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Abstract: Active learning has been widely utilized to reduce the labeling cost of 
supervised learning. By selecting specific instances to train the model, the performance of 
the model was improved within limited steps. However, rare work paid attention to the 
effectiveness of active learning on it. In this paper, we proposed a deep active learning 
model with bidirectional encoder representations from transformers (BERT) for text 
classification. BERT takes advantage of the self-attention mechanism to integrate 
contextual information, which is beneficial to accelerate the convergence of training. As 
for the process of active learning, we design an instance selection strategy based on 
posterior probabilities Margin, Intra-correlation and Inter-correlation (MII). Selected 
instances are characterized by small margin, low intra-cohesion and high inter-cohesion. 
We conduct extensive experiments and analytics with our methods. The effect of learner 
is compared while the effect of sampling strategy and text classification is assessed from 
three real datasets. The results show that our method outperforms the baselines in terms 
of accuracy. 
 
Keywords: Active learning, instance selection, deep neural network, text classification. 

1 Introduction 
Supervised learning calls for much data to train. Collecting a large amount of data is 
costly and intractable. As an effective way to reduce labeling cost, active learning (AL) 
begins with a small training set, and then iteratively adds the most uncertain or 
informative instances into itself. Previous work about AL mainly involved traditional 
machine learning scene and sentiment analysis. Yue et al. [Yue, Chen, Li et al. (2018)] 
gave an extensive survey on classification of sentiment analysis about social media. Wan 
et al. [Wan, Li, Zhang et al. (2018)] focused on the analysis of sequential sentiment based 
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on a million-level Chinese micro-blog corpora to mine sequential sentiment features. Yan 
et al. [Yan, Rosales, Fung et al. (2011)] employed the logistic regression model to select 
samples with a predicted probability around 0.5. Rodrigues et al. [Rodrigues, Pereira and 
Ribeiro (2014)] incorporated Gaussian process into active learning and measured instance 
uncertainty. Zhong et al. [Zhong, Tang and Zhou (2015)] constructed a SVM classifier 
with RBF kernel to verify the effect of labeling confidence. Yue et al. [Yue, Zuo, Tao et 
al. (2015)] combined vector space model (VSM), and singular value decomposition 
(SVD) for the document classification. Hu et al. [Hu, Mac Namee and Delany (2016)] 
explored the reusability of training examples with naive Bayes, SVM and k-NN in text 
classification scenarios of AL. Wang et al. [Wang, Chen, Li et al. (2019)] applied 
Dynamic Bayesian Network (DBN) to Recurrent Neural Network (RNN) units to 
discover the similarity in time serial data analytics.  
However, compared to hand-designed features, representations appeared better in deep 
neural networks (DNN). Zhang et al. [Zhang, Li, Wan et al. (2019)]. classified the 
cyberbullying text with bidirectional recurrent neural network and attention mechanism. 
Xu et al. [Xu, Zhang, Xin et al. (2019)] utilized convolutional neural networks to 
investigate the Chinese text sentiment. Zhang et al. [Zhang, Lease and Wallace (2017)] 
first applied AL in convolutional neural networks (CNNs) for text classification. They 
emphasized the significance of the update on the word embedding gradient when 
selecting instances. Shen et al. [Shen, Yun, Lipton et al. (2017)] used a lightweight 
architecture CNN-CNN-LSTM to speed up iterative retraining. Furthermore, Wang et al. 
[Wang, Zhang, Li et al. (2016)] incorporated deep convolutional neural networks into AL 
for image classification. Gal et al. [Gal, Islam and Ghahramani (2017)] combined active 
learning with Bayesian deep learning to process high dimensional data. Feng et al. [Feng, 
Liu, Kao et al. (2017)] detected civil infrastructure defects by applying a deep active 
learning system. 
Followed by them, we checked the effectiveness of AL for classifying text with a deep 
neural network model called bidirectional encoder representations from transformers 
(BERT). The core of BERT was the Transformer structure, which depended only on the 
multi-head self-attention to capture contextual information instead of learning the left-to-
right and right-to-left sequence representation like RNN. Although CNN performed well 
in parallel computing, it failed to notice distant features as BERT. Considering the 
advantages of BERT on text representation, we took it as the learner of active learning, 
and explored the instance selection strategy based on it. To summarize, we made the 
following contributions: 
(1) We propose a deep active learning model by introducing deep neural network BERT 
into AL framework. Since BERT has been pre-trained, we focused on the benefits of 
active learning in the fine-tuning phase for downstream subtasks. 
(2) We design a sampling strategy MII, combining uncertainty with instance correlation 
to actively select instances. Minimizing the margin in two posterior classification 
probabilities is used to measure the uncertainty. The metric of instance correlation 
included intra-correlation of the instance and inter-correlation between instances. 
Tab. 1 lists all of the notations and descriptions. The rest of this paper is organized as 
follows. Section 2 briefly overviews the advanced sampling strategies of active learning 
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for text classification. Section 3 introduces some basic knowledge of AL and BERT. 
Then we propose a deep active learning model, and design an instance selection method 
MII to find informative instances. Experiments are carried out in Section 4 to verify the 
effectiveness of our method. Finally, we conclude the paper in Section 5. 

Table 1: Notations and descriptions 
Notations Descriptions 

C
∧

 The most probable class for the data x  

L  The training dataset 

( )uf x  The uncertainty function of data x  

( )cq x  The correlation function of data x  

LP  The labeled data pool 

M  The training model 
Up  The unlabeled data pool 

I  The selected instances 

X  The word embedding of each layer 

Q  A query matrix derived from X  

K  A key matrix derived from X  

V  A value matrix derived from X  
qW  The weight of transforming X  into Q  

kW  The weight of transforming X  into K  
vW  The weight of transforming X  into V  

iA  The thi  attention head 

Z  The output that covers bidirectional words information 

iAM  The attention matrix of the head i  

iS  The sum of attentions for each word over the head i  

LLX  The text representation of X  at the last encoding layer of the 
deep neural network 

c
LLX  The classification center 

2 Related work 
Active learning is meant to obtain the expected learning model at little cost. The core of it 
is to develop the sampling standard, which selects part of the data for labeling. The study 
about instance selection began with Sheng et al. [Sheng, Provost and Ipeirotis (2008)]. 
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They assessed the impact of duplicate labels on data quality. Fu et al. [Fu, Zhu and Li 
(2013)] summarized the criteria for instance selection and divided it into two categories: 
the uncertainty and the correlation of independent identical distribution (IID) instances. 
Most of the work related to the measurement of uncertainty involves some common 
strategies such as label uncertainty, model uncertainty, and mixed uncertainty. Based on 
these uncertainty measurements, Zhang et al. [Zhang, Wu and Shengs (2014)] proposed 
three new instance selection strategies, including MLSI, CMPI and CFI. These strategies 
were combined with the thresholds of the dynamically adjusted labels to improve 
learning performance. Based on the bootstrap theory, Mozafari et al. [Mozafari, Sarkar, 
Franklin et al. (2014)] then took the current quality and uncertainty into account, 
selecting samples in minimum expected error and uncertainty. 
Several popular strategies of AL for text classification were categorized from the 
perspective of individual instance and expected model. 
Uncertainty sampling The basic principle of uncertainty sampling is to give priority to 
the sample data that cannot be accurately judged by the current classifier, which is 
usually located near the classification boundary. This strategy applied probabilistic 
models based on the current hypothesis to select uncertain instances. It included three 
measures: least confidence (LC), margin sampling and entropy. A general LC method 
followed by Lewis et al. [Lewis and Gale (1994)] was to realize 

arg max1 |LC
x

x P C xθ

∧
∗  = −  

 
 (1) 

C
∧

 is the most probable class for x . But it ignored the information from other labels. 
Scheffer et al. [Scheffer, Decomain and Wrobel (2001)] then introduced margin sampling 
by integrating multi-class uncertainty. They tried to minimize the margin between two 

most probable classes 1C
∧

 and 2C
∧

 to find ambiguous x . 

1 2arg min | |M
x

x P C x P C xθ θ

∧ ∧
∗    = −   

   
 (2) 

In addition, another common measure called entropy [Shannon (1948)] evaluated the 
information that we did not know. It was the expectation of the amount of information 
over entire uncertain classes iC . 

( ) ( )arg max | log |E i i
x i

x P C x P C xθ θ
∗ = −∑  (3) 

Zhu et al. [Zhu, Wang, Tsou et al. (2010)] took density into account based on entropy, 
realizing uncertainty sampling on the tasks of text classification and word sense 
disambiguation. 
Expected gradient length (EGL) This strategy was proposed by Settles et al. [Settles, 
Craven and Ray (2008)]. Expected model change was reflected in the impact on model 
parameters. The criterion of selecting instances is as follows: 



 
 
 
Text Classification Combining Deep Active Learning with BERT                          1503 

( ) ( )arg max | ,EGL i i
x i

x P C x f L x Cθ θ
∗ = ∇∑   (4) 

fθ  is a learner based on gradient and L  is the training dataset. ( ), if L x Cθ∇   

represents the length of the model gradient in the Euclidean space after adding the new 
sample. Zhang et al. [Zhang, Lease and Wallace (2017)] applied variants of EGL in both 
sentence and document classification tasks. Especially, they combined EGL and entropy to 
form a beta model when classifying long text. Long et al. [Long, Bian, Chapelle et al. 
(2015)] utilized expected loss optimization (ELO) with discounted cumulative gain (DCG) 
for web search ranking. 
Instance correlation This scheme uses feature-based, label-based and graph-based 
correlation among instances to determine the most informative samples. The basic idea is 
to define a utility function that combines uncertainty ( )uf x  and correlation ( )cq x . 

( ) ( )arg max u c
x

x f x q x∗ = ×  (5) 

Sun et al. [Sun and Hardoon (2010)] mapped the features into a coordinate system with 
canonical correlation analysis (CCA), and then measured the similarity between 
unlabeled data and original labeled data. Common similarity functions are cosine 
similarity, KL divergence similarity and Gaussian similarity. Chen et al. [Chen and Mani 
(2010)] presented a modified information density method to identify the correlation of 
instances and the mean point. 
Compared with the three kinds of state-of-the-art approaches that were mentioned above, 
our method focused on the scenario of DNN, and gave priority to the output of the last 
encoder. Instead of relying on a single strategy, we simultaneously considered 
uncertainty and correlation for sampling. 

3 Deep active learning model 
3.1 Problem description 
Due to the absence of sufficient label data, it is difficult to guarantee the effect of text 
classification. Given an unlabeled dataset, supervised learning asks for labeling the 
unlabeled data manually to form a labeled dataset, which participates in the training 
process of the learner. The more labeled data required for training, the higher the labor 
cost. Since active learning determines the data to be labeled by the learner, after manual 
labeling, it is sent to the learner for training to improve the performance of the learner. 
The difference between these two methods is shown in Fig. 1. 
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Figure 1: The general process of supervised learning and active learning 

Active learning allows a model to actively query data that is most helpful to improve task 
performance in the case of limited labeled data. As shown in Algorithm 1, the process 
begins with the process of training a small amount of data in the labeled data pool LP  to 
initialize a model M . Then M  is applied to select some instances I  from the unlabeled 
data pool UP . Labeled by specific annotators, I  is combined with label L  to form an 
instance-label pair ,I L . After that, new labeled data ,I L  is added to LP . A new 
cycle starts here. Finally, the expected performance is achieved at a minimal labeling cost. 
 
Algorithm 1: General Active Learning Process 
1  repeat 
2  M ← Train labeled data in LP  
3  I ← Select unlabeled data from UP  
4  ,I L ← Label I by annotators 

5  LP ← Add ,I L  to LP  

6  until expected performance with minimal cost 

3.2 BERT text representation 
A latest model BERT proposed by Devlin et al. [Devlin, Chang, Lee et al. (2018)] has 
shown its advantages on many NLP tasks, such as semantic understanding and inference. 
This kind of generative performance benefits from pre-training based on a large scale of 
corpus and multi-headed attention mechanism [Vaswani, Shazeer, Parmar et al. (2017)] 
for deep contextual representations. By incorporating self-attention into word embedding, 
the model encodes words within the internal relationship. 
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Figure 2: Self-attention mechanism 

Fig. 2 presents the self-attention mechanism. According to the encoder principle of the 
Transformer network architecture, word embedding of each layer vocab hiddend dX R ×∈  are 
transformed into three matrixes, query vocab qd dQ R ×∈ , key vocab kd dK R ×∈  and value 

vocab vd dV R ×∈ , where q k vd d d= = . They are obtained by multiplying X  with 
corresponding weights W . 

, ,q k vQ X W K X W V X W= × = × = ×  (6) 

To measure the attention given to other words, a score is computed by dotting the query 
vector for current word and the key vector for the word to be scored. The scaled dot-
product attention is then computed as following formula. Meanwhile, varying Q , K  and 
V  enables the model to find multiple words that have a significant impact on current 
word encoding. After integrating all the attention heads 0 1 1, , hA A A − , the output Z  that 
covers bidirectional words information is obtained. 

max , 0,1, , 1
T

i i
i i

k

Q KA soft V i h
d

 ×
= ⋅ = −  

 
  (7) 

( )0 1 1, , hZ concat A A A W−= ×  (8) 

3.3 Active learning with BERT 
Fig. 3 shows the process of active learning in deep neural network BERT. This 
framework starts with collecting few labeled data as well as a large amount of unlabeled 
data. Then labeled data is used to initialize the BERT model. BERT adopts the structure 
of Transformer, which includes multiple encoded layers. We make use of the last 
encoded layer to mine the intra-correlation and inter-correlation among instances. 
Meanwhile, a margin of probabilities for two classes is combined to form a utility 
function. This function is then applied in selecting informative data from unlabeled data 
pool UP  to supplement the training data. The loop continues until the desired 
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classification performance is achieved. 
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Figure 3: Active learning framework based on BERT 

The classification part of the deep active learning framework is based on the deep text 
representation model BERT and the instance selection mechanism. BERT obtains a text 
representation that incorporates context semantics through the cascading encoder. The 
utility function combining intra-correlation, inter-correlation and posterior probability 
margin is used to select unlabeled data. After manual labeling, unlabeled data is 
converted into labeled data. 

3.4 Instance selection strategy 
With preliminary understanding of the above framework, we further design the sampling 
mechanism of deep active learning. Inspired by the method based on the instance correlation, 
we propose a sampling approach MII, combining posterior probabilities margin, the intra-
correlation and the inter-correlation. We aim to minimize a utility function to select instances 
from both uncertainty and correlation views. As for uncertainty measure, we use the 
minimum margin between posterior probabilities of two class labels. Different from 
traditional feature correlation measure, we explore correlations within and between instances 
respectively in the last self-attention layer of BERT. 
Definition 1 (Intra-correlation) Let iAM  be the attention matrix of the head i , which 
reflects the effect of all the words in the text on updating a word representation. The 
intra-correlation is to measure the interaction of words in each text by jointly considering 
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0 1 1, , hAM AM AM − . Here n  is equal to the dimension of the word in the text. 

11 1

1
vocab vocab

n

i

n nn d d

a a
AM

a a
×

 
 =  
 
 



  



 (9) 

Firstly, we compute the sum of attentions for each word by summing over the rows of 

iAM , and get iS . Then the result ( )int raR X  is the mean of all the heads’ variances. 

( )
11 1

1

1

,
n

T
i n

n nn

a a
S s s

a a

+ + 
 = =  
 + + 



 



 (10) 

1

1 n

j
j

s s
n =

= ∑  (11) 

( ) ( )
1 2

int
0 1

1 1h n

ra j
i j

R X s s
h n

−

= =

 
= − 

 
∑ ∑  (12) 

 
Definition 2 (Inter-correlation) Given a word embedding X  of unlabeled data in the 
pool UP , LLX  is the text representation of X  at the last encoding layer of the deep 
neural network. The inter-correlation is meant to compute the cosine similarity between 

LLX  and two classification centers 1c
LLX , 2c

LLX . 

( )
1 2

1 2
int , max ,

c c
c LL LL LL LL

er LL LL c c
LL LL LL LL

X X X XR X X
X X X X

 ⋅ ⋅ =
 × × 

 (13) 

In combination with the above definitions, selected instances satisfy the objective 
function 

( ) ( ) ( ){ }int intarg min , c
sel u ra er

X
X f X R X R X X= × −  (14) 

where ( ) ( ) ( )1 2| |uf X p C X p C X= − . The intuition behind it includes two aspects. 

From the perspective of a single instance, small ( )uf X  and ( )int raR X  reflect large 
classification uncertainty and sparse semantic structure. In terms of instance feature 
correlation, samples similar to clustering centers are probably redundant information. 

4 Experiment 
4.1 Data preparation 
We conduct experiments on three real-world datasets, and compare the presented methods 
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with state-of-the-art solutions. The first one is sentence-based, and the remaining two are 
document-based. All of them are comments with sentimental polarity. The purpose is to 
accurately divide each corpus into two categories with limited labeled data. 
SST-2 This corpus is derived from the movie review dataset provided by Pang et al. 
[Pang and Lee (2005)], consisting of 11,855 single sentences for binary classification 
tasks. Each sentence is labeled with human sentiment. 
Amazon This dataset covers the comments of people on products with a five-point scale, 
including 1,800,000 training data and 200,000 testing data. Comments of 1 and 2 are 
considered negative, and comments of 4 and 5 are considered positive. The review score 
of 3 is ignored. 
Yelp Yelp is a platform for people to review various business service. Similar to the five-
point principle of the Amazon dataset, 560,000 training data is divided into negative class 
1 and positive class 2. 
We randomly choose 1,000 samples from each of the above datasets as their initial 
training sets, and 800 samples as testing sets. The remaining are taken as their unlabeled 
sets. The average accuracy after 10-fold cross-validation is reported. We verify the 
experimental effect of active learning method with MII as the sampling strategy and 
BERT as the learner from two aspects. The first part compares the effect of different 
learners on active learning text classification under the premise of MII sampling strategy, 
while the second part analyzes the influence of different instance selection methods on 
the convergence speed of the algorithm when the learner (BERT) is fixed. 

4.2 The effect of learner 
We compare the performance of MII applied to different classifiers over three kinds of 
datasets. The basic version of BERT model is taken as the learner in the experiment. The 
network structure includes 12 layers with 768 hidden layer units and 12 self-attention 
heads. Fig. 4 compares the accuracy of four classifiers that introduce MII into model 
training. It can be seen that DNN-based approaches such as BERT and CNN outperform 
the traditional methods like logistic regression and SVM. To be specific, the accuracy of 
BERT and CNN ranges between 70% and 88%, while that of logistic regression and 
SVM falls into the range of 55%-75%. With the given classifier of MII, BERT performs 
slightly better than CNN. This is since that BERT combines the context of all layers to 
pretrain deep bidirectional text representation. The core is to focus multiple concerns at 
the same time with the help of Transformer structure to accurately learn the meaning of 
statements. Overall, deep neural network BERT assists sampling strategy MII in 
obtaining the informative instances. The combination of BERT and MII can provide a 
better text representation than other methods. 
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Figure 4: The accuracy of four classifiers under instance selection strategy MII 

4.3 The effect of sampling strategy 
The sampling strategy determines whether the selected samples are representative or not 
and whether contain positive information for correct text classification. By manually 
labeling these samples, the expected accuracy can be obtained at a small labeling cost. 
This part verifies the influence of different sampling strategies on deep active learning 
text classification, and gives the AUC (area under ROC curve) results of different 
experimental methods. The range of AUC is [0.5, 1]. The higher the value of AUC is, the 
better the classifier under the given sampling mode performs. Tab. 2 shows AUC scores 
of the four methods on the three datasets. Compared with baselines such as random, 
entropy and EGL, our proposed method MII scores a little higher. Random selection is 
the least effective way, while the performance of EGL is just second to our method, with 
AUC value approximately between 0.7 and 0.86. All methods perform better on Yelp 
dataset than on SST-2 and Amazon datasets. 
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Table 2: AUC comparison of classification model with BERT and four sampling strategies 
 MII Random Entropy EGL 
SST-2 0.717 0.683 0.692 0.708 
Amazon 0.752 0.721 0.734 0.745 
Yelp 0.863 0.837 0.841 0.858 

To verify the impact of active learning, each learner selects 25 samples from the 
unlabeled pool UP  at one time, and this process iterates 20 times. Fig. 5 demonstrates 
increasing tendency of accuracy as the growing number of selected instances. The 
sampling strategy helps classifier achieve higher accuracy with fewer samples compared 
with random process. Especially, as for SST-2, only 100 samples are needed to reach the 
accuracy of 0.675. On the whole, experiments on the document level outperformed that 
on sentence level. It makes sense that short sentence contains less information than long 
text. Poor embedding integration leads to difficulty in correlation measurement. To be 
specific, MII converges more rapidly than benchmark methods on all the datasets. It is 
consistent with the characteristics of active learning. The final accuracy of it falls into the 
range of 74%-87%. Although the curves of accuracy are not smooth on some datasets, the 
overall trend is acceptable. 
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Figure 5: The accuracy convergence of instance selection in BERT 
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The following experiment studies the influence of MII sampling strategy and its 
components on the final classification accuracy in deep active learning framework, thus 
analyzing the advantages of MII. According to Tab. 3, vertically, MII is more favorable 
to improve the accuracy of classification model. The effect of using posterior probability 
margin is second only to the proposed method. It indicates that as one of components of 
MII, the posterior probability margin has great contribution to combination method, 
while the separated intra-correlation and inter-correlation are not effective when they are 
used alone. Horizontally, the experiment performs better on Yelp than on the other two 
datasets. Experimental results show that exploiting the uncertainty and correlation of 
samples is an effective way for instance selection in deep active learning. 

Table 3: The effect of MII and its components on classification accuracy 
 MII Margin Intra-correlation Inter-correlation 
SST-2 0.720 0.715 0.654 0.688 
Amazon 0.756 0.742 0.671 0.692 
Yelp 0.868 0.846 0.693 0.710 

4.4 Text classification results 
The above two experimental results show that BERT has advantages in classification 
performance, and the combination of uncertainty and correlation sampling is an effective 
method for instance selection in deep active learning. This part compares the proposed 
deep active learning text classification method (BERT+MII) with mainstream text 
classification methods. Tabs. 4, 5 and 6 compare text classification methods in terms of 
accuracy, precision and recall in three datasets respectively. It can be seen that deep 
learning (DL) method is generally better than traditional machine learning (ML) method. 
The proposed text classification method BERT+MII performs best with classification 
accuracy between 82% and 86% respectively. Also the experiment performs best on Yelp 
because of its moderate text length, and deep model can integrate context to represent 
text. 

Table 4: Evaluation of mainstream text classification model (SST-2 dataset) 
Type Method Accuracy Precision Recall 

ML 

KNN(k=1) 0.830 0.824 0.830 
Random Forest 0.821 0.815 0.822 
Naïve Bayes 0.814 0.808 0.814 
SVM 0.716 0.711 0.711 
Logistic 
Regression 

0.710 0.704 0.704 

DL 
CNN 0.824 0.820 0.816 
LSTM 0.807 0.802 0.793 
BERT+MII 0.836 0.829 0.831 
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Table 5: Evaluation of mainstream text classification model (Amazon dataset) 
Type Method Accuracy Precision Recall 

ML 

KNN(k=1) 0.820 0.814 0.820 
Random Forest 0.735 0.716 0.733 
Naïve Bayes 0.748 0.737 0.746 
SVM 0.814 0.812 0.810 
Logistic 
Regression 

0.812 0.810 0.810 

DL 
CNN 0.816 0.813 0.806 
LSTM 0.809 0.814 0.804 
BERT+MII 0.825 0.820 0.822 

Table 6: Evaluation of mainstream text classification model (Yelp dataset) 
Type Method Accuracy Precision Recall 

ML 

KNN(k=1) 0.841 0.836 0.840 
Random Forest 0.829 0.823 0.827 
Naïve Bayes 0.818 0.812 0.815 
SVM 0.797 0.792 0.794 
Logistic 
Regression 

0.783 0.776 0.781 

DL 
CNN 0.837 0.831 0.833 
LSTM 0.812 0.810 0.811 
BERT+MII 0.853 0.849 0.851 

5 Conclusion 
In this paper, we explore the effectiveness of active learning in deep neural network 
BERT. We combine margin, intra-correlation and inter-correlation to design a novel 
instance selection method MII. This approach is meant to select instances with high 
uncertainty and low correlation. By adding these informative samples to the training 
dataset, the accuracy of model converges within limited steps. However, there is still a 
lack of a unified method for selecting instances. In the future, we plan to rely on the 
structure of neural network to train a general mechanism for AL instead of designing 
specific approaches. 
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