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Abstract: In process industries, the characteristics of industrial activities focus on the 
integrality and continuity of production process, which can contribute to excavating the 
appropriate features for industrial anomaly detection. From this perspective, this paper 
proposes a novel state-based control feature extraction approach, which regards the finite 
control operations as different states. Furthermore, the procedure of state transition can 
adequately express the change of successive control operations, and the statistical 
information between different states can be used to calculate the feature values. 
Additionally, OCSVM (One Class Support Vector Machine) and BPNN (BP Neural 
Network), which are optimized by PSO (Particle Swarm Optimization) and GA (Genetic 
Algorithm) respectively, are introduced as alternative detection engines to match with our 
feature extraction approach. All experimental results clearly show that the proposed 
feature extraction approach can effectively coordinate with the optimized classification 
algorithms, and the optimized GA-BPNN classifier is suggested as a more applicable 
detection engine by comparing its average detection accuracies with the ones of PSO-
OCSVM classifier. 
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1 Introduction 
Different from the discrete processing, process industries focus on the essential continuity 
of production process, whose main purpose is to produce products through a series of 
successive chemical reactions or physical changes [Muller and Oehm (2019)]. 
Furthermore, the production facilities are orderly organized according to the 
technological process, and the processing sequence is fixed and invariable. Actually, 
process industries have broadly infiltrated into many industrial critical infrastructures, 
such as petrochemical, machinery, electric power, water conservancy, etc., In process 
industries, various control systems and computer systems have been effectively applied to 
monitor and control real-time statuses and technological parameters [Ge, Song, Ding et 
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al. (2017)], and the demands and realizations for advanced automation and networking 
are constantly growing. As the emerging application modes, Industrial Internet and 
Industry 4.0 have been widely recognized by both academia and industry, and they 
emphasize the deep integration between automatic control technologies and information 
communication technologies [Li, Yu, Deng et al. (2017); Kourtis, Kavakli and 
Sakellariou (2019)]. Therefore, they can provide powerful support for the digital and 
intelligent development of process industries. 
In essence, the core infrastructure of process industries remains intelligent 
manufacturing-oriented control system, whose vulnerabilities have been increasingly 
exposed because its original self-determination situations are completely broken 
[Galloway and Hancke (2013); Wan, Shang and Zeng (2017)]. According to statistics, 
current industrial control systems are confronted with more and more serious security 
challenges under various outsider and insider attacks [Baybutt (2017); You, Lee, Oh et al. 
(2018); Xu, Tao, Yang et al. (2019)]. From Stuxnet in 2010 [Nourian and Madnick 
(2018)] to Triton in 2019 [Martynova and Zhang (2019)], industrial security threats have 
presented the obvious trends of organized, covert and persistent characteristics, which 
completely conform to the model of APTs (Advanced Persistent Threats) [AI-Rabiaah 
(2018)]. In other words, APTs have become the most popular and fatal attack patterns in 
industrial control systems. Especially, Industrial Internet celebrates the beautiful 
interconnection and interoperability of all things based on the physical network, and this 
innovation may actually encourage APTs’ acts and accentuate their impacts. The main 
causes can be summarized as follows: for one thing, the interconnection and 
interoperability may expose more attack entrances and paths; for another, some emerging 
technologies may bring new security problems, for example, the virtualization 
vulnerabilities may become a stumbling block to the application of industrial cloud 
computing [Xu, Lee, Kim et al. (2018)]. In order to resolve industrial cyber threats, the 
researchers have started to develop industrial-oriented security solutions by combining 
industrial control characteristics and regular IT defense technologies. Based on the finite 
behaviors and stable patterns in industrial control communications, industrial anomaly 
detection has been regarded as a feasible way to effectively identify misbehaviors without 
compromising usability [Goldenberg and Wool (2013); Wan, Yao, Jing et al. (2018)]. In 
practice, one kind of exploring research idea can be summarized as follows: by using 
artificial intelligence algorithms, industrial anomaly detection can not only learn 
industrial communication regularities and behavior characteristics to extract the 
applicable features, but also design the optimized detection engines to achieve intrusion 
recognition with high accuracy. 
It is especially interesting that feature extraction is an important target in industrial 
anomaly detection, because the appropriate features can not only administer to correctly 
describe the characteristics of various industrial activities, but also enhance the accuracy 
and efficiency of detection engines [Wan, Shang and Zeng (2017); Zhao and Dong 
(2018)]. In process industries, the characteristics of industrial activities focus on the 
integrality and continuity of production process. Moreover, the integrality demands that 
all industrial elements are orderly organized to execute the whole production process in 
period, and the continuity reveals that all stages of production process smoothly work 
without interruption. From the viewpoint of these characteristics, we propose a novel 
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state-based control feature extraction approach, which selects significant features from 
the successive control operations in one production process. In particular, this approach 
designs the finite control operations to different states, and the procedure of state 
transition can adequately express the change of successive control operations. 
In this paper, we also introduce two different classification algorithms as detection engines 
to indirectly evaluate the proposed feature extraction approach. More specifically, these 
two classification algorithms are OCSVM (One Class Support Vector Machine) [Wan, 
Shang and Zeng (2017)] and BPNN (BP Neural Network) [Wu, Shi, Wang et al. (2019)], 
and PSO (Particle Swarm Optimization) and GA (Genetic Algorithm) [Pham, Malinowski 
and Bartczak (2011)] are chosen to optimize the key parameters of these detection engines, 
respectively. According to the experimental results in the Modbus/TCP control system 
which simulates the material synthesis process, we can draw the following conclusions: (1) 
the state-based control feature extraction approach can effectively coordinate with the 
optimized classification algorithms; (2) without considering the training process, the 
optimized GA-BPNN classifier is suggested as a serviceable detection engine due to its 
higher detection accuracy. 
The main accomplishments and contributions of this paper are summarized as follows: 
firstly, based on FSM (Finite State Machine), we propose a novel state-based control model 
to analyze and characterize the integrality and continuity of control operations, and 
calculate the feature value by integrating the motivation coefficient with the statistical 
information of state transition; secondly, in order to effectively cooperate with the proposed 
feature extraction approach, we select OCSVM and BPNN classifiers as two representative 
detection engines, which are optimized to enhance their detection capabilities; thirdly, we 
define three practical attack types against the normal production process, and design 
different attack powers to compare the detection accuracies of two classifiers. In particular, 
the dramatic difference of our concern is that an excellent feature extraction approach not 
only is one significant precondition for anomaly detection, but also guarantees and 
improves the detection quality. In our approach, we focus on the detailed design of state-
based control feature selection and calculation to address this challenge.  

2 State-based control feature extraction 
As stated previously, one notable advantage of process industries is that the process 
controls in different production stages are executed in a single uninterrupted sequence. In 
other words, the whole production process in process industries always completes some 
periodic control operations under the condition of finite states, and the change of 
successive control operations can reflect the corresponding production process to some 
extent. On this basis, we propose a novel state-based control feature extraction approach, 
which regards the finite control operations as different states. Furthermore, the change of 
successive control operations can be represented by the procedure of state transition, and 
the statistical information between different states can be used to calculate the feature 
values. The specific steps are listed as follows: 
1) Initialization In process industries, each production process involves a series of 
successive control operations, which can achieve a combination of different functions. 
When one master operation station wants to control one slave PLC (Programmable Logic 
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Controller), the corresponding types and roles of all control operations have been defined 
in the function fields of industrial communication protocols. Namely, if we capture and 
parse industrial communication packets in chronological order, the obtained control 
sequence 1 2 3 k

i i i i iC c c c c=   in the interval τ  can represent the change of successive 
control operations in one or several production stages. As a result, we can obtain the 
control sequence set 1 2 3{ , , , , }nC C C C C=   in the total interval T  ( T nτ= ), and the 
number of control operations in each control sequence iC  ( [1, ]i n∈ ) is different from 
each other. Additionally, all control sequences involve l  different functions lf , here 
l k≤ . By selecting the appropriate interval τ , each control sequence iC  can consist of l  
different functions, who are rearranged according to one specific production process. 
2) State-based control model building Based on the control sequence set C , we further 
build the state-based control model by using FSM [Soewito, Vespa, Mahajan et al. 
(2009)]. In this model, each function lf  can be considered as a state lS , and all states 
form a finite set 1 2 3{ , , , , }lS S S S S=  . Therefore, the change of two successive control 
operations can be expressed as the transition from one state to another state, and any 
control sequence can be described by the state transition of multiple states. Additionally, 
different state transitions need to be triggered through diversified input signals in FSM. 
Similarly, we select the previous control operation before two successive control 
operations as the trigger signal, which is referred to the motivation factor in the state-
based control model. For example, 1j

ic −  can be regarded as the motivation factor of two 
successive control operations 1j j

i ic c +  in the short control sequence 1 1j j j
i i ic c c− +  ( 1j k≤ − ). 

Fig. 1 shows the example of state transition paths in the state-based control model which 
associates with 7 different states. Here, uS  represents the current state, and uvM  
represents the current motivation factor. Also, the state transition TR()  can be 
interpreted as follows: under the action of current motivation factor uvM , current state 
transfers from uS  to vS . Tab. 1 shows the mathematical definitions of three key elements 
in the state-based control model. 
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Figure 1: Example of state transition paths in the state-based control model 
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Table 1: Mathematical definitions of three key elements in the state-based control model 

Element Mathematical definition 
j

ic  { , [1, ]},  s.t. [1, ], [1, ]j
i rc f r l i n j k∈ ∃ ∈ ∀ ∈ ∈  

S  { , [1, ]},  s.t. , [1, ]r r rS S r l S f r l= ∃ ∈ = ∀ ∈  

uvM  { , [1, ]},  s.t. TR( , ) , , [1, ]uv r u uv vM f r l S M S u v l∈ ∃ ∈ = ∀ ∈  

3) Feature factor selection and feature value calculation According to the state 
transition paths, we select uv u vM S S  as the feasible feature factor. More specifically, each 
feature factor consists of three successive control operations, in which the first control 
operation is viewed as the motivation factor uvM  and the latter two control operations 
represent the state transition u vS S→  caused by the motivation factor uvM . Based on the 
above definitions, no matter the motivation factor or the state is actually a control 
operation. If all control sequences involve l  different functions, the maximum number of 
feature factors may be 3l , that is, the dimension of feature sample may reach 3l . 
Actually, each production process will probably not cover all feature factors, and the 
corresponding dimension of feature sample will be less than 3l . In the state-based control 
model, a simple identification method of feature factor is designed as follows: firstly, we 
rearrange all control sequence in the set C  in chronological order; secondly, by 
recursively traversing the rearranged control operations, we find each different short 
control sequence 1 1j j j

i i ic c c− + , which can be identified as the selected feature factor; thirdly, 
we can further obtain the number d  of feature factors in this production process by 
computing the number of all short control sequences. 
For each control sequence 1 2 3 k

i i i i iC c c c c=  , we can calculate the feature value of each 
feature factor by 

( )u vx Eco H S S= ⋅ →                                                                                                          (1) 

Here, Eco  is the motivation coefficient generated by the motivation factor, and 
( )u vH S S→  is the statistical information generated by the state transition u vS S→ . 

def

2( ) ( ) log ( )u v u v u vH S S P S S P S S→ =− → →                                                                    (2) 

Here, ( )u vP S S→  represents the probability of state transition u vS S→  in each control 
sequence 1 2 3 k

i i i i iC c c c c=  . 

According to the definition of Pearson correlation coefficient, we further calculate the 
motivation coefficient Eco  by 

def

1

( ( ) ( )) ( ( ) ( ))1 n
i uv uv i u v u v

i IM IS

I M I M I S S I S SEco
n δ δ=

− −
= ⋅∑                                                      (3) 

Here, ( )i uvI M  ( [1, ]i n∈ ) is the statistical self-information of motivation factor uvM  in 
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each control sequence 1 2 3 k
i i i i iC c c c c=  , and ( )uvI M  and IMδ  are the mean and standard 

deviation of ( )i uvI M , respectively. ( )i u vI S S  ( [1, ]i n∈ ) is the statistical self-information 
of two successive states u vS S  in each control sequence 1 2 3 k

i i i i iC c c c c=  , and ( )u vI S S  
and ISδ  are the mean and standard deviation of ( )i u vI S S , respectively. 

Above all, each feature can work out one feature value, and each control sequence 
1 2 3 k

i i i i iC c c c c=   can be mapped to one feature sample 1 2( , , , )i i i
i dX x x x=  . 

3 Detection engines and optimization 
For the same feature samples, different detection engines may export distinct results due to 
their own detection characteristics. In this paper, we introduce two different classification 
algorithms as alternative detection engines to match with our feature extraction approach. 
Furthermore, the first classification algorithm is OCSVM which can be easily trained by 
only using normal feature samples, and the second classification algorithm is BPNN which 
can be specifically trained with the help of both normal and malicious feature samples. In 
order to obtain perfect classification effects, we choose PSO and GA to optimize the key 
parameters of these two classification algorithms, respectively. 

3.1 OCSVM classifier optimized by PSO 
Different from the traditional SVM, OCSVM can be directly applied in one type of 
training feature samples, which are correctly extracted from normal system or network 
data. By judging the attribution of observed data, the OCSVM classifier can mark the 
suspicious data as the abnormal type. Moreover, the general mechanism of OCSVM is 
described below: in order to enhance the preferable aggregation, the original feature 
samples { , 1,2, , }ix i n=   need to be mapped into the high-dimensional feature space 

( )Φ   by using the kernel function ( , ) ( ), ( )i j i jk x x x x=< Φ Φ > , and an optimal hyperplane 
in this feature space is resolved to maximize separation between the observed feature 
samples and the ordinate origin, which is postulated as the only one abnormal feature 
sample. As shown in Eq. (4), by resolving the quadratic programming problem, OCSVM 
can calculate the normal vector ω  and compensation factor ρ  to generate the final 
decision function. 

2
1

1

1

( ) sgn( ( , ) )1 1min   
2

. . ( ( ))  , 0  1 ( , )

r
r

i i
i i

i r

i i i i i j
i

f x k x x
r

s t x i r k x x

α ρ
ω ξ ρ

ν
ω ρ ξ ξ ρ α

=
=

=


= − + − ⇒ 

 Φ ≥ − ≥ = ⋅⋅ ⋅ = 

∑∑
∑

                  (4) 

Here, v  is the tradeoff parameter to affect the number of support vectors, and iα  is the 
Lagrange multiplier in Lagrange function. 
In our OCSVM classifier, we introduce Gaussian kernel function to realize the nonlinear 
mapping of feature space, and its kernel parameter g  plays an important role in the 
excellent hyperplane construction [Xiao, Wang and Xu (2015)]. To sum up, we employ 
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PSO to optimize the tradeoff parameter v  and kernel parameter g , and the detailed 
optimization process is depicted in Fig. 2(a). 

Start

Initialize population 
and iteration numbers 

Initialize g and v 

Build OCSVM 
classifier

Calculate classification 
accuracy based on 3-
fold cross validation
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(a) PSO-OCSVM
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Cross
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(b) GA-BPNN  
Figure 2: Detailed optimization process of two classification algorithms 

3.2 BPNN classifier optimized by GA 
BPNN belongs to the multilayer feedforward neural network, whose significant 
characteristics involve forward signal propagation and reverse error propagation. When 
BPNN serves as an anomaly classifier, it requires different types of training feature 
samples, which can improve its capability of association and prediction. Furthermore, 
BPNN consists of three layers: the input layer, the hidden layer and the output layer, and 
the neurons between every two layers possess the connection weights ijω  and jkω . By 
setting the hidden and output thresholds Th  and To , the outputs in the hidden layer and 
output layer can be calculated by Eq. (5). 

1

1

( ) ( )

1,2, ,
( ) ( ) ,

1,2, ,

( ) 1 (1 exp )i

n

ij i j
i

l

jk k
j

x
i

H j f x Th

j l
O k H j To

k m

f x

ω

ω

=

=

−


= −


=

= − =
 = +


∑

∑




                                                                          (5) 

Here, n , l  and m  are the unit numbers in these three layers, and ( )f   is the activation 
function of hidden layer. 
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In our BPNN classifier, we define the misclassification rate as BPNN’s prediction error, 
and this error can be further used to update the parameters ijω , jkω , Th  and To , which 
make a positive contribution during the favorable network construction. Therefore, we 
employ GA to optimize these parameters, and the detailed optimization process is 
depicted in Fig. 2(b). 

4 Experimental testing and result comparison 
By organically combining the proposed feature extraction approach and two detection 
engines, we can designate the detection accuracy as a practicable evaluation indicator. 
One the one hand, this indicator can contribute to developing the serviceable detection 
engine, which is more applicable to the proposed feature extraction approach; on the 
other hand, it can indirectly reflect the effectiveness of feature extraction, which 
embodies the appropriate level to describe the characteristics of production process in 
process industries. In order to achieve this goal, we build a Modbus/TCP control system 
to simulate the material synthesis process. As shown in Fig. 3, the production process is 
summarized as follows: firstly, PLC 1 opens the valves of two funnels to drop materials 1 
and 2, and closes these two valves when the quantities of materials 1 and 2 reach the 
setting values respectively; secondly, PLC 2 switches on the conveyor belt, and materials 
1 and 2 are carried into the reaction furnace; thirdly, after the material synthesis reaction, 
PLC 3 opens valve 3 to discharge the synthetic material 3. By means of different 
Modbus/TCP packets, three PLCs are managed and controlled by one operator station, 
and the complete cycle of production process is 30 seconds. 

Funnel 1 Funnel 2

Valve 1 Valve 2

Reaction furnace

Valve 3

PLC 1 PLC 2 PLC 3

Industrial switch

Operator station Attacker Packet capturing 
and analysis 

Material 1 Material 2

Material3
 

Figure 3: Modbus/TCP control system to implement the material synthesis process 
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4.1 Experimental data acquisition and analysis 
By running this system, we capture lots of normal Modbus/TCP packets, which are 
divided into two parts: the first part serves as normal training data, which contains 65486 
control operations during the running time of 280 minutes; the second part is regarded as 
normal test data, whose number of control operations is 33340 during the running time of 
143 minutes. Fig. 4 shows the distribution characteristics of control operations in the 
normal training data. Moreover, the whole production process involves 5 different 
functions: 01, 03, 05, 15 and 16, which represent “Read coils”, “Read multiple registers”, 
“Write single coil”, “Write multiple coils” and “Write multiple registers” in the 
Modbus/TCP protocol specification, respectively. From Figs. 4 (a) and 4(b) we can see 
that, the total number of control operations per 60 s has a tight fluctuation, and the 
accumulated number of each control operation presents a trend of smooth growth. In 
short, all of these can provide indirect evidence of the stability and periodicity of 
production process under the finite states. Similarly, Figs. 4 (c) and 4(d) show the 
average numbers and variances of different control operations per 60s, and the maximum 
variance for the control operation 01 is only 1.5, that is, all control operations in every 
production process have tiny deviations from their average numbers. 

 
Figure 4: Distribution characteristics of control operations in the normal training data 

4.2 Different attack assumptions 
In order to evaluate the detection accuracy for malicious attacks, we suppose three 
different attack types against this system. Furthermore, the main purpose of these attacks 
is to destroy the normal production process by launching some imitative control 
operations, for example, if next control operation is changed to 05 from the normal 
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operation control 01 in one production stage, one industrial accident may be caused 
because this imitative control operation has broken the continuity of production process. 
Additionally, another reasonable hypothesis is that the imitative control operations only 
involves the above 5 different functions because incompatible control operations can be 
easily filtered by current industrial firewalls [Wan, Shang, Kong et al. (2017); Cheminod, 
Durante, Seno et al. (2018)]. Based on the network structure of simulated control system, 
the malicious attacker is designed to directly connect to the industrial switch, and has 
obtained its ownership permission. As shown in Fig. 5, the first two attack types belong 
to the category of MITM (Man in The Middle) attacks, and the third attack type is based 
on the third-party injection attack. More specifically, the detailed definitions of three 
attack types are interpreted as follows: 
Definition 1. Continuous MITM attack The malicious attacker can hijack the normal 
control operations from the industrial switch, and continuously modifies some normal control 
operations to a chain of imitative control operations. In other words, this attack type can cause 
a chain of irregular control operations to appear in the normal production process. 
Definition 2. Random MITM attack The malicious attacker can hijack the normal control 
operations from the industrial switch, and randomly modifies several normal control 
operations to the imitative control operations. In other words, this attack type can induce the 
imitative control operations to randomly spread over the normal production process. 
Definition 3. Continuous injection attack As a hidden third-party adversary, the 
malicious attacker can launch a chain of imitative control operations, and continuously 
inject them into the normal control operations. In other words, this attack type can add 
some additional and irregular control operations into the normal production process. 

Attacker

Operator station

PLC 

Attacker

Operator station

PLC 

Attacker

Operator station

PLC 

(a) Continuous MITM attack (b) Random MITM attack (c) Continuous injection attack

Normal control 
operation

Malicious control 
operation Normal path Attack path

 
Figure 5: Description of three different attack types 

4.3 Detection evaluation for PSO-OCSVM classifier 
According to the proposed feature extraction approach, we acquire 280 normal training 
feature samples from the normal training data. Actually, the number of feature factors is 
only 51, and is much less than the theoretical maximum value 35 125=  due to 3l = . By 
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using normal training feature samples, we obtain an optimized PSO-OCSVM classifier, and 
the optimal tradeoff parameter and kernel parameter are 0.0114v =  and 12.9090g = . 
Furthermore, Fig. 6 depicts the changes of two fitness curves under 200 iterations, and all 
fitness values are computed by using 3-fold cross validation. From this figure we can see 
that the best value in each iteration grows fast and monotonically converges to the global 
optimum, which can reach 99.64%. Additionally, Fig. 7 shows the classification results for 
280 normal training feature samples, and the corresponding classification accuracy can 
reach about 97.86%. In this figure, “1” represents the normal category, and “-1” represents 
the abnormal category. According to the classification results, only 6 normal feature 
samples are misidentified as abnormal ones, and we can conclude that this classifier has a 
fine ability of learning and generalization. 

 
Figure 6: Changes of two fitness curves under 200 iterations 

 
Figure 7: Classification results of 280 normal training feature samples 
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For 143 normal test feature samples extracted from the normal test data, we further evaluate 
the false classification of PSO-OCSVM classifier. Fig. 8 plots the classification results of 143 
normal test feature samples, and the corresponding classification accuracy can reach 96.50%. 
Namely, only 5 normal feature samples are incorrectly classified as abnormal ones, and it 
directly proves that this classifier can ensure a low rate of false classification. 

 
Figure 8: PSO-OCSVM’s classification results of 143 normal testing feature samples 

In order to evaluate the detection accuracies for three different attack types, we simulate 
each attack type to destroy the normal production process. For each attack type, we 
generate 280 malicious control sequences in one experiment, and the number of imitative 
control operations in each malicious control sequence is flexibly designed according to the 
assumed attack powers. For example, when one malicious attacker carries out the 
continuous injection attack, he can continuously launch 15 imitative control operations as 
one attack power, and the corresponding percentage in each control sequence is about 
6.03%. In practice, if the malicious attacker wants to achieve a higher success probability, it 
is an efficient way to improve the attack power by increasing the number of imitative 
control operations. However, different attack powers may also have significant impacts 
on the detection accuracy of PSO-OCSVM classifier. As a result, we must compare the 
detection accuracies under different numbers of imitative control operations for each 
attack type. Tab. 2 shows the experimental results for three attack types, and each 
average detection accuracy in this table is calculated by conducting 6 different 
experiments. Additionally, it’s worth noting that the number of imitative control 
operations for the random MITM attack is differently designed from the ones for another 
two attack types, and the causes can be briefly analyzed as follows: on the one hand, the 
proposed feature extraction approach is very sensitive to the random distribution of 
imitative control operations, that is, a tiny amount of imitative control operations can 
bring a significant impact on the feature value calculation; on the other hand, we focus on 
the trend of average detection accuracy under the incremental number of imitative control 
operations, and the same design for the random MITM attack may cause trouble in this 
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trend estimation.  
From this table we can find that the optimized PSO-OCSVM classifier has a satisfying 
ability to detect the given attack types, and we can also summarize the following 
conclusions: (1) for all attack types, as the number of imitative control operations increases, 
the average detection accuracy of PSO-OCSVM classifier shows a trend of significant 
growth; (2) although the selected numbers of imitative control operations for all attack 
types are not the same, it remains the highest detection accuracy for the random MITM 
attack, because if we set the number of imitative control operations to 12, its average 
detection accuracy can reach 99.88% by performing additional 6 experiments; (3) based on 
the proposed feature extraction approach, the random distribution of imitative control 
operations can cause more significant changes of feature values, which can contribute to the 
detection accuracy of PSO-OCSVM classifier.  

Table 2: PSO-OCSVM’s average detection accuracies under different numbers of 
imitative control operations for each attack type 

Continuous MITM attack Random MITM attack Continuous injection attack 
Number of 
imitative control 
operations 

Average 
detection 
accuracy 

Number of 
imitative control 
operations 

Average 
detection 
accuracy 

Number of 
imitative control 
operations 

Average 
detection 
accuracy 

12 79.82% 5 71.07% 12 70.36% 
13 86.55% 6 83.93% 13 74.58% 
14 91.19% 7 89.17% 14 80.95% 
15 93.99% 8 95.30% 15 86.13% 
16 95.24% 9 97.74% 16 90.18% 
17 98.57% 10 98.81% 17 93.33% 

4.4 Detection evaluation for GA-BPNN classifier 
Differently, BPNN requires both normal training feature samples and malicious training 
feature samples, which can improve its classification capability. Based on the attack 
assumptions, we generate 50 malicious control sequences to extract malicious training 
feature samples for each attack type, and it is worth mentioning that the number of 
malicious training feature samples is far less than the one of normal training feature 
samples because the malicious attacks infrequently occur in real-world process industries. 
By using the above-mentioned training feature samples, we obtain an optimized GA-
BPNN classifier, and Fig. 9 depicts the changes of misclassification rate under 20 
iterations. Overall, the misclassification rate can obviously descend with the increasing 
number of iterations, and the minimal prediction error is only 0.01163. Namely, the 
classification accuracy for 280 normal training feature samples can approximately reach 
98.84%. Similarly, we also evaluate its false classification for 143 normal test feature 
samples, and Fig. 10 plots the corresponding classification results. More precisely, only 2 
normal feature samples are mistaken for abnormal ones, and the classification accuracy 
can reach about 98.60%. Compared with the PSO-OCSVM classifier, this classifier have 
a lower rate of false classification. 
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Figure 9: Changes of misclassification rate curve under 20 iterations 

 

Figure 10: GA-BPNN’s Classification results of 143 normal testing feature samples 

Without loss of generality, we further evaluate the detection accuracies for three different 
attack types, and the malicious feature samples in each experiment are consistent with the 
ones used in the evaluation of PSO-OCSVM classifier. Tab. 3 compares the detection 
accuracies under different numbers of imitative control operations for each attack type. 
Intuitively, we can draw the similar results: (1) when the number of imitative control 
operations increases, the average detection accuracies for all attack types can be 
improved; (2) the optimized GA-BPNN classifier achieves the greatest efficiency to 
detect the random MITM attack, even when the number of imitative control operations is 
set to 12, its average detection accuracy can grow to 98.75%; (3) the proposed feature 
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extraction approach is more sensitive to the random MITM attack due to the random 
distribution of imitative control operations. Differently, by comparing the experimental 
results in Tabs. 2 and 3, we find that these two classifiers can present their own 
advantages and disadvantages: firstly, the optimized PSO-OCSVM classifier obtains the 
highest detection accuracy 98.81% for the random MITM attack, but its average detection 
accuracy under 5 imitative control operations is well below the one of GA-BPNN 
classifier; secondly, the optimized GA-BPNN classifier exhibits more excellent detection 
stability, because the change of average detection accuracies follows a relatively smooth 
curve; thirdly, the optimized GA-BPNN classifier has a distinct advantage to detect the 
continuous MITM attack and continuous injection attack, even though its average 
detection accuracy for the continuous MITM attack under 17 imitative control operations 
is slightly lower than the one of PSO-OCSVM classifier. 

Table 3: GA-BPNN’s average detection accuracies under different numbers of imitative 
control operations for each attack type 

Continuous MITM attack Random MITM attack Continuous injection attack 
Number of 
imitative control 
operations 

Average 
detection 
accuracy 

Number of 
imitative control 
operations 

Average 
detection 
accuracy 

Number of 
imitative control 
operations 

Average 
detection 
accuracy 

12 92.98% 5 85.96% 12 91.13% 
13 92.44% 6 89.11% 13 92.86% 
14 93.63% 7 92.11% 14 94.35% 
15 95.24% 8 94.58% 15 94.47% 
16 96.01% 9 96.85% 16 95.72% 
17 96.67% 10 97.21% 17 96.55% 

Above all, the above experimental comparisons and analysis convincingly illustrate the 
following two points: for one thing, the state-based control feature extraction approach 
can not only correctly describe the characteristics of control operation in process 
industries, but also effectively coordinate with the optimized classification algorithms, 
because both of two optimized classifiers have a desirable detection capability; for 
another, if malicious training feature samples are sufficient and diversified, we suggest 
the optimized GA-BPNN classifier as a serviceable detection engine to cooperate with 
our feature extraction approach. 

5 Conclusion 
According to the integrality and continuity of production process in process industries, 
this paper proposes a novel state-based control feature extraction approach, which selects 
the finite control operations as different states to construct the feature factor. Moreover, 
the change of successive control operations can be represented by the procedure of state 
transition, and the statistical information between different states can be used to calculate 
the feature values. Additionally, this paper also introduces two different classification 
algorithms as detection engines to indirectly evaluate the proposed feature extraction 
approach, and these classification algorithms are optimized to the PSO-OCSVM and GA-
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BPNN classifiers by using the training feature samples. By supposing three applicable 
attack types, we further compare the detection accuracies of these two classifiers. The 
experimental results show that both two classifiers have a desirable detection ability, and 
the average detection accuracy of GA-BPNN classifier is generally higher than the one of 
PSO-OCSVM classifier. In other words, the proposed feature extraction approach can 
effectively coordinate with the optimized classification algorithms. 
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