 week of block I/O traces from multipurpose
enterprise servers used by researchers at Microsoft Research (MSR) [Koller and
Rangaswami (2010)], Cambridge. This dataset was very write heavy. The data format
and sample is shown in Tabs. 2 and 3.

Table 2: Format and sample of FIU

Timestamp PID Process LBA Size R/W Maj. Device # Min. Device # MD5
0 4892 syslogd 904265560 8 W 0 0 531e779...

39064 2559 kjournald 926858672 8 W 6 0 4fd0c43...
467651 2522 kjournald 644661632 8 W 6 0 98b9cb7...

Table 3: Format and sample of MSR

Timestamp Type Block Offset Size Response Time

128166372003061629 Read 7014609920 24576 41286

128166372016382155 Write 1317441536 8192 1963
128166372026382245 Write 2436440064 4096 1835

Massive Files Prefetching Model Based on LSTM Neural Network 989

In order to show the superiority of the method we proposed, we compare our model with
the ordinary LRU cache replacement method and existing file grouping cache
replacement method. Overall, we propose a strategy for file grouping in distributed
storage systems. Compared with existing group methods, the cache hit rate has a
significant improvement. The results of our experiment are shown in Figs. 13 and 14.

Figure 13: The cache hit rate of the FIU dataset

Figure 14: The cache hit rate of the MSR dataset
We use cross-validation to evaluate the number of disk seeks of the proposed algorithm.
For existing datasets, our model can be trained in 30 minutes with 1 day access log.
Therefore, the training process can be trained at time when the server with low load such
as night time. Moreover, the user’s access mode to the file may change over time. Here,
we divide the access log in one day into a training-validate set. The experimental results
show that the proposed model can significantly reduce the number of disk seeks. As
shown in Fig. 15.

990 CMC, vol.63, no.2, pp.979-993, 2020

Figure 15: The proposed method provide significant improvement on disk seeks than
LRU and group-only based methods

Using prediction based or statistical based method as a lone prefetching model is an
unstable approach to manage cache. We compare our model with popular NN-based
prefetching method and group only method [Patra, Sahu, Mohapatra et al. (2010)]. The
result in Fig. 13 shows that our model performs better in stability and accuracy by
average cache hit rate over time with FIU trace.

Figure 16: Average accuracies of the cache prefetching models over time
In Fig. 16, we can find that the proposed method provides more stable cache hit rate
except in several interval. We analyzed the file accesses in 170,000 to 180,000 and
340,000 to 350,000. The result shows that most accesses in these intervals did not appear
in training set.

5 Discussion
The main contribution of our work is the proposal of cache transaction. In this paper, we
use the cache transaction to extract feature of files. Compared with traditional file feature
extraction methods, the cache transaction based method can provide more information in

Massive Files Prefetching Model Based on LSTM Neural Network 991

file or file access pattern. Furthermore, the cache transaction can find more accurate file
relation since it is cache oriented. Files that have no relation on cache transaction will not
be regard as related files even though they have less access time or access number interval.
In summary, cache transactions can be used as a new way to measure file relationships. It
can be widely used in access pattern recognition problem in file systems. Furthermore, it
can provide solutions to other types of problems after some transformation.
LSTM neural network is widely used in natural language processing and speech
recognition, and can effectively extract the temporal characteristics of data. The
innovation of this research is that the input layer of LSTM neural network is optimized
by using the cache transaction feature of the file block, so that it can predict the files to be
accessed according to the temporal characteristics of the file access. Experiment results
demonstrate the feasibility of LSTM neural network for file access prediction problems.
Based on the idea of recurrent neural networks such as LSTM, there is still a lot of
research space for neuron structure optimization, which can further improve recognition
accuracy and training efficiency.
However, clustering operations are performed during the calculation of the model, which
will consume a large amount of memory. We have tried 16 million file accesses and
640,000 files. The peak memory usage during the model training process will reach 3 GB.
We will improve our work on resource saving in the further research.

6 Conclusion
In this paper, we propose massive files prefetching model based on LSTM neural
network with cache transaction strategy to mine file group efficiently. Experiments show
that compared with the traditional LRU and the plain grouping methods, the proposed
model notably increase the cache hit rate and effectively reduces the I/O wait time. Our
model can effectively improve the file access efficiency of distributed storage systems,
and thus guarantee the real-time and accuracy in information forensics under massive
small file environments.

Acknowledgment: This work is supported by ‘The Fundamental Research Funds for the
Central Universities (Grant No. HIT.NSRIF.201714)’, ‘Weihai Science and Technology
Development Program (2016DXGJMS15)’ and ‘Key Research and Development
Program in Shandong Provincial (2017GGX90103)’.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Bende, S.; Shedge, R. (2016): Dealing with small files problem in hadoop distributed
file system. Procedia Computer Science, vol. 79, pp. 1001-1012.
Cassell, B.; Szepesi, T.; Summers, J.; Brecht, T.; Eager, D. et al. (2018): Disk
prefetching mechanisms for increasing HTTP streaming video server throughput. ACM
Transactions on Modeling and Performance Evaluation of Computing Systems, vol. 3, no.

992 CMC, vol.63, no.2, pp.979-993, 2020

2, pp. 1-7.
Du, S.; Li, C.; Mao, X.; Yan, W. (2016): The optimization of LRU algorithm based on
pre-selection and cache prefetching of files in hybrid cloud. 17th International
Conference on Parallel and Distributed Computing, Applications and Technologies, pp.
125-132.
Gracia-Tinedo, R.; Sampé, J.; Zamora, E.; Sánchez-Artigas, M.; García-López, P. et
al. (2017): Crystal: software-defined storage for multi-tenant object stores. Proceedings of
the 15th Usenix Conference on File and Storage Technologies, pp. 243-256.
Jonas, E.; Pu, Q.; Venkataraman, S.; Stoica, I.; Recht, B. (2017): Occupy the cloud:
distributed computing for the 99%. Proceedings of the 2017 Symposium on Cloud
Computing, pp. 445-451.
Koller, R.; Rangaswami, R. (2010): I/O deduplication: utilizing content similarity to
improve I/O performance. ACM Transactions on Storage, vol. 6, no. 3, pp. 1-13.
Li, C.; Shen, K.; Papathanasiou, A. E. (2007): Competitive prefetching for concurrent
sequential I/O. ACM SIGOPS Operating Systems Review, vol. 41, no. 3, pp. 189-202.
Narayanan, D.; Donnelly, A.; Rowstron, A. (2008): Write off-loading: practical power
management for enterprise storage. ACM Transactions on Storage, vol. 4, no. 3, pp. 1-10.
Niazi, S.; Ismail, M.; Haridi, S.; Dowling, J.; Grohsschmiedt, S. et al. (2017): HopsFS:
scaling hierarchical file system metadata using newsql databases. Proceedings of the 15th
Usenix Conference on File and Storage Technologies, pp. 89-104.
Patra, P. K.; Sahu, M.; Mohapatra, S.; Samantray, R. K. (2010): File access prediction
using neural networks. IEEE Transactions on Neural Networks, vol. 21, no. 6, pp. 869-882.
Quick, D.; Choo, K. K. R. (2013): Forensic collection of cloud storage data: does the act
of collection result in changes to the data or its metadata? Digital Investigation, vol. 10,
no. 3, pp. 266-277.
Sheoran, S.; Sethia, D.; Saran, H. (2017): Optimized mapfile based storage of small
files in hadoop. 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, 2017, pp. 906-912.
Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. (2010): The hadoop distributed file
system. IEEE 26th Symposium on Mass Storage Systems and Technologies, 2010, pp. 1-10.
Sundermeyer, M.; Schlüter, R.; Ney, H. (2012): LSTM neural networks for language
modeling. Thirteenth Annual Conference of the International Speech Communication
Association.
Tamersoy, A.; Roundy, K.; Chau, D. H. (2014): Guilt by association: large scale
malware detection by mining file-relation graphs. Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1524-1533.
Weil, S. A.; Brandt, S. A.; Miller, E. L.; Long, D. D.; Maltzahn, C. (2006): Ceph: a
scalable, high-performance distributed file system. Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, pp. 307-320.
Wildani, A.; Miller, E. L. (2016): Can we group storage? Statistical techniques to
identify predictive groupings in storage system accesses. ACM Transactions on Storage,
vol. 12, no. 2, pp. 1-7.

Massive Files Prefetching Model Based on LSTM Neural Network 993

Xiao, B.; Wang, Z.; Liu, Q.; Liu, X. (2018): SMK-means: an improved mini batch k-
means algorithm based on mapreduce with big data. Computers, Materials & Continua,
vol. 56, no. 3, pp. 365-379.
Yang, J.; Karimi, R.; Sæmundsson, T.; Wildani, A.; Vigfusson, Y. (2017): Mithril:
mining sporadic associations for cache prefetching. Proceedings of the 2017 Symposium
on Cloud Computing, pp. 66-79.
Zhu, D.; Du, H.; Qiao, X.; Liu, C.; Kong, L. et al. (2018): An access prefetching
strategy for accessing small files based on swift. Procedia Computer Science, vol. 131,
pp. 816-824.

	Massive Files Prefetching Model Based on LSTM Neural Network with Cache Transaction Strategy
	Dongjie Zhu0F , Haiwen Du6, Yundong Sun1, Xiaofang Li2, Rongning Qu2,
	Hao Hu1, Shuangshuang Dong1, Helen Min Zhou3 and Ning Cao4, 5, *

	References

