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Abstract: The Quantum Approximate Optimization Algorithm (QAOA) is an 
algorithmic framework for finding approximate solutions to combinatorial optimization 
problems. It consists of interleaved unitary transformations induced by two operators 
labelled the mixing and problem Hamiltonians. To fit this framework, one needs to 
transform the original problem into a suitable form and embed it into these two 
Hamiltonians. In this paper, for the well-known NP-hard Traveling Salesman Problem 
(TSP), we encode its constraints into the mixing Hamiltonian rather than the conventional 
approach of adding penalty terms to the problem Hamiltonian. Moreover, we map edges 
(routes) connecting each pair of cities to qubits, which decreases the search space 
significantly in comparison to other approaches. As a result, our method can achieve a 
higher probability for the shortest round-trip route with only half the number of qubits 
consumed compared to IBM Q’s approach. We argue the formalization approach 
presented in this paper would lead to a generalized framework for finding, in the context 
of QAOA, high-quality approximate solutions to NP optimization problems. 
 
Keywords: Quantum approximate optimization algorithm, traveling salesman problem, 
NP optimization problems. 

1 Introduction 
The Traveling Salesman Problem (TSP), a notorious NP-hard problem, has intrigued 
computer scientists and mathematicians for over two centuries. It involves a salesman 
traveling from city to city. The salesman needs to find the shortest possible round-trip 
route that visits all cities exactly once. 
This problem can be abstracted in terms of graphs. The TSP asks for a Hamiltonian cycle 
(a closed path) that connects every vertex of a weighted graph once with the lowest total 
sum of edges. Applying brute-force search among all possible permutation of n nodes 
takes time O(n!). The first algorithm to apply dynamic programming solves this problem 
in O(n22n) time [Dantzig, Fulkerson and Johnson (1954)]. In the following decades, many 
approaches, such as Minimum Spanning Trees [Held and Karp (1970)], Branch-and-

 
1 School of Computer Science and Technology, Anhui University of Technology, Maanshan, China. 
2 School of Physics, University of Western Australia, Perth, Australia. 
3 School of Computer Science and Engineering, Southeast University, Nanjing, China. 
* Corresponding Authors: Yue Ruan. Email: yue_ruan@ahut.edu.cn;  

Jingbo Wang. Email: jingbo.wang@uwa.edu.au. 
Received: 04 February 2020; Accepted: 25 February 2020. 



1238                                                                        CMC, vol.63, no.3, pp.1237-1247, 2020 

 

Bound [Balas and Toth (1983)], Branch-and-Cut [Padberg and Rinaldi (1987, 1991)] 
have improved on this time-bound. However, since the problem is a NP-hard, these exact 
algorithms run in exponential time. In practice, various heuristics and approximation 
algorithms are used to yield sufficiently high-quality approximate solutions. These 
approaches, including simulated annealing [Geng, Chen, Yang et al. (2011)], genetic 
algorithms [Grefenstette, Gopal, Rosmaita et al. (1985)], ant colony algorithms [Dorigo 
and Gambardella (1997)] can find solutions for extremely large problems (millions of 
cities) within a reasonable time. The solutions are often, with high probability, just 2-3% 
away from the optimal solution [Rego, Gamboa, Glover et al. (2011)].  
In recent years, with the progress of practical quantum computing, such as Quantum 
Security Communication [Liu, Xu, Yang et al. (2019)] and Quantum Machine Learning 
[Ruan, Xue, Liu et al. (2017); Liu, Gao, Yu et al. (2018); Liu, Gao, Wang et al. (2019)], 
the application to approximate combinational optimization has also become tantalizing. 
In 2014, Farhi et al. [Farhi, Goldstone and Gutmann (2014)] proposed the Quantum 
Approximate Optimization Algorithm (QAOA) as a candidate to outperform the best 
classical optimization algorithm in the NISQ (Noisy Intermediate-Scale Quantum) era 
[Preskill (2018)]. QAOA not only arouses the interest of academia but also intrigues big 
enterprises. To name a few, IBM [Moll, Barkoutsos, Bishop et al. (2018)], Google 
[McClean, Boixo, Smelyanskiy et al. (2018)], and Intel [Guerreschi and Matsuura (2019)] 
have researched this algorithm. In the following sections, we will describe QAOA, then 
present our QAOA-based scheme for solving the TSP. We finally discuss the advantages 
and disadvantages of our approach by comparing it with other quantum computing 
methods. 

2 Quantum approximate optimization algorithm 
The quantum approximate optimization algorithm (QAOA) [Farhi, Goldstone and 
Gutmann (2014)] is an algorithmic framework derived from an approximation to the 
quantum adiabatic algorithm (QAA) [Farhi, Goldstone, Gutmann et al. (2001)]. The 
QAOA coarsely approximates adiabatic evolution by the application of the Suzuki-
Trotter theorem [Nielsen and Chuang (2002)]. The framework breaks the time-dependent 
QAA Hamiltonian into a sequence of 2p time-independent Hamiltonians. Each of these 
time-independent operators have the form Bi He β−  and Ci He γ− with tunable parameters β  
and γ . CH is a diagonal Hamiltonian corresponding to the final QAA Hamiltonian that 
diagonally encodes the qualities of all possible solutions, and BH  can be considered as a 
“mixing operator”, which serves to ‘mix’ quantum amplitude between the different 
solutions. The total adiabatic evolution is then produced by alternating applications of 
these two operators, 

             (1) 

where  is some efficiently-prepared initial state. 

When the expectation value of the final QAOA state with respect to CH  is maximized 
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(or minimized), the state ,β γ  records the optimal solution available to the parameter 
space. This approach depends on 2p parameters of the formβ  and γ . The values of each 
of these parameters can be found by a classical optimization algorithm such as Nelder-
Mead, with the objective function being the expected quality of the solution. The 
expected quality of the final QAOA state can be found by sampling. Such a quantum-
classical hybrid approach is illustrated in Fig. 1. This approach is regarded as a promising 
candidate for demonstrating quantum supremacy in the NISQ era [Preskill (2018)]. We 
note that when , the QAOA approaches the quantum adiabatic algorithm (QAA) 
perfectly and thus guarantees the optimal solution [Farhi, Goldstone and Gutmann 
(2014)]. Nevertheless we, consistent with prior research, have found that very small p 
frequently leads to high-quality approximate solutions. 

 

Figure 1: Schematic diagram of hybrid quantum-classical QAOA 

3 QAOA-based scheme for solving TSP 
3.1 Data structure 
We map each city to a vertex i on a graph, with the route between city i and city j 
corresponding to the edge (i, j). According to the traveling expense between two cities, 
we assign a weight ijw  to each edge. If city i and city j do not have a direct route, set 

=ijw ∞  (in practice, assign a large value). This transforms the problem to that of finding 
the edge sequence with minimal cost on a complete graph. 
The complete graph with n vertices has n(n-1)/2 edges. We map each edge to a bit 
variable, and regard the solution as a binary vector x



, where 1 indicates that the 
corresponding edge is included in the solution. Thus, the problem Hamiltonian CH  can 
be defined as: 
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( 1)/22 1

0

=
n n

CH x w x x
− −

⋅∑
 

              (2) 

where vector 0 1 ( 1)/2 1=( )T
n nx x x x − −⋅ ⋅ ⋅



, and vector 0 1 ( 1)/2 1=( )T
n nw w w w − −⋅ ⋅ ⋅



holds the 
weight of each edge. 
We express the Hamiltonian cycle constraint as a polynomial function of ( 1) / 2n n −  
binary variables 0 ( 1)/2 1( , , , , )k n nf x x x − −⋅ ⋅ ⋅ ⋅ ⋅ ⋅ . Since each {0,1}kx ∈ , clearly 

( )m
k kx x= and f does not have interaction terms like 1i i kx x x+ ⋅ ⋅ ⋅ (as each variable/edge 

can be selected independently). Thus, the polynomial constraint function f can be 
simplified to 

( ) *k k
k

f x c x= ∑
 

                (3) 

where kc


 is the coefficient of kx . The dimension depends on the specific instance under 
consideration. 

For a graph with n vertices, kc


 can be defined as a vector with two elements taking the 
value 1 and the rest 0. The positions where 1 appears indicate the two endpoints of an 
edge as shown in Fig. 2.  

 
Figure 2: the data structure of coefficient  corresponding to edge kx  in TSP problem 

Hence, the constraint that a closed path includes all vertices only once can be described as 

                  (4) 

We note this equation is a necessary condition, not a sufficient condition, for the 
constraint of TSP. For example, when the number of vertices is greater than 6, there are 
independent closed routes (each includes 3 vertices) satisfying Eq. (4), but they do not 
form a Hamiltonian cycle. We now present an Oracle function validate, to check this. 

3.2 Oracle function validate 
Associated with every NP optimization problem is an efficient algorithm validate, which 
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checks if a solution meets the problem constraints [Kolaitis and Thakur (1994)]. The 
below algorithm is the specific validate for TSP, checking if the edge sequence represents 
a Hamiltonian cycle.  
Algorithm 1 validate 

Input: one solution x


 of a city graph with n vertices 

Output: True if and only if x


 is a Hamiltonian cycle 

1:   /*Γ  contains all  having ix  =1 */ 

2: If ( nΓ ≠ ) then return “infeasible solution”; /* indicate a solution not having n edges 
*/ 

3:   /* an arbitrary coefficient fromΓ */ 

4: Loop:  according to the positions of  1 in vector , select  and  whose 

corresponding position also have 1 from Γ .  

5:   

6:  

7: If (  has components with value beyond 0, 1 and 2) then  
return “infeasible solution”; 

8: Else If (  has components with value 1)  then 
Goto Loop; 

9: Else If (  has components with value 0) then 
return “infeasible solution”;  /*exist disconnected closed paths*/ 

10: Else If (all components of  have value 2)  
return “feasible solution”; 
11: End If 

The possible number of elements in Γ  is no more than ( 1) / 2n n − , so the time 
performance of the above algorithm is bounded by 2( )O n  and is thus efficient. 

3.3 Construct constraint-encoded BH  

Since the oracle function validate determines whether a given solution satisfies the constraints 
of TSP efficiently, we can use it to obtain a superposition over all feasible solutions. 
Prepare a superposition state containing all combinatorial solutions and add an auxiliary 
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qubit with initial value 0 . Then, by applying the quantum oracle that maps 

0 ( )x x validate x→ , we can select all feasible solutions in Ω  with a controlled 
operation on the ancilla: 

                     (5) 

In our scheme, we have transformed the city traveling graph into a complete graph, so 
any vertex sequence is a valid sequence. Using a 6-city example, {A, B, C, D, E, F} 
represents the edge set {A-B, B-C, C-D, D-E, E-F, F-A}. Changing the order of any two 
vertices e.g., {B, A, C, D, E, F} means reselecting two edges {B-A, A-C, C-D, D-E, E-F, 
F-B}. That means, from one feasible solution x



, one can determine another feasible 

solution  by two 0-1 swaps. Therefore  must lie in the set  where 

( , )d ⋅ ⋅  is the Hamming distance between two binary vectors. 

Treating Hamiltonian BH as a graph, then solutions x


 and  are vertices on this graph 

connected by an edge. As per [Childs (2004)], the unitary operator BiH te−  describes a 
continuous quantum walk on BH . The walker can reach all the connected nodes and the 
walking is restricted in the range defined by the connected subgraph to which the starting 
node belongs. Thus, encoding constraint in BH  is equivalent to find a way connecting all 
feasible solutions (vertices) and excluding all infeasible solutions (vertices). 
Based on this understanding, one can use the following pseudo-code to generate the rows 
of BH : 

Algorithm 2 BH - generation 

Input: every feasible solution x


 in superposition state 
Output: the constraint-encoded BH  

1: For each x∈Ω


   /* i.e.,  */ 

2: For  

     3:  

     4: If validate ( )  then  
         5:  generate x ' x'x x+   /* i.e. ( , ') ( ', ) 1B BH x x H x x= = */    

6: End For 
7: End For 

The number of flips in the inner For loop is bounded by 4( )nO C , i.e., 4( )O n . And since 
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the validate function is also efficient, each row of BH  can be efficiently generated. Thus, 
applying Aharonov’s decomposition lemma, BH  can be decomposed as poly(n) 
2 2× combinatorially block diagonal matrices so that an efficient quantum circuit can 
simulate Bi He β− to the desired accuracy [Aharonov and Ta-Shma (2003)].  

3.4 Scheme steps 
Step 1   Prepare the superposition state including all feasible solutions. 
Since we have oracle function validate at hand, prepare the system as per Eq.(5), then do 
a further projection 1 1I ⊗ , to provide the initial state  .* 

Step 2 Prepare BH  and CH  as per Eqs. (6) and (2) 

Step 3 Generate the circuit to simulate Bi He β− and Ci He γ− .  
Since CH  is diagonal, it is straightforward to simulate Ci He γ− . Applying the scheme from 

Aharonov et al. [Aharonov and Ta-Shma (2003)], we can also simulate Bi He β−  efficiently. 
Step 4 Fix p, i.e., determine the number of { }1 , pβ β⋅⋅⋅， and{ }1 , pγ γ⋅ ⋅⋅， .  

As p is chosen to be higher, the average solution quality increases at the cost of a deeper 
quantum circuit. 
Step 5 Perform the QAOA state evolution: 

11, p B p C CBi H i H i Hi He e e e sβ γ γββ γ − − −−= ⋅ ⋅ ⋅  

Step 6 Measure , ,CHβ γ β γ . Use a classical optimization method to vary the value 

of { }1, , pβ β⋅⋅⋅  and { }1, , pλ γ⋅⋅⋅ , and repeat from Step 5, until convergence to the 

minimum , ,CHβ γ β γ . 

3.5 Numerical simulation 
Here we give a concrete 5-city example. The costs of traveling between each city are 
shown in Fig. 3(a), and the result returned by p=4 QAOA is shown in Fig. 3(b). 
According to the edge mapping sequence (A-B, A-C, A-D, A-E, B-C, B-D, B-E, C-D, C-
E, D-E), the solution “1010001110” with highest probability represents the edge-set {A-
B, A-D, B-E, C-D, C-E}. We can easily verify that this edge-selection is the optimal 
solution to this specific problem. 

 
* An alternative is to prepare an initial state as one of the feasible solutions. 
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4 Discussion 
The numerical 
simulations were conducted on a computer with an i7 CPU and 8 GB main memory. For 
numbers of cities greater 6, 15+ qubits are required to represent the solution space, which 
quickly becomes infeasible for classical simulation. 
The classical optimization method used to obtain the above results is the Nelder Mead 
simplex algorithm. We replace with other classical optimization algorithms provided by 
Mathematica© to observe the influence of different classical optimization methods for 
obtaining the final probability. We find that the QAOA ends up with almost identical results 
by exploiting varied classical optimization algorithms. This observation manifests the 
classical optimization method is not a vital factor in the performance of QAOA. Rather, p 
determines the depth of the quantum circuit, which determines the complexity of QAOA. 
IBM Q also presented a method to solve TSP [IBM Q (2018)]. They take the approach 
named variational quantum Eigensolver (VQE) [Peruzzo, McClean, Shadbolt et al. 
(2014), Wang, Higgott and Brierley (2019)], a quantum-classical algorithm proposed 
earlier than QAOA. In comparison, our method has two advantages. 
First, we map each edge to a qubit so the total qubits we used are ( 1) / 2n n − . IBM Q 
uses two-dimensional qubits-mapping, one is for each vertex, and the other is for the 
order in the vertex sequence. Hence, the qubits needed are 2n . Clearly, our method 
consumes only half the number of qubits, a constant-factor improvement. 
Second, we improve on the handling of constraints. IBM Q takes the conventional 
method for encoding constraints, adding “penalty” terms to the problem Hamiltonian 
whenever a constraint is violated [Lucas (2014)]. These terms add extra energy scales to 
the problem Hamiltonian, which in practice increases the difficulty of getting the final 
solution. In addition, there is the distinct possibility of the algorithm returning an invalid 
solution. Instead, our approach does not use penalty terms. We instead encode the 
constraint directly in the mixer BH . This idea stemmed from the work of Hen et al. [Hen 

(a) the complete graph of 
cities 

(b) the results of applying QAOA to this TSP 
instance 

Figure 3: a TSP problem solved by QAOA with p=4 
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and Spedalieri (2016), Hen and Sarandy (2016)] and discussed in the context of QAOA 
by Marsh et al. [Marsh and Wang (2019)] and Hadfield et al. [Hadfield, Wang, 
O’Gorman et al. (2019)]. In this paper, we present a unique BH -encoding approach, and 
demonstrate that encoding constraint in BH  (mixing Hamiltonian) indeed excludes the 
infeasible solutions.  More details are provided in Ruan et al. [Ruan, Marsh, Xue et al. (2020)]. 

5 Conclusion 
In this paper, we have proposed a QAOA-based scheme to solve the well-known NP-hard 
Traveling Salesman Problem. We use a unique approach in comparison to previous 
methods, in mapping edges to qubits and encode the closed tour constraint in the mixing 
operator BH . The results and comparison with other schemes demonstrated our 
approach’s effectiveness and efficiency for solving TSP, albeit only for the small 
problem instances that can be analyzed with classical computers. 
We consider QAOA as a high-performing algorithm for resolving NP-optimization 
problems. However, QAOA, the hybrid quantum-classical variational optimization 
scheme, can only be considered a heuristic. Theoretically, QAOA is the approximation of 
QAA only produces the optimal result with certainty when p →∞  [Farhi, Goldstone 
and Gutmann (2014)]. However, the presented approach for solving TSP reinforces the 
observation made in Farhi et al. [Farhi, Goldstone and Gutmann (2014)], that a small 
value p appears adequate to obtain the optimal (or at least, a high-quality) solution. If this 
is indeed the case for large problem instances, QAOA is a powerful utility that can be 
applied to a wide range of real-world optimization problems to obtain high-quality 
approximate solutions efficiently. 
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