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Abstract: Device-to-Device (D2D) communication is a promising technology that can 
reduce the burden on cellular networks while increasing network capacity. In this paper, we 
focus on the channel resource allocation and power control to improve the system resource 
utilization and network throughput. Firstly, we treat each D2D pair as an independent agent. 
Each agent makes decisions based on the local channel states information observed by itself. 
The multi-agent Reinforcement Learning (RL) algorithm is proposed for our multi-user 
system. We assume that the D2D pair do not possess any information on the availability 
and quality of the resource block to be selected, so the problem is modeled as a stochastic 
non-cooperative game. Hence, each agent becomes a player and they make decisions 
together to achieve global optimization. Thereby, the multi-agent Q-learning algorithm 
based on game theory is established. Secondly, in order to accelerate the convergence rate 
of multi-agent Q-learning, we consider a power allocation strategy based on Fuzzy C-
means (FCM) algorithm. The strategy firstly groups the D2D users by FCM, and treats 
each group as an agent, and then performs multi-agent Q-learning algorithm to determine 
the power for each group of D2D users. The simulation results show that the Q-learning 
algorithm based on multi-agent can improve the throughput of the system. In particular, 
FCM can greatly speed up the convergence of the multi-agent Q-learning algorithm while 
improving system throughput. 
 
Keywords: D2D communication, resource allocation, power control, multi-agent, Q-
learning, fuzzy C-means. 

1 Introduction 
With the development of mobile networks and the Internet of Things (IoT), more and 
more wireless devices are being applied to our daily life and industrial production. For 
entertainment devices (such as mobile phones) in a cellular network, users have high 
requirements for large bandwidth and low latency for the increase of various high 
bandwidth requirement applications, such as virtual reality (VR) and augmented reality (AR).  
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In order to improve the wireless bandwidth utilization and network capacity, the industry 
has proposed device-to-device (D2D) [Doppler, Rinne, Wijting et al. (2009); Bello and 
Zeadally (2016)] technology in recent years. Different from the traditional client-to-
server (C/S) working mode, the D2D users can communicate directly under the control of 
the base station and can also indirectly transfer data to the base station through the other 
D2D devices. In a traditional cellular network, after a certain channel under one base 
station is occupied, it cannot be reused by other devices under the same base station again. 
However, in the D2D scenario, since the D2D pairs are relatively close together, the D2D 
pair can reuse the channel with very small power which will improve the frequency 
utilization and the network capacity. Also, as the number of D2D pairs increases, a D2D 
user who owns a file can directly send it to the D2D user who needs it by means of the 
nearby communication and achieves the traffic offload function. The short range direct 
D2D communication benefits the whole network with lower energy consumption, load 
balancing, and better quality of service (QoS) for edge users [Li, Chi, Chen et al. (2018)], 
and can also be widely applied to dense communication network scenarios such as traffic 
systems [Pan, Qin, Yi et al. (2019)]. 
In the traditional D2D enabled network, the base stations play an important role. For 
example, the D2D user pair needs to apply for a channel from the base station before 
establishing the D2D communication. The base station needs to consider the interference 
between users when allocating the channel and minimize the interference between user 
devices. However, the full control mode of the base station brings many problems to the 
system, for example, the control signaling overhead being too large and the data 
transmission delay being too serious.  
The main contribution of our paper is as follow. Our goal is to maximize system 
throughput while satisfying the requirement of QoS for users. We manifest this problem 
as a stochastic non-cooperative game in which D2D users do not possess any previous 
information about the quality or availability of the selected resource block. 
We put forward a self-deciding algorithm based on multi-agent Q-learning to achieve 
resource allocation of up-link resources in cellular communication reused by D2D users. 
Each D2D pair is modeled as an agent, which explores all the possible policies based on the 
observed channel throughput and state which are affected by the channel quality. Therefore, 
the problem can be described by the Markov decision process (MDP) [Sutton and Barto 
(1998)]. The multi-agent Q-learning process for resource blocks selection can be formulated. 
Concerning the convergence complexity of the Q-learning, we also proposed a multi-
agent Q-learning power control algorithm based on the Fuzzy C-mean algorithm [Parker 
and Hall (2014)] to accelerate convergence speed. 
The structure of this paper is as follows: Sections 1 and 2 introduce the research 
background. Section 3 describes the system model and problem formulation. Section 4 
shows the reinforcement learning algorithm based on multi-agent. The Section 5 focuses 
on power control based on Q-learning and fuzzy clustering algorithms. The simulation 
results of this paper are elaborated in Section 6. Finally, the full text is concluded in 
Section 7. 
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2 Related works 
Although D2D technology can improve the communication capacity and user experience 
of cellular networks, it also faces many problems that traditional cellular networks do not 
have. The major obstacles to deploying the D2D communications are related to 
insufficient spectrum management and reduce interference [Asheralieva and Miyanaga 
(2016)]. Most existing interference management methods use a centralized approach in 
which resources are allocated by a central node with global channel state information 
(CSI) to D2D pairs [Asheralieva and Miyanaga (2016); Yang, Martin, Boukhatem et al. 
(2015); Kim, Kim, Bang et al. (2016); Penda, Fu and Johansson (2015)]. An et al. [An, 
Sun, Zhao et al. (2012)] used a proportional fairness algorithm to allocate resources to 
cellular users, and then used a greedy algorithm to assign D2D users multiplexing 
resources. Zhou et al. [Zhou, Dong, Ota et al. (2016)] concerned both energy efficiency 
and quality of service in LTE-A networks and proposed an algorithm that exploits the 
hybrid architecture of C-RAN. The distributed resource allocation problem is modeled as 
a non-cooperative game and proposed a centralized interference mitigation algorithm to 
improve the QoS performance.  
At present, machine learning methods such as reinforcement learning (RL) [Chen, Li and 
Zhao (2016); Zhou, Lu, Wen et al. (2019); Pan, Yu, Yi et al. (2019)] are applied in the 
field of image processing. More and more researchers use reinforcement learning 
methods to solve the problem in wireless communication such as cognitive radio 
networks [Xu, Wu, Shen et al. (2013); Kalathil, Nayyar and Jain (2014)]. In order to 
reduce the computational complexity of the base station and reduce the control signaling 
overhead, we introduce reinforcement learning in channel resource allocation and power 
control. Maghsudi et al. [Maghsudi and Stanczak (2015)] modeled D2D communications 
as RL, demonstrated it as non-cooperative games, and D2D users explored their policies 
based on the experience in stochastic environments. Q-learning [Xi, Sheng, Sun et al. 
(2018)] is a model-free RL algorithm and can be adapted to allocate resource effectively. 
Maghsudi et al. [Maghsudi and Stanczak (2016)] studied the problem of resource 
allocation for D2D communication and achieved optimization of the scheme by adopting 
Q-learning. A Bayesian reinforcement learning-Based coalition formation is proposed by 
Asheralieva [Asheralieva (2017)] to handle the problem of resource sharing in D2D 
networks. The above research rarely considers the convergence time of the algorithm. 

3 System model and problem formulation 
3.1 System model 
We consider a single-cell wireless communication system in which the D2D 
communication mode and the cellular communication mode coexist. In our system, it’s 
assumed that there is a base station (BS) at the center, and the base station can be used to 
assist cellular users and D2D users to collaborate. In Fig. 1, the system model of this 
paper is demonstrated. In this paper, we use N={1, 2, ..., N} for an array of cellular users 
and M={1, 2, ..., M} for an array of D2D user pairs. At the same time, in we assume that 
D2D users and cellular users are evenly distributed in the cell. 
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Figure 1: System model for collaboration between D2D users and cellular users 

Traditionally, both the up-link resource and the down-link resource of the cellular 
communication mode can be used by users in the D2D communication mode. However, 
the fact is that in practical application scenarios, when the up-link resources are reused, 
the base station will be interfered; when the down-link resources are reused, the users’ 
equipment will be interfered. Comparing with the user equipment, the base station is 
more capable of resisting interference. Therefore, we use a scenario in which D2D users 
multiplex up-link resources of the cellular users. We also assume that there is no 
information exchange and collaboration between D2D users, and they do not know the 
information of the wireless channel. 
The total number of resource blocks in the system is K, and the resource block set is 
RB={RB1, ..., RBK}, with K={1, 2, ..., K} denoting the set of resource blocks’ indexes. 
For ensuring the QoS of cellular users and fully using of channel resources, the total 
number of resource blocks is consistent with that of cellular users, that is, K=N. Each 
cellular user is assigned a resource block in advance. Resource blocks are orthogonal to 
each other to ensure no interference between cellular users. One resource block can be 
reused by one cellular user and multiple D2D users. For the mth pair of D2D users, we 
define a binary K-dimensional resource block selection vector, 𝛽𝛽𝑚𝑚 = [𝛽𝛽1𝑚𝑚,⋯ ,𝛽𝛽𝐾𝐾𝑚𝑚]𝑇𝑇 . 
When 𝛽𝛽𝑘𝑘𝑚𝑚 is equal to 1, it indicates that the mth D2D user pair selects the resource block 
k, and when it equals to 0, it indicates that the resource block is not selected. It is 
assumed above that each D2D user can only select up to one resource block: 
∑ 𝛽𝛽𝑘𝑘𝑚𝑚 ≤ 1,∀𝑚𝑚 ∈ 𝑀𝑀.𝑘𝑘∈𝐾𝐾   (1) 
The cellular users and the D2D user pairs multiplex the uplink transmission. The signal-
to-interference-plus-noise ratio (SINR) of the mth D2D user pair communicating over 

is denoted as: 

𝛾𝛾𝑘𝑘
𝐷𝐷𝑚𝑚 =

𝑃𝑃𝑘𝑘
𝐷𝐷𝑚𝑚𝛽𝛽𝑘𝑘

𝑚𝑚𝐺𝐺𝑘𝑘
𝐷𝐷𝑚𝑚,𝑚𝑚

𝑃𝑃𝑘𝑘
𝑛𝑛𝐺𝐺𝑘𝑘

𝑛𝑛,𝑚𝑚+∑ 𝑃𝑃𝑘𝑘
𝐷𝐷𝑗𝑗𝐺𝐺𝑘𝑘

𝐷𝐷𝑗𝑗,𝑚𝑚+𝜎𝜎2
𝑗𝑗≠𝑚𝑚,𝛽𝛽𝑘𝑘

𝑖𝑖 =1
𝑗𝑗

  (2) 

where𝑃𝑃𝑘𝑘
𝐷𝐷𝑚𝑚 and𝑃𝑃𝑘𝑘𝑛𝑛  respectively represent the mth D2D pair and the nth cellular user 

transmission power communicating over the kth uplink resource block. 𝐺𝐺𝑘𝑘
𝐷𝐷𝑚𝑚,𝑚𝑚, 𝐺𝐺𝑘𝑘

𝑛𝑛,𝑚𝑚, and 

kRB
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𝐺𝐺𝑘𝑘
𝐷𝐷𝑗𝑗,𝑚𝑚  respectively represent the link gain of channel over the 𝑚𝑚 th D2D link, from 

cellular transmitter 𝑛𝑛 to receiver 𝑚𝑚 communicating over the kth resource block, and from 
transmitter 𝑗𝑗 of D2D users to receiver m. 𝜎𝜎2 is zero-mean additive white Gaussian noise 
(AWGN) [Matuz, Liva, Paolini et al. (2013)] power variance. 
Similarly, we can define the SINR of the nth cellular user, where 𝑛𝑛 ∈ 𝑁𝑁, over the 𝑅𝑅𝑅𝑅𝑘𝑘 as: 

𝛾𝛾𝑘𝑘𝑛𝑛 = 𝑃𝑃𝑘𝑘
𝑛𝑛𝐺𝐺𝑛𝑛,𝑘𝑘

𝐵𝐵𝐵𝐵

∑ 𝑃𝑃𝑘𝑘
𝐷𝐷𝑗𝑗𝐺𝐺𝑗𝑗,𝑘𝑘

𝑗𝑗,𝐵𝐵𝐵𝐵+𝜎𝜎2
𝛽𝛽𝑘𝑘
𝑖𝑖 =1

𝑗𝑗

,∀𝑛𝑛 ∈ 𝑁𝑁,∀𝑘𝑘 ∈ 𝐾𝐾   (3) 

where 𝐺𝐺𝑛𝑛,𝑘𝑘
𝐵𝐵𝐵𝐵  and 𝐺𝐺𝑗𝑗,𝑘𝑘

𝑗𝑗,𝐵𝐵𝐵𝐵 respectively indicate the link gain of channel over the 𝑅𝑅𝑅𝑅𝑘𝑘  from BS 
to cellular user n and from BS to the 𝑗𝑗th transmitter D2D user. 

3.2 Problem formulation 
When D2D users share the same resource block with the cellular user, interference occurs 
to both cellular and D2D users, which affects their communication quality. Therefore, in 
the allocation of resource to D2D users, the premise is to ensure the communication 
quality of both cellular users and D2D users. In this paper, the QoS performances of 
cellular users and D2D users are the constraint, and the maximum throughput of cellular 
users and D2D users in a cell is taken as the target. We model the problem as Eq. (4):  

max�[𝜔𝜔 log2(1 + 𝛾𝛾𝑘𝑘𝑛𝑛) + � 𝜔𝜔

𝛽𝛽𝑘𝑘
𝑚𝑚=1

𝑚𝑚

log2(1 + 𝛾𝛾𝑘𝑘
𝐷𝐷𝑚𝑚)]

𝐾𝐾

𝑘𝑘=1

 

(4) 𝑠𝑠. 𝑡𝑡. 𝛾𝛾𝑘𝑘𝑛𝑛 ≥ 𝜏𝜏𝐶𝐶 ,∀𝑛𝑛 ∈ 𝑁𝑁,∀𝑘𝑘 ∈ 𝐾𝐾, 
𝑠𝑠. 𝑡𝑡. 𝛾𝛾𝑘𝑘

𝐷𝐷𝑚𝑚 ≥ 𝜏𝜏𝐷𝐷 ,∀𝑚𝑚 ∈ 𝑁𝑁,∀𝑘𝑘 ∈ 𝐾𝐾 
where 𝜔𝜔 is the bandwidth of each channel (in Hz), 𝜏𝜏𝐶𝐶 is the minimum SINR of cellular users, 
and 𝜏𝜏𝐷𝐷 is the minimum SINR of D2D users. The objective function maximizes the system 
throughput, and the constraints are the QoS requirements for cellular users and D2D users. 
In the next section, we will introduce the multi-agent RL combining with game theory based 
algorithm to figure out the optimal scheme of resource allocation for D2D users. 

4 Reinforcement learning based resource allocation algorithm 
The above optimal D2D resource allocation problem under stochastic environment can be 
formulated as an MDP in which the state transition probabilities and expected rewards for 
current states are unknown. In this section, we will introduce a multi-agent RL algorithm 
which combines with the game theory. 

4.1 Basic definition 
Reinforcement learning is a machine learning that learning what to do, and how to map 
situations to actions, so as to maximize a numerical reward signal. In reinforcement 
learning, there are several basic concepts: agent, state, action, reward function, and 
strategy function. The agent is the learning subject in the reinforcement learning. It will 
continuously observe the environment and obtain the current environmental state. The 
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agent will receive positive or negative feedback from the environment after performing 
the action. Reinforcement learning is Trail-and-error. Because there is no direct guidance 
information, the agent should constantly interact with the environment and obtain the best 
strategy through trial and error. Reinforcement learning is unsupervised learning and 
often given in the aftermath (the last state), which leads to the question of how to assign 
rewards to the previous state after getting a positive or negative reward. In our system, 
each D2D pair can be seen as an agent. Accordingly, we formulate our problem in the 
following subsections. 

4.1.1 State vector  
For each D2D pair m, the state on 𝑅𝑅𝑅𝑅𝑘𝑘 at slot t can be defined as: 

S𝑡𝑡
𝑚𝑚,𝑘𝑘 = � 𝐶𝐶𝑡𝑡

𝑘𝑘

𝐷𝐷𝑡𝑡
𝑚𝑚,𝑘𝑘� ,∀𝑚𝑚 ∈ M,∀𝑘𝑘 ∈ K,   (5) 

where 𝐶𝐶𝑡𝑡𝑘𝑘 denotes whether the cellular user occupying 𝑅𝑅𝑅𝑅𝑘𝑘 is under severe interference at 
slot 𝑡𝑡, defined by 

𝐶𝐶𝑡𝑡𝑘𝑘 = �1        𝛾𝛾𝑘𝑘𝑛𝑛 ≥ 𝜏𝜏𝑐𝑐 ,
0   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,  (6)

 where 𝜏𝜏𝑐𝑐  is the minimum QoS that cellular users need to meet in communication. We 
assume that cellular users will exchange the SINR value in the communication process with 
the base station, and then the D2D user can obtain the information from the base station. 
Similarly, 𝐷𝐷𝑡𝑡

𝑚𝑚,𝑘𝑘 is the SINR level of D2D pair m using 𝑅𝑅𝑅𝑅𝑘𝑘 at slot 𝑡𝑡, defined by: 

𝐷𝐷𝑡𝑡
𝑚𝑚,𝑘𝑘 = �1,         𝛾𝛾𝑘𝑘

𝐷𝐷𝑚𝑚 ≥ 𝜏𝜏𝐷𝐷 ,
0,      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,

 (7) 

where 𝜏𝜏𝐷𝐷  is the minimum SINR meeting the requirement of D2D users’ QoS 
performances. Providing that the D2D users report this information to BS, the D2D users 
obtain this value from BS. 

4.1.2 Action vector 
In our case, the individual actions of the players correspond to their resource block 
selection decisions. Hence, the action space for each D2D pair can be described by the vector: 
𝐀𝐀𝑚𝑚 = {𝛽𝛽𝑚𝑚 | 𝛽𝛽𝑘𝑘𝑚𝑚 ∈ {0, 1},∑ 𝛽𝛽𝑘𝑘𝑚𝑚 ≤ 1𝑘𝑘∈𝐾𝐾 },∀ 𝑚𝑚 ∈ 𝐌𝐌                     (8) 
When 𝛽𝛽𝑘𝑘𝑚𝑚 is equal to 1, it indicates that the 𝑚𝑚 th D2D user pair selects the resource block 
𝑅𝑅𝑅𝑅𝑘𝑘 , and when it equals 0, it indicates that the resource block is not selected. It is 
assumed above that each D2D user can only select up to one resource block. 
We denote the action taken by the agent m at the slot t as 𝑎𝑎𝑡𝑡𝑚𝑚 ∈ 𝐀𝐀, and 𝑎𝑎𝑡𝑡−𝑛𝑛 as the action 
vectors taken by other agents except the agent m: 
𝐀𝐀−𝑚𝑚 = ∏ 𝐀𝐀𝑘𝑘𝑘𝑘∈𝑀𝑀\{𝑚𝑚}  𝑎𝑎𝑎𝑎𝑎𝑎 𝐀𝐀 = 𝐀𝐀𝑚𝑚𝐀𝐀−𝑚𝑚,∀𝑚𝑚 ∈ 𝐌𝐌                          (9) 

4.1.3 Reward function 
When an agent performs an action, it affects the environment and therefore changes the 
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environment. Therefore, the agent receives a reward signal r from the environment each 
time the action is performed. The function of the reward function is to perform an effect 
feedback i on the agent just performing the action and instruct the agent to take the next 
action. Thus, based on the above analysis, the reward function for agent m at slot t is 
indicated by the capacity on : 

𝛾𝛾𝑡𝑡
𝑚𝑚,𝑘𝑘 = 𝜔𝜔 log2(1 + 𝛾𝛾𝑘𝑘𝑛𝑛) +𝜔𝜔 log2�1 + 𝛾𝛾𝑘𝑘

𝐷𝐷𝑚𝑚� 
(10) 

∀𝑚𝑚 ∈ 𝐌𝐌,∀𝑛𝑛 ∈ 𝐍𝐍,∀𝑘𝑘 ∈ 𝐊𝐊,∀𝛽𝛽𝑘𝑘𝑚𝑚 = 1  
Since the problem solved in this paper is to maximize the throughput of the system, and 
based on the problem abstraction in Section 3, we can set the learning goal as a reward 
function. Therefore, the expression of the above reward function is reasonable. 

4.1.4 Policy and value function 
Policy 𝜋𝜋 is used to provide agents with rules to follow in reinforcement learning. Under 
the guidance of 𝜋𝜋, the agent can decide what action to perform at the next moment 
according to the current state. The iteration of the strategy function is in a loop, from 
policy evaluation to policy improvement, in turn. 
Based on the well-known Bellman Equation [Li, Zhao, Sun et al. (2018)]: 
𝜈𝜈(𝑠𝑠) = 𝐸𝐸[𝑟𝑟𝑡𝑡+1 + 𝜆𝜆𝜆𝜆(𝑆𝑆𝑡𝑡+1| 𝑆𝑆𝑡𝑡 = 𝑠𝑠)]                                               (11) 
where E in the above equation refers to the expectation, while 𝜆𝜆 ∈ (0, 1) refers to the 
discount factor. 𝜈𝜈(∙) is a function of state transitions in the given environment. We can 
re-write it in the form of Q-value: 
 𝑄𝑄𝜋𝜋(𝑠𝑠,𝑎𝑎) = 𝐸𝐸{𝑟𝑟𝑡𝑡+1 + 𝜆𝜆𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1)| 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡+1}                        (12) 
The optimal Q-value, denoted as 𝑄𝑄∗ can be expressed as: 

𝑄𝑄∗(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) = 𝐸𝐸 �𝑟𝑟𝑡𝑡 + 𝜆𝜆max
𝑎𝑎𝑡𝑡+1

𝑄𝑄 (𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1) | 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡�                      (13) 

Among the lots of other methods to choose the optimal Q-value based on the action, we 
use the 𝜀𝜀 -greedy strategy [Wu, Wang and Yin (2019)] in this paper to take actions 
according to the current estimated Q-value, and it can be described as follows: 
● Choose the optimal action 𝑎𝑎∗ = 𝑎𝑎𝑎𝑎𝑎𝑎max

𝑎𝑎∈𝐴𝐴
𝑄𝑄(𝑠𝑠,𝑎𝑎) with the probability 1 − 𝜀𝜀 < 1. 

● Choose other action with probability 𝜀𝜀 > 0 at random. 
In Q-learning, each 𝑄𝑄(𝑠𝑠,𝑎𝑎)  corresponds to a corresponding Q value, and the action is 
selected according to the Q value during the learning process. The Q-learning algorithm is 
combining with two process which are learning process and take action process. Each 
learning process of the agent can be seen as starting from a random state, using a strategy to 
select actions, such as -greedy strategy. The 𝜀𝜀-greedy is used to ensure that the agent can 
search for all possible actions and update each 𝑄𝑄(𝑠𝑠,𝑎𝑎). After performing the selected action, 
the agent observes the new state and reward, and then updates the Q value of the previous 
state and action according to the maximum Q value and reward of the new state. The agent 
will continue to select actions based on the new state until it reaches a termination state. The 
termination state is control by the maximize loop times of the Q value updates. In our system, 
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multiple agents make decisions together, therefore the strategies executed by each agent are 
affected by the environment as well as the other agents. 

4.2 Multi-agent Q-learning algorithm 
Considering the situation of multiple pairs of D2D users under one base station, this 
paper mainly studies the scenario of multi-agent. Multi-agent system is one in which 
several agents attempt to maximize utility or solve tasks jointly through their interaction. 
Since the D2D pairs do not possess any information on the availability or quality of the 
channel to be selected and each D2D pair is an agent, we can now present the considered 
resource allocation problem as a non-cooperative game when we establish the multi-
agent Q-learning algorithm, which can be demonstrated as: 
Γ = �𝐌𝐌, {𝐀𝐀𝑚𝑚}, {𝐮𝐮𝑚𝑚}�,∀ 𝑚𝑚 ∈ 𝐌𝐌                        (14) 
where 𝐌𝐌  is the set of players (D2D pairs), 𝐀𝐀𝑚𝑚 is the players’ action space, and 
𝐮𝐮𝑚𝑚 [Asheralieva and Miyanaga (2016)] is the utilities of the players. 
According to (14), 𝐮𝐮𝑚𝑚 can be achieved by: 
𝐮𝐮𝑚𝑚(𝑠𝑠𝑡𝑡𝑚𝑚,𝑎𝑎𝑡𝑡𝑚𝑚,𝐚𝐚𝒕𝒕−𝒎𝒎) = 𝑠𝑠𝑡𝑡𝑚𝑚𝑟𝑟𝑡𝑡𝑚𝑚(𝑎𝑎𝑡𝑡𝑚𝑚,𝐚𝐚𝒕𝒕−𝒎𝒎,𝐆𝐆𝑚𝑚,𝐆𝐆𝑛𝑛),∀𝑛𝑛 ∈ 𝐍𝐍,∀𝑚𝑚 ∈ 𝐌𝐌              (15) 
where 𝐆𝐆𝑚𝑚 and 𝐆𝐆𝑛𝑛 are respectively the link gain matrix of D2D user m and cellular user n, 
and 𝑟𝑟𝑡𝑡𝑚𝑚(∙) is the reward of agent m at slot t. Then each agent m selects the 𝐑𝐑𝐑𝐑 based on 
the Nash equilibrium (NE) state to maximize its utility  𝐮𝐮𝑚𝑚 . Also, according to 
Asheralieva et al. [Asheralieva and Miyanaga (2016)], there is NE. The equation state 
goes like: 
𝐮𝐮𝑚𝑚(𝑠𝑠𝑡𝑡𝑚𝑚,𝑎𝑎�𝑡𝑡𝑚𝑚,𝐚𝐚�𝒕𝒕−𝒎𝒎) ≥ 𝐮𝐮𝑚𝑚(𝑠𝑠𝑡𝑡𝑚𝑚,𝑎𝑎𝑡𝑡𝑚𝑚,𝐚𝐚�𝒕𝒕−𝒎𝒎),∀𝑎𝑎𝑡𝑡𝑚𝑚 ∈ 𝐀𝐀𝑚𝑚                (16) 
combining (13) and (16), we can get the optimal Q-value: 

𝑄𝑄𝑡𝑡∗ = 𝑄𝑄�𝑡𝑡(𝑠𝑠𝑡𝑡𝑚𝑚,𝑎𝑎𝑡𝑡𝑚𝑚) = 𝐸𝐸 �𝑢𝑢𝑡𝑡𝑚𝑚[𝑎𝑎𝑡𝑡𝑚𝑚,𝜋𝜋�−𝑚𝑚(𝑠𝑠𝑡𝑡𝑚𝑚), 𝑠𝑠𝑡𝑡𝑚𝑚] + 𝜆𝜆 max
𝑎𝑎𝑡𝑡
𝑚𝑚∈𝐀𝐀𝑚𝑚

𝑄𝑄�𝑡𝑡  (𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1)�   (17) 

4.3 Structure 
We present our multi-agent Q-learning algorithm into distributed Q-learning [Nie, Fan, 
Zhao et al. (2016)], which can split the large Q-value tables into m smaller Q-value tables 
𝑄𝑄𝑖𝑖(𝑠𝑠,𝑎𝑎)( 𝑖𝑖 = 1, 2,⋯ ,𝑚𝑚) so as to decrease the learning complexity. Each agent executes 
actions repeatedly during the learning process. Only if the newly derived Q-value is 
greater than the former one in the Q-value table, will the Q-value be updated. Based on 
Eq. (17), we can get the update rule by Eq. (18): 

𝑄𝑄𝑡𝑡+1 = {
(1 − 𝑎𝑎𝑡𝑡)𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) + 𝛼𝛼𝑡𝑡 �𝑟𝑟𝑡𝑡 + 𝜆𝜆max

𝑎𝑎𝑡𝑡+1
𝑄𝑄(𝑠𝑠𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1)� , 𝑖𝑖𝑖𝑖   𝑠𝑠 = 𝑠𝑠𝑡𝑡 , 𝑎𝑎 = 𝑎𝑎𝑡𝑡

𝑄𝑄(𝑎𝑎𝑡𝑡 , 𝑡𝑡𝑡𝑡),                                                                                           𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (18) 

where 𝛼𝛼𝑡𝑡 ∈ (0, 1] is the learning rate. When the factor equals to 0, it means the agent 
learn nothing. In contrast, when it approaches to 1, the agent cares only about the latest 
information. And the discount factor is denoted as 𝜆𝜆 ∈ (0, 1] , which indicates the 
influence of rewards in the future. When 𝜆𝜆 equals to 0, the agent only considers about the 
present reward. When the factor of 𝜆𝜆 approaching 1, it makes the agent influenced by the 
long-term reward to a great extent. 
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First, each agent initializes its Q-table, and we select the initial state 𝑠𝑠 ∈ 𝐒𝐒 randomly. 
Then we do the following iterations until the Q-value reach convergence. First, the next 
action 𝑎𝑎𝑡𝑡  using the 𝜆𝜆 -greedy policy is selected and the agent obtains the immediate 
reward 𝑟𝑟𝑡𝑡 after executing the action, and then the agent observes the next state 𝑠𝑠𝑡𝑡+1 based 
on 𝑎𝑎𝑡𝑡 and𝑟𝑟𝑡𝑡. Finally, the Q-table is updated according to Eq. (18). 

5 Power control problem in D2D communication 
The power control problem in D2D communication can also be solved by the Q-learning 
algorithm. The objective function is to maximize the system throughput. Similar to Eq. 
(4), we get Eq. (19). 

max∑ �𝜔𝜔 log2(1 + 𝛾𝛾𝑘𝑘𝑛𝑛) + ∑ 𝜔𝜔𝛽𝛽𝑘𝑘
𝑚𝑚=1

𝑚𝑚 log2�1 + 𝛾𝛾𝑘𝑘
𝐷𝐷𝑚𝑚��𝐾𝐾

𝑘𝑘=1   

𝑠𝑠. 𝑡𝑡. 𝛾𝛾𝑘𝑘𝑛𝑛 ≥ 𝜏𝜏𝐶𝐶 ,∀𝑛𝑛 ∈ 𝑁𝑁,∀𝑘𝑘 ∈ 𝐾𝐾,                                                                                       (19) 

𝑠𝑠. 𝑡𝑡. 0 ≤ 𝑝𝑝𝑘𝑘𝑚𝑚 ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,∀𝑚𝑚 ∈ 𝑁𝑁,∀𝑘𝑘 ∈ 𝐾𝐾. 
where 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum transmission power of D2D user. The objective function is 
to maximize the system throughput. The constraint of this problem is the minimum QoS 
requirement of the cellular user, that is, the communication service quality of the cellular 
user needs to be guaranteed while realizing the objective function. In order to speed up 
the convergence of the algorithm, we will introduce the multi-agent RL algorithm 
combined with the Fuzzy C-means (FCM) algorithm to get the optimal power control 
scheme for D2D users. 

5.1 D2D communication power control based on fuzzy C-Means and Q-learning 
algorithm 
The FCM algorithm can obtain the degree of membership of each point in the sample for 
the center of the group by optimizing the objective function, so that each sample point in 
the sample can be automatically grouped by the class attribute of each sample point. This 
algorithm is one of the important technical means in unsupervised machine learning. It 
can more objectively and accurately describe the uncertainty of sample category 
attributes and can effectively group the analysis of sample category attributes. 
The input of the FCM algorithm is a data set to be grouped, in which each data contains a 
certain number of features, and the output is a matrix of c rows and n columns, where c is 
the number of clusters after clustering, and n is the data set. The number of data, through 
the matrix can show the results of the cluster. For example, a column in a matrix indicates 
the degree to which an element belongs to each cluster. The largest value of the data in 
the column indicates that the element has the highest degree of membership to the class, 
and thus can be classified into the class. 
Firstly, based on the FCM algorithm, M D2D user pairs can be divided into C D2D user 
groups, denoted as G. The attributes of the D2D pairs in each user group should have 
great similarities in order to reduce interference between users within the group and 
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increase system throughput. In order to approximate the actual situation, the attribute set 
of the D2D user is defined as {location, data to be sent, rate requirement, bit error rate 
requirement, SINR requirement, maximum tolerable waiting time delay}, that is, each 
D2D user pair has a 6 attribute (H=6). The location refers to the location of the D2D user. 
The data to be sent is the amount of data that the D2D user will send. The bit error rate 
requirement refers to the bit error of the D2D user. The SINR requirement refers to the 
SINR requirement of the D2D user. Maximum tolerable waiting time refers to the 
maximum tolerable delay requirement of the D2D user. Assume that the six eigenvalues 
of the two D2D users in each D2D pair are the same. Therefore, the matrix 𝐗𝐗 of all D2D 
pair attributes can be expressed as: 

𝐗𝐗 = �
𝑥𝑥11 ⋯ 𝑥𝑥1𝐻𝐻
⋮ ⋱ ⋮

𝑥𝑥𝑀𝑀1 ⋯ 𝑥𝑥𝑀𝑀𝑀𝑀
�                                                                                                     (20) 

where 𝑥𝑥𝑖𝑖𝑖𝑖 represents the jth attribute of the ith D2D user pair, X = [𝐗𝐗1,𝐗𝐗2,⋯𝐗𝐗𝑀𝑀]𝑻𝑻, 𝐗𝐗𝑖𝑖 
represents the i th row in the matrix and 𝐗𝐗𝑖𝑖 = [𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2,⋯ , 𝑥𝑥𝑖𝑖𝑖𝑖]. 
When grouping, the following two conditions should also be met: 1) each group contains 
at least one D2D pair; 2) each D2D pair can belong to only one group. The minimum 
distance threshold between D2D user groups is set to 𝜌𝜌. Assuming that each pair of D2D 
users is in a fixed position without moving, the distance between any two D2D pairs can 
be defined as: 

𝑑𝑑𝑖𝑖,𝑗𝑗 = ��𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗�� = (𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗)𝑇𝑇 ∙ �𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗�,∀𝑖𝑖, 𝑗𝑗 ∈ 𝐍𝐍                                                    (21) 

Then, the membership function 𝑧𝑧𝑖𝑖𝑖𝑖 = 𝑧𝑧𝐺𝐺𝑖𝑖(𝐗𝐗𝑚𝑚) is defined to indicate the degree to which 
the m th D2D user pair belongs to the group 𝐺𝐺𝑖𝑖, which is defined as: 

𝑧𝑧𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖
2

∑ 𝑑𝑑𝑐𝑐𝑐𝑐2𝐶𝐶
𝑐𝑐=1

,∀𝑚𝑚 ∈ 𝐌𝐌                                                                                                 (22) 

where 𝑧𝑧𝑖𝑖𝑖𝑖  is the ratio of the degree of 𝐗𝐗𝑚𝑚 -to-group 𝐺𝐺𝑡𝑡  membership to the degree of 
subordination of all other user groups except 𝐺𝐺𝑖𝑖, where 𝑧𝑧𝑖𝑖𝑖𝑖 ∈ [0, 1]. When 𝑧𝑧𝑖𝑖𝑖𝑖 is close to 
1, it indicates that the mth D2D user pair is more subordinate to the group 𝐺𝐺𝑖𝑖 and is closer 
to the cluster center. 
In order to avoid generating a trivial solution, the distance from each user object to the 
cluster center is measured by the square of its membership, and the objective function is 
obtained. The expression is as follows: 

𝐽𝐽𝜇𝜇(𝐙𝐙,𝐖𝐖) = ∑ ∑ 1
(𝑧𝑧𝑖𝑖𝑖𝑖
𝜇𝜇 )(𝑑𝑑𝑖𝑖𝑖𝑖

2 )
, 𝜇𝜇 ∈ [1,∞)𝐶𝐶

𝑖𝑖=1
𝑀𝑀
𝑚𝑚=1                                                                 (23) 

where ∑ 𝑧𝑧𝑖𝑖𝑖𝑖 = 1𝐶𝐶
𝑖𝑖=1 , 𝐙𝐙 = [𝑧𝑧𝑖𝑖𝑖𝑖]𝑐𝑐×𝑀𝑀, 𝐖𝐖 = [𝑤𝑤𝑖𝑖|𝑖𝑖 = 1, 2,⋯ ,𝐶𝐶] denotes the clustering 

center, and 𝜇𝜇 is a fuzzy factor, which determines the weighting index of the ambiguity of 
the clustering result. 
The FCM is an iterative solution process that minimizes the objective function 𝐽𝐽𝜇𝜇(𝐙𝐙,𝐖𝐖): 

min | 𝐽𝐽𝜇𝜇(𝐙𝐙,𝐖𝐖)| = min�∑ ∑ (𝑧𝑧𝑖𝑖𝑖𝑖
−𝜇𝜇)(𝑑𝑑𝑖𝑖𝑖𝑖−2)𝐶𝐶

𝑖𝑖=1
𝑀𝑀
𝑚𝑚=1 �                                                           (24) 

Under the constraint of ∑ 𝑧𝑧𝑖𝑖𝑖𝑖 = 1𝐶𝐶
𝑖𝑖=1 , the extremum of Eq. (24) can be solved by 

Lagrangian multiplication under constraints. 
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𝐹𝐹 = ∑ 𝑧𝑧𝑖𝑖𝑖𝑖
−𝜇𝜇 �𝑑𝑑𝑖𝑖𝑖𝑖−2 + 𝜆𝜆�∑ 𝑧𝑧𝑖𝑖𝑖𝑖 − 1𝐶𝐶

𝑖𝑖=1 �� ,∀𝑚𝑚 ∈ 𝐌𝐌𝐶𝐶
𝑖𝑖=1                                                        (25) 

Solve the z and w that minimize F. 

𝑧𝑧𝑖𝑖𝑖𝑖 = 1

∑ (𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑗𝑗𝑗𝑗
)

2
𝜇𝜇+1𝐶𝐶

𝑗𝑗=1

,∀𝑚𝑚 ∈ 𝐌𝐌  (26)  

𝐰𝐰𝑚𝑚 = 1
∑ (𝑧𝑧𝑖𝑖𝑖𝑖

−𝜇𝜇)�𝑑𝑑𝑖𝑖𝑖𝑖
−3�𝐶𝐶

𝑖𝑖=1
∑ {(𝑧𝑧𝑖𝑖𝑖𝑖

−𝜇𝜇)�𝑑𝑑𝑖𝑖𝑖𝑖−3�𝐶𝐶
𝑖𝑖=1 𝐗𝐗𝑚𝑚}                                                                   (27) 

After the user grouping is completed, the RL algorithm model of the multi-agent will be 
established. In the system model, each D2D user group grouped by the FCM is regarded 
as an agent. The agent is represented by user group c and 1 < 𝑐𝑐 < 𝐶𝐶. 
The action taken by each agent consists of a set of levels of transmit power, defined as:   
 𝐀𝐀 = �𝑎𝑎1𝑘𝑘,𝑎𝑎2𝑘𝑘 ,⋯ ,𝑎𝑎𝐿𝐿𝑘𝑘�,∀𝑘𝑘 ∈ 𝐾𝐾                                                                                       (28) 
where 𝐿𝐿 is the number of the action. 
For the D2D user group c, 𝑠𝑠𝑡𝑡𝑐𝑐 is the state at time slot t and is one of the element in the 
state space 𝑆𝑆𝐶𝐶. Therefore, it can be defined as:  

𝑠𝑠𝑡𝑡𝑐𝑐 = �1,    𝛾𝛾𝑘𝑘𝑛𝑛(𝑡𝑡) ≥ 𝜏𝜏𝐷𝐷 ,
0,     𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,

 (29) 

It is assumed that the cellular user will send the value of the SINR to the BS, and the 
D2D user obtains the information from the BS. 
The reward function of agent c at time slot t is represented by the system capacity on 
resource block 𝑅𝑅𝐵𝐵𝑘𝑘: 

𝑟𝑟𝑘𝑘𝑐𝑐(𝑡𝑡) = 𝜔𝜔 log2�1 + 𝛾𝛾𝑘𝑘𝑛𝑛(𝑡𝑡)� + 𝜔𝜔∑ log2 �1 + 𝛾𝛾𝑘𝑘
𝑐𝑐𝑖𝑖(𝑡𝑡)� ,∀𝑛𝑛 ∈ 𝐍𝐍,∀𝑘𝑘 ∈ 𝐊𝐊𝑐𝑐𝑖𝑖∈𝑐𝑐                  (30) 

 

Figure 2: The flowchart of the multi-agent Q-learning based on the FCM 
In the selection of the best Q-value strategy based on action, this section still selects the 𝜀𝜀-
greedy strategy to take action based on the currently estimated Q value. The update 
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equation of the Q value is as same as Eq. (18). The flowchart of the multi-agent Q-meters. 
The distance between each D2D pair is 50 meters. There are 12 D2D pairs and 20 cellular 
users (i.e., M=12 and N=20) that are evenly distributed within the BS coverage. The users’ 
equipment is placed outdoors and stationary (assuming a typical urban environment). The 
number of RBs is the same as that of cellular users (i.e., K=20). and each resource block 
𝑅𝑅𝐵𝐵𝑘𝑘 corresponds to a channel with 𝜔𝜔=180 kHz. For guaranteeing the QoS of cellular users, 
the minimum SINR requirement is 𝜏𝜏𝐶𝐶=0.5 dB, while that of D2D users is 𝜏𝜏𝐷𝐷=0 dB. We set 
the transmit power of the D2D user to 1 mW and the transmit power of the cellular user to 
200 mW. The reason for this is that D2D users have relatively close communication 
distances, and relatively small transmit power can satisfy the D2D pairs QoS requirements. 
At the same time, this can also reduce the interference of D2D pairs communication to 
cellular users. The values of the basic parameters in Q-learning are: the learning rate 𝛼𝛼 is 
set to 0.5, and the discount factor 𝜆𝜆 is set to 0.8. See Tab. 1. 

Table 1: Parameters of simulation 
Parameter Value 
the minimum SINR of cellular users 𝜏𝜏𝐶𝐶  0.5 dB 
the minimum SINR of D2D users 𝜏𝜏𝐷𝐷 0 dB 
learning rate 𝛼𝛼 0.5 
discount factor 𝛾𝛾 0.8 

 12 

 20 

 20 
transmission power of cellular users 200 mW 
transmission power of D2D users 1 mW 
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 256 dBm 

 20 
bandwidth of resource block 180 kHZ 
Noise Power/RB -116 dBm 
coverage radius of base station 500 m 
distance of D2D pairs 50 m 
path loss model between BS and users 16.2+38.9lg(d(km))(dB) 
path loss model between users 29+41.2lg(d(km))(dB) 

In this paper, the multi-agent based Q-learning algorithm is abbreviated as MAQ. The 
following three algorithms are used to compare with the proposed resource allocation 
algorithm. An 𝜀𝜀-greedy algorithm [Wu, Wang and Yin (2019)] (𝜀𝜀-GA): the selection 
action only considering the current maximum utility value, that is, whenever there is 
service arrival, as long as the system resources can satisfy the service requirement, the 
system will allocate the corresponding resources to the user, otherwise do not allocate. 𝜀𝜀-
greedy means that even if the resource can meet the quality of service requirements, there 
is still a probability that 𝜀𝜀 will not allocate resources to it (with 𝜀𝜀=0.1). The 𝜀𝜀 -greedy 
algorithm for resource equalization ( 𝜀𝜀 -GRE) is introduced to divide the available 
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resources of the system into two parts equally for cellular network users and D2D users, 
and to allocate resources according to greedy algorithms in their respective resource sets. 
The optimal centralized policy (OCP): The BS uses global CSI to assign channels to D2D 
users to maximize overall network throughput under SINR constraints which represents 
the best channel selection strategy. 

 

Figure 3: Convergence of algorithm with different learning rates 
Fig. 3 presents the convergence of the proposed algorithm under different learning rates. 
Two learning rates are set for comparison: 𝛼𝛼=0.4 and 𝛼𝛼=0.5. When the learning rate is 
small, that is, 𝛼𝛼=0.4, the convergence speed is slower, and the convergence is gradually 
achieved after more than 2500 learning iterations. However, when we improve the 
learning rate, that is, 𝛼𝛼=0.5, we can see from the simulation results that the convergence 
speed has been significantly improved, and approximately 2,000 iterations of learning 
can be achieved. In reinforcement learning, the rate of learning influences the 
convergence rate of Q-value, but the Q-value achieved by the final convergence under 
different learning rates is the same. 

 

Figure 4: Changes in system throughput with different D2D user pairs 
Fig. 4 shows the system throughput as the number of D2D users changes as the iteration 
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of the system reaches a stable state. The performance of the MAQ algorithm was 
compared with the other three algorithms described above. First of all, we can conclude 
that the total system throughput shows a trend of synchronous growth as the number of 
D2D users increases. In addition, according to the trend of different curves in Fig. 4, it 
can be seen that the performance of the proposed algorithm is closest to the OCP, which 
is the ideal resource allocation algorithm. 

 
Figure 5: Changes in D2D throughput with different D2D user pairs 

Fig. 5 presents how the D2D user’s throughput changes with the number of D2D users 
after the algorithm reaches convergence. Similar to the trend of system throughput, the 
throughput of D2D users also tends to increase with the increase of the number of D2D 
users. At the same time, Fig. 5 confirms the superiority of the proposed algorithm. The 
closest match to the performance of the OCP algorithm is the proposed MAQ algorithm. 
Similarly, the 𝜀𝜀-GA algorithm takes the next place, and the 𝜀𝜀-GRE algorithm is the worst. 
The shortcoming of the two greedy algorithm is that the optimal solution is obtained step 
by step, and there is no global consideration, so it is easy to fall into the local optimum, 
and the global optimal cannot be obtained. 

6.2 Results of power control problem in D2D communication 
In this section, the FCM combined with multi-agent Q-learning is abbreviated as FC-MAQ. 
The following three algorithms are used to compare with the proposed algorithm: i) A 
multi-agent Q learning MAQ algorithm that does not use FCM, where each D2D pair is 
treated as an agent in the algorithm without pre-grouping them; ii) Optimal Centralized 
Policy (OCP); iii) The open loop power control algorithm (hereinafter referred to as the 
OP algorithm) is the most commonly used power control method in D2D communication. 
Open loop power control refers to a scheme that directly adjusts the transmit power of a 
D2D user without feedback information. 
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Figure 6: Convergence time with different D2D user pairs 

Fig. 6 compares the number of iterations when the FC-MAQ algorithm and the MAQ 
algorithm system reach their optimal solution under different D2D pairs, and the learning 
rates of both are set to 0.5. It can be seen that FC-MAQ effectively reduces the number of 
system convergence compared with the MAQ algorithm, and as the number of D2D 
increases, the number of iterations of the FC-MAQ algorithm is much smaller than the 
MAQ algorithm due to the limitation of the maximum number of clusters. The FC-MAQ 
algorithm has this significant advantage in reducing system complexity. 

 
Figure 7: Changes in D2D throughput with different D2D user pairs 

Fig. 7 shows the trend of the total system throughput under the different algorithm. The 
proposed FC-MAQ algorithm is compared with the ideal case OCP algorithm, MAQ 
algorithm and OP algorithm. It can be concluded that as the number of D2D users 
increases, the total system throughput shows a trend of simultaneous growth. It can be 
seen that the performance of the proposed FC-MAQ algorithm is closest to the ideal OCP 

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

Number of D2D pairs

th
e 

ite
r t

im
es

 o
f s

ys
te

m
 c

on
ve

rg
e

 

 

MAQ
FC-MAQ

10 20 30 40 50 60 70 80

80

100

120

140

160

180

Num of D2D pairs

S
ys

te
m

 th
ro

ug
hp

ut
 (M

bp
s)

 

 

OCP
FC-MAQ
MAQ
OP



 
 
 
1530                                                                       CMC, vol.63, no.3, pp.1515-1532, 2020 

algorithm, the performance of the MAQ algorithm is slightly lower, and the performance 
of the OP algorithm is the worst. Combined with the simulation results of Figs. 6 and 7, 
we can see that the proposed algorithm outperforms other algorithms in convergence time 
and network throughput. 

7 Conclusion 
In this paper, we provide a multi-agent Q-learning method to improve the throughput of 
D2D systems. Firstly, channel resource utilization is improved by the channel resource 
allocation method based on the multi-agent Q-learning algorithm. Secondly, in order to 
solve the problem of slow convergence based on Q-learning method in D2D 
communication system, we introduce FCM based on multi-agent Q-learning algorithm to 
improve the convergence speed of power control based on Q-learning. The experimental 
results show that the multi-agent Q-learning algorithm can improve the throughput of the 
system, and the FCM can speed up the convergence of the algorithm and reduce the 
computational complexity. 
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