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Abstract: In distributed storage systems, file access efficiency has an important impact 
on the real-time nature of information forensics. As a popular approach to improve file 
accessing efficiency, prefetching model can fetches data before it is needed according to 
the file access pattern, which can reduce the I/O waiting time and increase the system 
concurrency. However, prefetching model needs to mine the degree of association 
between files to ensure the accuracy of prefetching. In the massive small file situation, 
the sheer volume of files poses a challenge to the efficiency and accuracy of relevance 
mining. In this paper, we propose a massive files prefetching model based on LSTM 
neural network with cache transaction strategy to improve file access efficiency. Firstly, 
we propose a file clustering algorithm based on temporal locality and spatial locality to 
reduce the computational complexity. Secondly, we propose a definition of cache 
transaction according to files occurrence in cache instead of time-offset distance based 
methods to extract file block feature accurately. Lastly, we innovatively propose a file 
access prediction algorithm based on LSTM neural network which predict the file that 
have high possibility to be accessed. Experiments show that compared with the 
traditional LRU and the plain grouping methods, the proposed model notably increase the 
cache hit rate and effectively reduces the I/O wait time. 
 
Keywords: Massive files, prefetching model, cache transaction, distributed storage 
systems, LSTM neural network. 

1 Introduction 
For law enforcement agencies and other digital forensic practitioners, the distributed 
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storage system must meet the high concurrency needs of multi-user and multi-application 
situations since there is a need of timely acquisition and preservation of data from cloud 
storage [Jonas, Pu, Venkataraman et al. (2017); Quick and Choo (2013)]. As the data 
storage medium of the cloud computing platform, distributed storage system is widely 
used in internet companies like Facebook, Netflix, Yahoo and Amazon to manage the 
massive unstructured data [Bende and Shedge (2016)]. Storage systems like HDFS 
[Shvachko, Kuang, Radia et al. (2010)] and Weil et al. [Weil, Brandt, Miller et al. (2006)] 
can provide high-performance file access in most instances. However, there exists 
massive amount of small multimedia data and new small multimedia data keeps growing 
exponentially. Until 2017, Spotify and Yahoo store about 50% of small files with a size 
less than 1 MB and the number of I/O operations on small files accounts for about 50% 
of the total number of I/O operations [Niazi, Ismail, Haridi et al. (2017)]. Distributed 
storage systems meet serious performance problems when processing massive small files. 
For example, HDFS can put excessive pressure on Namenode when index massive small 
files [Sheoran, Sethia and Saran (2017)]. As for Openstack Swift, it creates high CPU and 
I/O load when assigning updates in this situation [Gracia-Tinedo, Sampé, Zamora et al. 
(2017)]. It will seriously affect the file access efficiency of distributed storage systems. 
Researchers have done a lot of works in optimizing the read performance of massive 
small files in distributed storage systems. [Cassell, Szepesi, Summers et al. (2018)] shows 
that prefetching technology can reduce CPU load and increase storage system 
concurrency. However, the prefetching technique can reduce response delay only when 
the number of prefetched files far exceeds the user’s reading demand. Otherwise, the 
computational overhead of the prefetch operation itself will offset or even exceed the 
overhead saved on I/O [Li, Shen and Papathanasiou (2007)]. Therefore, the model for 
prefetching in units of files does not apply in this situation. Consequently, a group based 
prefetching model that merge the files into groups and prefetch the files in the unit of 
groups is proposed by Zhu et al. [Zhu, Du, Qiao et al. (2018)], which can solve the above 
problems effectively. Grouping model needs to calculate the similarity between files. 
However, the model will consume too much computing resources in massive small files 
situation. Therefore, it is necessary to design an efficient and accurate file group access. 
In this paper, we propose a massive files prefetching model based on long short-term 
memory (LSTM) neural network [Sundermeyer, Schlüter and Ney (2012)] with cache 
transaction strategy. Firstly, we propose a file partitioning algorithm based on temporal 
locality and spatial locality, which divides files into file blocks according to spatial space 
locality and number of accesses. Secondly, we propose a file block feature extracting 
algorithm based on cache transactions. Lastly, we propose a file access prediction 
algorithm based on LSTM neural network, which takes the file block feature as the input 
of LSTM neural network and output the file block that have high possibility to be 
accessed at the next moment. 

2 Related work 
2.1 File block partitioning 
Most file relevance calculation methods use the file as basic unit and the degree of 
association is calculated by defining the distance between files [Tamersoy, Tamersoy and 



Massive Files Prefetching Model Based on LSTM Neural Network                        981 

Chau (2014); Wildani and Miller (2016)]. However, there are billions of files on a 
distributed storage system, each file to be analyzed needs to be calculated once with each 
other. For n  files, since the time complexity is 2( )O n , the calculation takes a long time. 
Moreover, the relationship between files is time-sensitive, the strength of the relationship 
will gradually decrease over time [Xiao, Wang, Liu et al. (2018)]. Therefore, there is a 
need for an efficient way to determine the relationship between files. 
We conducted a statistical analysis of the access of the files and found that the files have 
obvious spatial and temporal locality characteristics, as shown in Fig. 1. It can be seen 
that for most correlated file, the total number of accesses and the disk offset where they 
are saved is alike. We call these files have OA Similarity (Offset-Access Similarity). 
Therefore, we propose a cluster-based method for preliminary block partitioning of files 
with OA Similarity and the partition result block is called OA Block. Since the time 
complexity of the clustering method is ( )O kn , the time complexity can be greatly 
reduced, where k  is the number of clusters we specified. In the test dataset, the 
distribution of raw offset and access times data is shown in Fig. 2. Accordingly, there 
needs an efficient file block partitioning method according to the offset access 
distribution.  

 
Figure 1: Time / Offset Distribution of trace     Figure 2: OA Similarity distribution 

2.2 Cache transaction and file distance calculation 
OA Similarity cannot fully reflect the association between files since the number of 
access can only represent a statistical feature, it lacks features that reflect the temporal 
locality of the files. Therefore, we still need to mine relationship according to the 
temporal locality. The traditional classification model generally uses the time interval 
[Du, Li, Mao et al. (2016)] or the number of file access intervals [Yang, Karimi, 
Sæmundsson et al. (2017)] as the distance to define the association between files, as 
shown in Fig. 3. 
However, these calculation methods have their inherent limitations. The time interval 
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based distance calculation methods overlook the relationship between the overall access 
speed of the file system and the files access time interval. e.g., in the case of a situation 
which the file system is frequently accessed, two files that are accessed between 20 ms 
should have lower degrees of association compared with the infrequently accessed file 
system. The file access intervals based distance calculation method cannot perceive the 
size of files. Supposing that cache size is 4 MB, files A, B and C with sizes of 1 MB, 3 
MB and 1 MB are accessed sequentially showed in Fig. 4, it is clear that file A and C 
have no possibility to appear in cache together. Therefore, files A and C have no 
association although there is only 1 interval between their accesses. 

A

B

D

C

Distance in 
Offset and Time

 

Figure 3: Distance calculation method of traditional classification model 

Cache (4 MB)

File B
(3 MB)

File C
(1 MB)

File A
(1 MB)

 

Figure 4: File A is swapped out from cache when file C is accessed 
Here, we propose the concept of cache transaction, a cache transaction can be understood 
as a snapshot of all the files in the cache. As shown in Fig. 5, we assume that the cache 
transaction space boundary size is M, the cache transaction is recorded every M sized 
data is accessed. For all files in a cache transaction, one relationship strength is added 
between each pair of them. This method can minimize the amount of calculations while 
ensuring that the relationships between files are fully exploited. 
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Figure 5: A sample of file transaction calculation process 

2.3 LSTM and plain file grouping 
File grouping algorithm can organize related files into groups, but the max size of 
grouped file has a limit in space (generally 1/10 of the cache size). The reason is that 
when a large file groups is read, excessive files is put to cache. The function of cache will 
be affected since the files will fill almost the entire cache space. Therefore, the mining 
result of the file grouping algorithm is a short-term relationship of files that lacks a 
predictive approach to access trends. In addition, the method we proposed above is a 
spatial-locality-first partitioning method. The relationships between the files that has a 
large offset space distance are neglected as shown in Fig. 6. 
LSTM neural network is a method for classifying samples using time series data. 
Compared with the traditional Recurrent Neural Network (RNN) model, the introduced 
forgetting gate solves the gradient disappearing problem. Therefore, for the timing 
characteristics of file access, we propose an LSTM-based file access prediction algorithm 
that uses file block access data to predict the next accessed file block. However, in a 
distributed storage system, it is difficult to extract features since the file has only Size and 
Offset info. If one-hot file block representation is used, information such as the number 
of file occurrences and file access characteristics cannot be indicated. In this study, we 
propose a file block feature extraction method based on cache transactions to vectorize 
the feature of file blocks. Using the vectorized file block feature as the input vector of the 
LSTM, the neural network is trained so that it can output more accurate predict result. 
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Figure 6: Files B and D should have relation in access time, but they are divided into 
different file blocks according to disk offset 

3 Models design 
In this section, we will introduce the designation of proposed model. The calculating method 
of OA Blocks is detailed in 3.1, the cache transaction based file feature extracting method is 
introduced in 3.2 and the LSTM based file block predicting model is presented in 3.3. 

3.1 File blocking algorithm based on spatial and temporal locality 
In this module, we propose a spatial locality file blocking algorithm based on OA 
similarity, which classifies files similar to offset and access Times. For file, we define its 
coordinate ( ),

i i iF F FH O A=  where 
iFO is disk offset the iF  saved and 

iFA is times iF  is 

accessed in trace. Subsequently, we normalize the points and cluster the files according to 
the coordinate values. 
However, the distribution of the file accesses number exhibits a normal distribution 
feature, where 80% files having fewer than 50 accesses. If we cluster these file directly, 
most files will be concentrated in low-access area since that points is denser in that area, 
so that a large scale low-access files will be grouped in few groups. What’s more, for two 
files iF  and jF , 

i jF FO O≈ , we assume two cases. In the first case, the number of visits 

10
iFA =  and 100

jFA = , in the other case, 1000
iFA = an 1090

jFA = . In both cases, iF  

and jF  have the same distances. But it is clear that in the second case, the probability of 

iF  and jF  being associated is greater than in the first case. Therefore, we propose a 
coordinate scaling method that uses a distance correction function to scale the A  
coordinate values. 

( )iF is file with thi  order by access times. The correction function enlarges the difference 
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degree of the A  coordinate value of the file with a low number of access times and 
reduces the difference degree of the A  coordinate of the file with a high number of 
access times. The result is shown in Figs. 7 and 8. 

 

Figure 7: Result before coordinate scaling    Figure 8: Result after coordinate scaling 

3.2 File access relationship classification 
According to the concept of the cache transaction we proposed in 2.2, we build an 
inverted index on the occurrence of files in cache transactions. As shown in Fig. 9. 
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Figure 9: Inverted index for files with cache transaction 
We define a vector T  to represent the occurrence of a file in transactions. 
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For file aF , ( ) 1
aFT i = if aF  occurs in the thi  transaction, otherwise ( ) 0

aFT i = . We 
calculate the vector T  for the same category of files after the first classification and 
define the distance D  between files, see Eq. (1). 

,i j i jF F F FD T T ω= − ∗              (1) 

LSTM Neuron

xt

st-1

ht-1

ht

st

ht

 

Figure 10: LSTM neuron structure 
We propose an improved hierarchical clustering method to classify the vectors F . Due to 
the errors caused by random fluctuations, files with a large number of access times 
should be less sensitive to transaction differences. Therefore, we dynamically adjust the 
clustering stop condition t  according to the dimension of T . Finally, we get all file 
blocks 1 2{ , ,..., }mB B B B= , where m  is the total number of file blocks.  

3.3 File access prediction algorithm based on LSTM 
We propose a file access prediction algorithm based on LSTM neural network. The input 
vector is the cache transaction feature of the file block. 
For cache transaction feature of file blocks, it has same calculation method with cache 
transaction feature of files. For a file block aB , ( ) 1

aBT i =  if any file x aF B∈  and xF  

occurs in the thi  transaction, otherwise ( ) 0
aBT i = . 

When the tht  file block in time sequence tB  is read, the transaction feature of the 
previous 1K −  file blocks and the transaction feature of the file block 

tBT   are combined 

into an input matrix 
1 2

( , ,..., )
t k t k tB B BE T T T
− + − +

=  where the transaction feature of tB  is its 
occurrence in all transactions. Each column of the matrix represents the feature of the file 
blocks in the time series. The LSTM neural network can learn the temporal access 
association between file blocks through the learning process. The structure of LSTM 
neuron is shown in Fig. 10. 
The output layer of the LSTM network uses feedforward neural network which maps the 
intermediate LSTM outputs to a single value, i.e., the next accessed file block and the 
short-term LSTM based file predicting framework is given as Fig. 11.  
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Figure 11: Proposed LSTM based predicting framework 

The training process of LSTM based predicting method can be described as following 
steps as Tab. 1. 

Table 1: LSTM training process 
 

Steps Description 

Step 1 Input a new file block iB . 

Step 2 Get the feature of iB  as 
iBT   according to cache transaction. 

Step 3 Input 
iBT  to LSTM neural network. 

Step 4 Check the size of LSTM input number, if size is less than K, go to Step 1. 
Step 5 Calculate according to ordinary LSTM neural network layer by layer 
Step 6 Predict the next accessed file by a feed forward neural network. 
Step 7 Update each of the weights in the network according to ordinary LSTM. 

4 Experiment 
In this section, we adopt the architecture in Fig. 12 to implement the cache model. The 
model we proposed runs and is trained on storage server. The storage server reads the 
disk I/O access logs actively to train the prefetching model. The file reading process of 
model can be described as following: Firstly, when a new I/O request arrives, the cache 
model checks if the file is already in the cache. If it is, the file is returned. If the file is not 
in the cache, all of files that contained in the file block are prefetched into the cache for 
subsequent requests and the cache transaction feature of file block is put to LSTM neural 
network for predicting next file block to be accessed. Then the predicted file block is 
prefetched to cache. 
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Figure 12: The architecture we implement the entire cache model 
In order to prove that our proposed model can be applied to various situations, we use the 
trace that are available on the Internet and have been tested in similar studies to evaluate 
the effectiveness of our model. 
We write code in Python to test our model. The improved k-means algorithm ran 3 
minutes, file block feature extract algorithm took less than 1 minute minutes with 
optimization and LSTM training process ran 20 minutes on a server with 16-core Xeon 
E5-2620 v4 processor and 64 GB of RAM. However, we did not use GPU to optimize the 
LSTM training process since our model runs on storage nodes. The training process may 
take less time if GPU is used. 
The first trace is Florida International University (FIU) [Narayanan, Donnelly and 
Rowstron (2008)] and traces researchers’ local storage. This is a multiuser, multi-
application trace, with activities including developing, testing, experiments, technical 
writing and plotting. There are 17,836,701 access times and over 33% of accesses were to 
duplicate blocks. The second trace is 1 week of block I/O traces from multipurpose 
enterprise servers used by researchers at Microsoft Research (MSR) [Koller and 
Rangaswami (2010)], Cambridge. This dataset was very write heavy. The data format 
and sample is shown in Tabs. 2 and 3. 

Table 2: Format and sample of FIU 
 

Timestamp PID Process LBA Size R/W Maj. Device # Min. Device # MD5 
0 4892 syslogd 904265560 8 W 0 0 531e779... 

39064 2559 kjournald 926858672 8 W 6 0 4fd0c43... 
467651 2522 kjournald 644661632 8 W 6 0 98b9cb7... 

Table 3: Format and sample of MSR 
 

Timestamp Type Block Offset Size Response Time 

128166372003061629 Read 7014609920 24576 41286 

128166372016382155 Write 1317441536 8192 1963 
128166372026382245 Write 2436440064 4096 1835 
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In order to show the superiority of the method we proposed, we compare our model with 
the ordinary LRU cache replacement method and existing file grouping cache 
replacement method. Overall, we propose a strategy for file grouping in distributed 
storage systems. Compared with existing group methods, the cache hit rate has a 
significant improvement. The results of our experiment are shown in Figs. 13 and 14. 

 

Figure 13: The cache hit rate of the FIU dataset 

 

Figure 14: The cache hit rate of the MSR dataset 
We use cross-validation to evaluate the number of disk seeks of the proposed algorithm. 
For existing datasets, our model can be trained in 30 minutes with 1 day access log. 
Therefore, the training process can be trained at time when the server with low load such 
as night time. Moreover, the user’s access mode to the file may change over time. Here, 
we divide the access log in one day into a training-validate set. The experimental results 
show that the proposed model can significantly reduce the number of disk seeks. As 
shown in Fig. 15. 
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Figure 15: The proposed method provide significant improvement on disk seeks than 
LRU and group-only based methods 

Using prediction based or statistical based method as a lone prefetching model is an 
unstable approach to manage cache. We compare our model with popular NN-based 
prefetching method and group only method [Patra, Sahu, Mohapatra et al. (2010)]. The 
result in Fig. 13 shows that our model performs better in stability and accuracy by 
average cache hit rate over time with FIU trace. 

 

Figure 16: Average accuracies of the cache prefetching models over time 
In Fig. 16, we can find that the proposed method provides more stable cache hit rate 
except in several interval. We analyzed the file accesses in 170,000 to 180,000 and 
340,000 to 350,000. The result shows that most accesses in these intervals did not appear 
in training set. 

5 Discussion 
The main contribution of our work is the proposal of cache transaction. In this paper, we 
use the cache transaction to extract feature of files. Compared with traditional file feature 
extraction methods, the cache transaction based method can provide more information in 
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file or file access pattern. Furthermore, the cache transaction can find more accurate file 
relation since it is cache oriented. Files that have no relation on cache transaction will not 
be regard as related files even though they have less access time or access number interval. 
In summary, cache transactions can be used as a new way to measure file relationships. It 
can be widely used in access pattern recognition problem in file systems. Furthermore, it 
can provide solutions to other types of problems after some transformation. 
LSTM neural network is widely used in natural language processing and speech 
recognition, and can effectively extract the temporal characteristics of data. The 
innovation of this research is that the input layer of LSTM neural network is optimized 
by using the cache transaction feature of the file block, so that it can predict the files to be 
accessed according to the temporal characteristics of the file access. Experiment results 
demonstrate the feasibility of LSTM neural network for file access prediction problems. 
Based on the idea of recurrent neural networks such as LSTM, there is still a lot of 
research space for neuron structure optimization, which can further improve recognition 
accuracy and training efficiency. 
However, clustering operations are performed during the calculation of the model, which 
will consume a large amount of memory. We have tried 16 million file accesses and 
640,000 files. The peak memory usage during the model training process will reach 3 GB. 
We will improve our work on resource saving in the further research. 

6 Conclusion 
In this paper, we propose massive files prefetching model based on LSTM neural 
network with cache transaction strategy to mine file group efficiently. Experiments show 
that compared with the traditional LRU and the plain grouping methods, the proposed 
model notably increase the cache hit rate and effectively reduces the I/O wait time. Our 
model can effectively improve the file access efficiency of distributed storage systems, 
and thus guarantee the real-time and accuracy in information forensics under massive 
small file environments. 
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