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Abstract: In this paper, we approximate the solution and also discuss the periodic behavior 
termed as eventual periodicity of solutions of (IBVPs) for some dispersive wave equations 
on a bounded domain corresponding to periodic forcing. The constructed numerical 
scheme is based on radial kernels and local in nature like finite difference method. The tem-
poral variable is executed through RK4 scheme. Due to the local nature and sparse differ-
entiation matrices our numerical scheme efficiently recovers the solution. The results 
achieved are validated and examined with other methods accessible in the literature.

Keywords: RBFs meshless methods, RBF-FD scheme, eventual periodicity, BBM and KdV 
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1 Introduction
The applications of dispersive wave equations are found in numerous branches of physical 
sciences from fluid dynamics, quantum mechanics, plasma physics to non-linear optics and 
to this extent in chemistry and biology as well [Linares and Ponce (2014); Pava (2009)]. As 
an example, the BBM equation developed by Benjamin, Bona and Mahony in the year 1972, 
also known as the regularized long-wave equation (RLWE) as a model illustrating the 
unidirectional propagation of long waves with small amplitude. The BBM model is well 
known in physical applications, see for example the references [Benjamin, Bona and 
Mahony (1972); Goldstein and Wichnoski (1980); Zhang, Wei and Gao (2002); Singh, 
Gupta and Kumar (2011); Peregrine (1966)]. This equation is an alternate model for the 
KdV equation derived by Korteweg and de Vries in 1895 with the presumption of small 
wave-amplitude and large wave length. The KdV equation and its various modifications 
serve as the modeling equations in several physical problems, see for example [Pava 
(2009); Sulem and Sulem (1999); Newell and Moloney (1992); Ablowitz, Kruskal and 
Ladik (1979); Brenner and von Wahl (1981); Tao (2006); Uddin, Jan, Ali et al. (2016)].
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In the last century, in applied mathematics, physics and other related disciplines a rich area
of research behind the KdVequation and its solution approximation has been developed see
for example the references [Bona and Smith (1975); Bona, Pritchard and Scott (1981); Bona
andWinther (1989); Fornberg and Whitham (1978); Kumar, Singh, Kumar et al. (2015); Al-
Khaled (2001); Goswami, Singh and Kumar (2017); Savaşaneril and Hacioğlu (2018);
Yüzbaşı and Şahin (2013); Alquran and Al-Khaled (2011)].

Another certain qualitative aspects of solutions of some dispersive wave equations indicated
through experiments, which are linked together with their large-time behavior termed as
eventual time periodicity of initial-boundary-value problems (IBVPs) solutions. A piston-
type or flap-type wave maker fitted at the end of a channel in laboratory experiments show
this attractive event. When the wavemaker periodically oscillates with a period T, then it is
observed that the amplitude of the wave becomes periodic of period T at each point along
the channel after some time [Bona, Pritchard and Scott (1981)]. This interesting
phenomenon of eventual periodicity has been elaborated previously in separate works, for
the generalized BBM and KdV equations and their dissipative counterparts respectively
which include Burger-type term investigated by Bona et al. [Bona and Wu (2009)]. The
initial and boundary conditions will be appended with all these equations. In the recent
work [Usman (2007); Shen, Wu and Yuan (2007)] a new solution representation and also
the eventual periodicity is re-established for the KdV equation. The forced oscillations of
the KdV equation and its stability and numerical treatment have been carried out very
recently [Usman and Zhang (2009); Khan and Usman (2012); Al-Khaled, Haynes,
Schiesser et al. (2018)]. In the present work we investigate this behavior using RBF-FD
method for the BBM and KdV equations and of the equations acquired by take together
two unlike dissipation with the aforementioned equations. More precisely, we estimate the
solutions of the following IBVPs for the BBM and KdV equations

ut þ ux þ uux � uxxt ¼ 0; x; t � 0; (1)

ut þ ux þ uux � uxxx ¼ 0; x; t � 0; (2)

respectively, and also take their dissipative counterparts namely

ut þ ux þ uux � uxxt � muxx ¼ 0; x; t � 0; (3)

ut þ ux þ uux � uxxx � muxx ¼ 0; x; t � 0; (4)

where m>0. The following conditions will be appended to all these equations

uðx; 0Þ ¼ u0ðxÞ; x � 0; uð0; tÞ ¼ gðtÞ; t � 0: (5)

subject to the condition that the function g will be a periodic of period T>0, in other words
gðt þ TÞ ¼ gðtÞ, where t�0.

The radial basis functions (RBFs) approach is generally developed by Hardy [Hardy
(1971)], the said work is carried out for interpolating 2D scattered data. The RBFs
approach is the most utilized tool in the field of multivariate approximation theory.
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The remarkable properties of RBFs include higher order smoothness, powerful convergence
and efficiency in practical problems. Image processing, cartography, neural network,
meteorology and turbulence analysis are some fields where RBFs methods have
applications see for example the references [Buhmann (2000, 2003)]. A long list of
mathematical applications of RBFs used in numerical methodologies for solving PDEs
with high accuracy in multi-dimensions can be found in many fields of applied sciences
see for example [Fasshauer (2007)]. These finding speedily developed research in RBFs
and RBFs methods possessed considerable attention in scientific community as a truly
mesh-free methods and of their ability to achieve spectral accuracy for the PDEs
solutions on irregular domain contrast to other state-of-arts methods [Belytschko,
Krongauz, Organ et al. (1996); Buhmann (2003)]. Some of the drawbacks and difficulties
(like resulting linear system ill-conditioning) of RBFs methods have also been resolved
through different techniques.

The RBF-FD technique is a combination of RBFs and conventional finite differences (FD)
to get best accuracy as compare to PS and global RBFs techniques on scattered nodes
without requiring a computational mesh. In particular, the RBF-FD method can offer
high computational efficiency, because of the local approximations. This approach leads
to sparse differentiation matrices rather than to full dense matrix problems, and can also
be used for local (adaptive) refinements, and equally incorporating for large-scale
computations in parallel. Originally this approach was developed by Tolstykh in the year
2000 [Tolstykh (2000)]. It has been modified and applied successfully to a variety of
problems in recent years [Wang and Liu (2002); Wright (2003); Lee, Liu and Fan (2003);
Chantasiriwan (2004); Davydov and Oanh (2011); Kosec and Zinterhof (2013); Shan,
Shu and Qin (2009); Uddin, Ali and Ali (2015); Mramor, Vertnik and Šarler (2013)]. In
this work, we construct a numerical scheme based on RBF-FD local method for the
solution of the model Eqs. (1)-(5).

2 Description of the method

For mathematical formulation, we consider a general time dependent partial differential
equation and describe gradually the RBF-FD method. Our model problem is of the type

@uðx; tÞ
@t

¼ Luðx; tÞ; such that x 2 � � Rd; d � 1; t > 0; (6)

subject to the following initial condition and well define boundary conditions

uðx; 0Þ ¼ f ðxÞ;BuðxÞ ¼ gðx; tÞ; x 2 @�; (7)

where the spatial operators L, B denote the differential operators, and f, g are given
functions. Suppose N denote the nodes in the domain � of the given problem used for
approximation, then the RBF-FD method approximate Luðx; tÞ at every single inner node
as a linear combination at nodes having neighboring locations. To approximate Luðx; tÞ at
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node say x1x2; x3;…; xn are some n–1 nearest neighbor nodes of x1, known as support region
or stencil of n nodes for the node x1 [Fasshauer and McCourt (2015)].

2.1 RBFs global differentiation matrix
The discretization of Eqs. (6)-(7) through RBF-FD method can be carried out by
approximating u using f as a radial kernel at the node x and is given by

ûðxÞ ¼
XN
j¼1

cjfðkx� xjkÞ ¼ FðxÞTc; x 2 �; (8)

such that FðxÞT ¼ ðfkx� x1k;fkx� x2k; … ;fkx� xNkÞ, and c is an unknown
coefficient vector. The Lagrange form of Eq. (8) is given by

ûðxÞ ¼ FðxÞTK�1u; (9)

here K stand for the global RBFs system interpolation matrix. Since the kernel-based
interpolant û in Eq. (9) yields a fine approximation to u. So any operator applied on û
will also be a nice approximation of the corresponding operator applied to u (see
[Fasshauer and McCourt (2015); Fasshauer (2007))]. Application of a linear differential
operator L to the above Eq. (9) gives

LûðxÞ ¼ LFðxÞTK�1u: (10)

From Eq. (10) we used the following notation for the values

KL ¼

LFðx1ÞT
:
:
:

LFðxNÞT

2
66664

3
77775: (11)

Thus the global differentiation (discretization) matrix L of order N×N matrix can be seen as

L¼KLK
�1: (12)

Since from Eq. (12), we see that the ith row of KL corresponds to LFðxiÞT therefore we
observe from Eq. (12) that the ith row of L,

Li ¼ LFðxiÞTK�1; (13)

represents one row of the global differentiation matrix L.

2.2 RBFs local differentiation matrix
The weights of local finite differences with respect to the point xi, produce a local interpolant
in a small local neighborhood of xi called a stencil denoted as Nxi. Let us define a set of
points Ω = {x1, . . . , xN} at which we want the approximation of derivatives, these points
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may be consider as stencil centers. Let xi be the ith evaluation node, then n represent the
number of nearest neighbor nodes of xi in the stencil Nxi, also define the set of points
where we want to sample data Z = {z1, . . . , zN}, the points in the stencil of size n are
collected in Zi � Z. Now the approximation for the differential operator L at the stencil
having center at xi and collected at Zi � Z is defined as

Li ¼ Kxi
LK

�1
Zi
: (14)

In fact it concerns only to the local stencil around xi, therefore we name it a local
differentiation matrix but its acts globally as it utilize the whole data of that stencil
collectively, these Li matrices have all non-zeros entries in the global sparse matrix LFD,
but further it need to fix their locations in that matrix.

The ith row of LFD
i contains non-zero entries in the matrix Li this is actually a row vector as

it has one evaluation node xi. The nodes in Zi can be used to construct Li. To arrange
correctly those points in the sparse row LFD

i we can define an incidence matrix
Pi 2 f0; 1gNxi�N . Using this, the full sparse matrix LFD is given by

LFD ¼

Kx1
L K

�1
Z1
P1

:
:
:

KxN
L K�1

ZN
PN

2
66664

3
77775: (15)

where the entries of Pi are defined as

Pi½ �k;‘ ¼ 1; if k ¼ ‘; i:e:; kth point in Zi matches the ‘th point in Z;
0; else:

�

Hence it is clear that the ith row accepts values on Zi. Finally the discretization of problem
(6)-(7) is stated as

�u ¼ Mu; (16)

where M ¼ LFD

BFD

� �
; in which BFD rep resent the discretization of operator applied at the

boundary and can be found accordingly as LFD. To evolve the ODE system (16) in time
any ODE solver like ode23, ose45, ode113 and many other from Matlab can be used.

2.3 Stability of the proposed numerical scheme
In our proposed numerical scheme which is based on RBF-FD method we transformed the
time-dependent partial differential equation into an ODEs system in time. This type of
technique is called the method of lines by which we can solve this system of coupled
ODEs using the finite difference method in time for example Runge-Kutta methods, etc.
The method of lines stability may be estimated by the well known rule of thumb. It is
shown in the work [Trefethen (2000)], that the method of lines will be stable, when the
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eigenvalues of spatial discretization operator, linearized and scaled by step size δt, lie in
region of stability of the corresponding time-discretization operator.

In the present RBF-FD method, the region of stability is a part of the complex plane
containing those eigenvalues, where the technique produces a bounded solution.
The RBF-FD meshless method of lines numerical scheme is defined in Eq. (16).
We used the above criteria of satiability for our numerical scheme. It is shown that
the current RBF-FD (localized) numerical scheme is unconditionally stable for
all values of RBFs shape parameter and small step size δt, when solving the
proposed model equations.

3 Application of the proposed numerical scheme for dispersive wave equations

First we test the RBF-FD numerical scheme to the KdVequation with known exact solution,
and then apply to the model equations given in (1)-(5).

ut þ buux þ cuxxx ¼ 0; x 2 ½a; b�; t > 0; (17)

uðx; tÞ ¼
c sec h2ð

ffiffiffi
c

p
2

ðx� ctÞ � 7Þ
2

: (18)

We used the initial solution u0 as well as the boundary conditions from the analytic
solution given in Eq. (18). The problem in Eq. (17) is solved over the spatial domain
[0,40], where as the time domain [0,5] and the parameters β=6, c=0.50 and γ=1. The
accuracy and efficiency of the present scheme is verified in terms of the L∞ and L2
error norms defined by

L1 ¼ kuex � uapk1 ¼ maxjuex � uapj (19)

L2 ¼ kuex � uapk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
XN
i¼1

ðuex � uapÞ2
vuut (20)

The results of RBF-FD method are compared with methods in literature and it is observed
that the applied RBF-FD method is very beneficial with respect to computational time and
also in terms of accuracy and convergence rate as evident from Tab. 1 and Fig. 1
respectively. The numerical stability of the proposed numerical scheme for problem
(17) in the graphical form is shown in Fig. 1. It is evident that all the eigenvalues of
the differentiation matrix are well kept in stability region of RK4 method. We also
observed that the present numerical scheme is unconditionally stable for a large range
of RBFs shape parameters and small step size δt. This is mainly due to the local and
sparse nature of small size system matrices defined over the small local sub-domains
called stencils.
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Table 1: Comparison of RBF-FDmethod with other methods, when c=0.50, δt=0.001, β=6,
γ=1, CMQ=1.2, x∈[0, 40], N=200, Nx=25, t∈[0, 5], corresponding to (17)

Method t L∞ L2 C. time

[Uddin, Shah and Ali (2015)] 1 1.2800e-006 5.2490e-006 5.320

2 1.9340e-006 6.5130e-006 9.860

3 2.3540e-006 7.9050e-006 14.570

4 2.9030e-006 9.9260e-006 19.080

5 3.8880e-006 1.3020e-005 24.280

[Shen (2009)] 1 1.804e-005 6.236e-005 14.00

2 3.037e-005 1.126e-004 20.00

3 4.008e-005 1.553e-004 25.00

4 4.834e-005 1.940e-004 30.00

5 5.609e-005 2.294e-004 36.00

RBF-FD(MQ) method 1 8.468e-005 4.803e-004 0.33

2 1.538e-004 9.336e-004 0.61

3 2.207e-004 1.347e-003 0.85

4 2.692e-004 1.712e-003 1.10

5 3.119e-004 2.032e-003 1.36

Figure 1: Solitary wave: Stable eigenvalue spectrum, c=0.50, δt=0.001, β=6, γ=1,
CMQ=1.2, x∈[0, 40], N=200, Nx=25, t∈[0, 5]
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4 Eventual periodicity of some dispersive wave equations

In this section we applied the RBF-FD method to study numerically the eventual periodicity
of the BBM and KdVequations. We also study some other modified form by assemble two
different kind of dissipation in these equations (see (1)-(5)). For a suitable boundary data g,
we established the eventual periodicity in which the initial data u0 is not absolutely
necessary, hence we set it to zero simply. The eventual periodicity is studied numerically
using the RBF-FD method solutions in graphical form. Since any solution u(x,t) of these
IBVPs converges to 0 as x ! 1. We estimate the solutions of the following scaled
problems studied by Shen et al. in [Shen, Wu and Yuan (2007)].

ut þ aux þ buux � luxxt ¼ 0; x 2 ½�1; 1�; t 2 ½0; T �;
uð0; tÞ ¼ gðtÞ;
uð1; tÞ ¼ uxð1; tÞ ¼ 0; t 2 ½0;T �;
uðx; 0Þ ¼ u0ðxÞ; x 2 ½�1; 1�;

8>><
>>:

(21)

and

ut þ aux þ buux � luxxt � duxx ¼ 0; x 2 ½�1; 1�; t 2 ½0; T �;
uð0; tÞ ¼ gðtÞ;
uð1; tÞ ¼ uxð1; tÞ ¼ 0; t 2 ½0;T �;
uðx; 0Þ ¼ u0ðxÞ; x 2 ½�1; 1�;

8>><
>>:

(22)

similarly

ut þ aux þ buux � luxxx ¼ 0; x 2 ½�1; 1�; t 2 ½0;T �;
uð0; tÞ ¼ gðtÞ;
uð1; tÞ ¼ uxð1; tÞ ¼ 0; t 2 ½0; T �;
uðx; 0Þ ¼ u0ðxÞ; x 2 ½�1; 1�;

8>><
>>:

(23)

and

ut þ aux þ buux � luxxx � duxx ¼ 0; x 2 ½�1; 1�; t 2 ½0;T �;
uð0; tÞ ¼ gðtÞ;
uð1; tÞ ¼ uxð1; tÞ ¼ 0; t 2 ½0;T �;
uðx; 0Þ ¼ u0ðxÞ; x 2 ½�1; 1�;

8>><
>>:

(24)

and also

ut þ cuþ aux þ buux � luxxx ¼ 0; x 2 ½�1; 1�; t 2 ½0; T �;
uð0; tÞ ¼ gðtÞ;
uð1; tÞ ¼ uxð1; tÞ ¼ 0; t 2 ½0;T �;
uðx; 0Þ ¼ u0ðxÞ; x 2 ½�1; 1�;

8>><
>>:

(25)

where γ, α, β, μ and δ are parameters and g(t)=sin(20πt) tanh(5t). For u0 ≡ 0, Eqs. (21)-(25)
are valid approximations of Eqs. (1)-(5) respectively, till the instant when the wave-front

804 CMES, vol.123, no.2, pp.797-819, 2020



generated by the boundary data g (periodic function of period T>0) arrives the right
boundary point x=1.

4.1 Eventual periodicity for Linearized BBM equation
The RBF-FD method is used for the numerical solutions of model Eq. (21) over the spatial
domain [-1,1], and in a time domain [0,1.8]. In all of our computations we use multiquadric
radial basis function defined by fðr;CÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2 þ r2
p

, contains a shape parameter C. The
solution accuracy mainly depends on this shape parameter C. But in this particular local
setting it does not much effect the solution as the localized RBF-FD method is stable for
a large range of shape parameters C. For the linearized BBM equation a first set of our
experiments with parameters α=1.0, β=0 and μ=10-6. The amplitudes u(x,t) recorded in
the six graphs shown in Fig. 2 at particular points x=-0.950670, -0.808460, -0.587280,
-0.308720, 0 and 0.999650 in the domain [-1,1]. Here N denote total points in the
domain, while Nx denote the points in local sub-domain respectively. The horizontal and
vertical axes stand for the time t and amplitude u respectively in these graphs. Initially
the boundary data are not exactly periodic but after some time it becomes eventually
periodic. In each problem the last graph at x=0.999650 shows the amplitude remain zero.

4.2 Eventual periodicity for Linear BBM-Burgers equation
We compute the solutions of (22) by RBF-FD method, for a linear BBM-Burgers equation
with parameters α=1.0, β=0, μ=10−6 and δ=10-5. The amplitudes u(x,t) of the model is
recorded in the six graphs in Fig. 3 at particular points x=-0.950670, -0.808460,
-0.587280, -0.308720, 0 and 0.999650 in the spatial domain [-1,1] for the time [0,1.8].
The plots in the figures clearly validate the eventual periodic behavior of the solution at
these particular positions in the given domain. The effect of the Burgers type dissipation
is observed in the damped amplitude.

4.3 Eventual periodicity for non-linear BBM equation
Here in this problem the solution of the model Eq. (21) is obtained by RBF-FD method. In
our experiment we used the parameters α=1.0, β=0.05 and μ=10-6. We detect the form of
eventual periodicity in u(x,t) see Fig. 4 at all selected positions, and noticed the effect of
the nonlinear term which increase the amplitude as compare to the plots with ones for the
linearized BBM equation.

4.4 Eventual periodicity for nonlinear BBM-Burgers equation
We solved the model Eq. (22) by RBF-FD method as a fourth set of our experiments with
parameters α=1.0, β=0.05, μ=10-6 and δ=10-5. Again we discovered the design of eventual
periodicity in u(x,t) at all selected positions, see Fig. 5, and the effect of Burgers type
dissipation in the damped amplitude.
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Figure 2: Eventual periodicity for linearized BBM equation: u(x,t) at x=-0.950670,
-0.808460, -0.587280, -0.308720, 0 and 0.999650 are shown through above six graphs
respectively. For α=1, β=0, μ=10−6, x∈[-1, 1], CMQ=0.001, N=200, Nx=25, tmax=1.8,
δt=0.001, g(t)=sin(20πt) tanh(5t)
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Figure 3: Eventual periodicity for linear BBM-Burgers equation: u(x,t) at x=-0.950670,
-0.808460, -0.587280, -0.308720, 0 and 0.999650 are shown through above six graphs
respectively. For α=1, β=0, μ=10-6, δ=10-5, CMQ=0.001, x∈[-1, 1], N=200, Nx=25,
tmax=1.8, δt=0.001, g(t)=sin(20πt) tanh(5t)
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Figure 4: Eventual periodicity for non-linear BBM equation: u(x,t) at x=-0.950670,
-0.808460, -0.587280, -0.308720, 0 and 0.999650 are shown through above six graphs
respectively. For α=1, β=0.05, μ=10-6, x∈[-1, 1], CMQ=0.001, N=200, Nx=25, tmax=1.8,
δt=0.001, g(t)=sin(20πt) tanh(5t)
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5 Eventual periodicity for KdV equation

In this section, we obtained the solutions of model Eqs. (23)-(25), namely KdV type
equations, using RBF-FD method. The six graphs in each experiments recorded the
amplitudes u(x,t) at the particular points x=-0.950670, -0.808460, -0.587280, -0.308720,
0 and 0.999650 in the given domain, and over the time interval 0<t<1.8. The horizontal
and vertical axes represents the time t and amplitude u respectively in these graphs.
Initially the boundary data are not exactly periodic but after some time become
eventually periodic. In each problem the last graph at x=0.999650 shows the amplitude
remains zero.

5.1 Eventual periodicity for linearized KdV equation
We consider the model Eq. (23) and solved it by RBF-FD method with parameters α=1.0,
β=0 and μ=10-5, Fig. 6 clearly validate the eventual periodicity of the solutions at all selected
positions.

5.2 Eventual periodicity for linear KdV-Burgers equation
We consider the model Eq. (24) with parameters α=1.0, β=0, μ=10-5 and δ=10-4, and solved
by RBF-FD method to study the eventual periodicity for the linearized KdV-Burgers
equation as shown in Fig. 7 and observe the effect of Burgers type dissipation on the
damped amplitude.

5.3 Eventual periodicity for non-Linear KdV equation
Here the model Eq. (23) is solved by RBF-FD method with parameters α=1.0, β=0.05
and μ=10-5, We computed the eventual periodicity for the non-Linear KdV equation,
see for example Fig. 8. By comparing these plots with ones for the linearized
KdV equation the effects of the nonlinear term as a significant increase in amplitude
is observed.

5.4 Eventual periodicity for KdV-Burgers equation
As fourth set of experiments, we consider the model Eq. (24) with parameters α=1.0,
β=0.05, μ=10-5 and δ=10-4, we compute the eventual periodicity for the KdV-Burgers
equation, using RBF-FD method and the results are shown in Fig. 9. It is observed that
the effect of Burgers type dissipation on the damped amplitude is evident.

Finally to realize the effects on the eventual periodicity of the damping term η u for a general
boundary data, we consider the model Eq. (25) with parameters η=4.5, α=1.0, β=0.05 and
μ=10-4. We noticed that the pattern of eventual periodicity is still remained but the
amplitudes are significantly damped, see Fig. 10.
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Figure 5: Eventual periodicity for nonlinear BBM-Burgers equation: u(x,t) at x=-0.950670,
-0.808460, -0.587280, -0.308720, 0 and 0.999650 are shown through above six graphs
respectively. For α=1, β=0.05, μ=10-6, δ=10-5, x∈[-1, 1], CMQ=0.001, N=200, Nx=25,
tmax=1.8, δt=0.001, g(t)=sin(20π t) tanh(5t)
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Figure 6: Eventual periodicity for linearized KdV equation: u(x,t) at x=-0.950670,
-0.808460, -0.587280, -0.308720, 0 and 0.999650 are shown through above six graphs
respectively. For α=1, β=0, μ=10-5, x∈[-1, 1], CMQ=0.001, N=200, Nx=25, tmax=1.8,
δt=0.001, g(t)=sin(20πt) tanh(5t)
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Figure 7: Eventual periodicity for linear KdV-Burgers equation: u(x,t) at x=-0.950670,
-0.808460, -0.587280, -0.308720, 0 and 0.999650 are shown through above six graphs
respectively. For α=1, β=0, μ=10-5 and δ=10-4, x∈[-1, 1], CMQ=0.001, N=200, Nx=25,
tmax=1.8, δt=0.001, g(t)=sin(20π t) tanh(5t)
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Figure 8: Eventual periodicity for non-linear KdV equation: u(x,t) at x=-0.950670,
-0.808460, -0.587280, -0.308720, 0 and 0.999650 are shown through above six graphs
respectively. For α=1, β=0.05, μ=10-5, x∈[-1, 1], CMQ=0.001, N=200, Nx=25, tmax=1.8,
δt=0.001, g(t)=sin(20πt) tanh(5t)
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Figure 9: Eventual periodicity for KdV-Burgers equation: u(x,t) at x=-0.950670,
-0.808460, -0.587280, -0.308720, 0 and 0.999650 are shown through above six graphs
respectively. For α=1, β=0.05, μ=10-5, δ=10-4 x∈[-1, 1], CMQ=0.001, N=200, Nx=25,
tmax=1.8, δt=0.001, g(t)=sin(20πt) tanh(5t)
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Figure 10: u(x,t) at x=-0.950670, -0.808460, -0.587280, -0.308720, 0 and 0.999650 are
shown through above six graphs respectively. For η=4.5, α=1, β=0.05, μ=10-4, x∈[-1, 1],
t∈[0, 3], CMQ=0.001, N=200, Nx=25, tmax=3, δt=0.001, g(t)=sin(20πt) tanh(5t)
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6 Concluding remarks

In the present work, the RBF-FD method is implemented to investigate numerically the
eventual periodicity of solutions to the initial and boundary value problems (IBVPs) for
some dispersive wave equations like Benjamin-Bona-Mahony and the Korteweg-de Vries
on a bounded domain. We combined the localized RBF-FD numerical scheme with RK4
time integration scheme. The proposed numerical scheme is assessed for accuracy and
efficiency by solving the KdV equation with a known analytic solution. Also the stability
of the proposed numerical scheme is discussed and validated for KdV equation. The
main benefit and important advantage of this RBF-FD scheme over other methods is its
local and sparse nature of differentiation matrices, stability and higher order convergence
rate and low computational cost. It is also applicable to other type of integral and non
integral order PDEs.
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