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MHD Flow and Nonlinear Thermal Radiative Heat Transfer of 
Dusty Prandtl Fluid over a Stretching Sheet  

 
K. Ganesh Kumar1, *, S. Manjunatha2 and N. G. Rudraswamy3 

 
 
Abstract: Boundary layer flows and melting heat transfer of a Prandtl fluid over a 
stretching surface in the presence of fluid particle suspensions has been investigated. The 
converted set of boundary layer equations are solved numerically by RKF-45 method. 
Obtained numerical results for flow and heat transfer characteristics are deliberated for 
various physical parameters. Furthermore, the skin friction coefficient and Nusselt 
number are also presented in Tabs. 2 and 3. It is found that the heat transfer rates are 
advanced in occurrence of nonlinear radiation compered to linear radiation. Also, it is 
noticed that velocity and temperature profile increases by increasing Prandtl parameter.  
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Nomenclature 
𝐵𝐵02 magnetic field 𝑞𝑞𝑤𝑤 heat flux at the surface 

𝑏𝑏 stretching rate 𝑞𝑞𝑟𝑟 radiative heat flux (𝑊𝑊𝑚𝑚−2 ) 

𝑐𝑐𝑝𝑝 
𝑐𝑐𝑚𝑚 

fluid phase specific heat coefficient 
(𝐽𝐽/𝑘𝑘𝑘𝑘𝑘𝑘) 
dust phase specific heat coefficient 
(𝐽𝐽/𝑘𝑘𝑘𝑘𝑘𝑘) 

𝑅𝑅 
𝑟𝑟 

radiation parameter 
radius of dust particles 

𝐶𝐶𝑓𝑓 
𝐸𝐸𝑐𝑐 

skin friction coefficient 
Eckert number 

𝑅𝑅𝑒𝑒𝑥𝑥 
𝑆𝑆ℎ𝑥𝑥 

local Reynolds number 
Sherwood number 

𝑓𝑓 dimensionless velocity of the fluid phase 𝑇𝑇 temperature of the fluid phase (𝑘𝑘) 

𝐹𝐹 
𝑘𝑘 
𝑘𝑘 

dimensionless velocity of the dust phase 
Stokes drag constant 
thermal conductivity (𝑊𝑊/𝑚𝑚 𝑘𝑘) 

𝑇𝑇𝑝𝑝 
𝑇𝑇𝑚𝑚 
𝑇𝑇∞ 

temperature of the dust phase (𝑘𝑘) 
temperature of the melting surface (𝑘𝑘) 
ambient fluid temperature (𝑘𝑘) 

𝑘𝑘∗ 
𝑙𝑙 

mean absorption coefficient (𝑊𝑊/𝑚𝑚 𝑘𝑘) 
mass concentration of dust particles 
parameter 

𝑢𝑢𝑤𝑤 
𝑢𝑢,𝑢𝑢𝑝𝑝 

stretching sheet velocity ( 𝑚𝑚 𝑠𝑠−1) 
velocity components of fluid phase (𝑚𝑚 𝑠𝑠−1) 
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𝑀𝑀 
𝑚𝑚∗ 

magnetic parameter 
mass of dust particles 

𝑣𝑣, 𝑣𝑣𝑝𝑝 
 

velocity components of dust phase  
(𝑚𝑚 𝑠𝑠−1) 

𝑚𝑚 
𝑁𝑁 
𝑁𝑁𝑢𝑢𝑥𝑥 
𝑃𝑃𝑟𝑟 

𝑐𝑐𝑠𝑠(𝑇𝑇𝑚𝑚 −
𝜆𝜆  

dimensionless melting parameter 
dust particles number density 
local Nusselt number 
Prandtl number 
Stefan number for the solid phases 

𝐴𝐴 and 𝑐𝑐 
𝑥𝑥 
𝑦𝑦 

𝑐𝑐𝑓𝑓(𝑇𝑇∞ − 𝑇𝑇𝑚𝑚)
𝜆𝜆  

material constants  
coordinate along the plate (𝑚𝑚) 
coordinate normal to the plate (𝑚𝑚) 
Stefan number for the liquid phase 

 Greek symbols    

𝛽𝛽𝑣𝑣 fluid-particle interaction parameter for 
velocity 

𝜏𝜏𝑤𝑤 
𝜏𝜏𝑣𝑣 

surface shear stress 
dust particles relaxation time 

𝛼𝛼 Prandtl parameter 𝛽𝛽 elastic parameter 

𝛽𝛽𝑡𝑡 fluid-particle interaction parameter  𝛾𝛾 specific heat ratio 

𝜇𝜇 temperature dynamic viscosity 
(𝑘𝑘𝑘𝑘 𝑚𝑚−1𝑠𝑠−1) 

𝜌𝜌 base fluid density (𝑘𝑘𝑘𝑘/𝑚𝑚3 ) 

𝜈𝜈 kinematic viscosity (𝑚𝑚2𝑠𝑠−1) 𝜌𝜌𝑝𝑝 dust particles density (𝑘𝑘𝑘𝑘/𝑚𝑚3) 

𝜎𝜎 electrical conductivity of the fluid Γ the time constant 

𝜎𝜎∗ Stefan-Boltzmann constant (𝑊𝑊 𝑚𝑚−2𝑘𝑘−4)  Superscript: 

𝜃𝜃 dimensional fluid phase temperature  ′ derivative with respect to 𝜂𝜂 

𝜃𝜃𝑝𝑝 dimensional dust phase temperature  Subscript: 

𝜂𝜂 similarity variable 𝑝𝑝 particle phase 

𝜏𝜏𝑇𝑇 thermal equilibrium time ∞ fluid properties at ambient condition. 

1 Introduction 
Suspended particles in a clean fluid represented by a mathematical two-phase model find 
numerous technological applications during the electrostatic precipitation, fluidization, 
combustion, centrifugal separation of matter from fluid, nuclear processing, polymer 
technology, physiological flows, purification of crude oil, nuclear reactor cooling, 
performance of solid fuel rocket nozzles and paint spraying etc. Saffman [Saffman (1962)] 
analyzed the flow of a dusty gas in which the fluid suspension particles are uniformly 
distributed. Further, Siddiqa et al. [Siddiqa, Hossain and Saha (2015)] analyzed the natural 
convection flow of a dusty fluid, and they have interpreted for wide range of Prandtl 
number: it is observed that thin boundary layer structures can be formed when there is an 
effect of mass concentration parameter or Prandtl number. Prakash et al. [Prakash, 
Makinde, Kumar et al. (2015)] studied the heat transfer to MHD oscillatory dusty fluid flow 
in a channel filled with a porous medium, and they conclude that the dusty fluid 
temperature enhances while the Nusselt number minimizes with increasing values of 
radiation parameter. Mustafa [Mustafa (2017)] investigated the two-phase dusty fluid flow 
and heat model over deforming isothermal surfaces. Isa et al. [Isa and Mohammad (2017)] 
discussed the boundary layer flow of dusty fluid on a stretching sheet of another quiescent 
fluid and found that an uplifting value of fluid particle interaction parameter contributes to 
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enhance the velocity of dust phase, but scale back the velocity of fluid phase. A number of 
analysis to the heat transfer over a suspended particle under different physical conditions 
were intensely made in recent years [Krishnamurthy, Kumar, Gireesha et al. (2018); Reddy, 
Rani, Kumar et al. (2018); Kumar, Manjunatha, Gireesha et al. (2017); Kumar, 
Rudraswamy, Gireesha et al. (2017); Kumar, Gireesha and Gorla (2018)]. 
Now a days, the studies of fluid flow through a melting heat transfer are extensively 
indulged among mathematicians, engineers, physicians, scientists and medical practitioners. 
There are many diverse applications including the casting, welding and magma 
solidification, permafrost melting and softening of frozen ground etc. Bachok et al. 
[Bachok, Ishak and Pop (2010)] discussed the steady two-dimensional stagnation-point 
flow and heat transfer of a melting stretching/shrinking sheet. Makinde et al. [Makinde, 
Kumar, Manjunatha et al. (2017)] discussed an effect of nonlinear thermal radiation on 
MHD boundary layer flow and melting heat transfer of micro-polar fluid over a stretching 
surface. Mabood et al. [Mabood, Shafiq, Hayat et al. (2017)] presented the radiation effects 
on stagnation point flow with melting heat transfer and second order slip, and they 
concluded that the temperature profile decreases for larger values of melting parameter, and 
it has quite opposite behavior for concentration profile. Kumar et al. [Kumar, Gireesha, 
Prasannakumara et al. (2017)] initiated the phenomenon of radiation and viscous 
dissipation on Casson nanoliquid flow past a moving melting surface. Gireesha et al. 
[Gireesha, Kumar, Rudraswamy et al. (2017)] studied the melting heat transfer of 
hyperbolic tangent fluid over a stretching sheet with fluid particle suspension and thermal 
radiation. Arici et al. [Arici, Ensar, Kan et al. (2017)] discussed the melting of nanoparticle-
enhanced paraffin wax in a rectangular enclosure with partially active walls. Mohsen et al. 
[Mohsen and Sadoughi (2018)] analyzed the simulation of 𝐶𝐶𝑢𝑢𝐶𝐶 -water nanofluid heat 
transfer enhancement in presence of melting surface. 
The linearized form of the Rosseland approximation is valid only when the temperature 
difference between the solid boundary and the ambient fluid is low. But, nonlinear 
Rosseland radiation approximation is valid for low and high temperature difference 
between the wall and the bulk fluid. Furthermore, the temperature profile is S-shaped in a 
case of nonlinear Rosseland approximation as compared to a linear approximation. In 
view of this advantage, various researcher published papers about heat transfer over a 
nonlinear thermal radiation. Makinde et al. [Makinde and Animasaun (2016)] discussed 
the thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid 
with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal 
surface of a paraboloid of revolution. Hayat et al. [Hayat, Qayyum, Imtiaz et al. (2016)] 
presented the comparative study of silver and copper/water nanofluids with mixed 
convection and nonlinear thermal radiation. Afridi et al. [Afridi and Qasim (2018)] 
investigated the entropy generation and heat transfer in boundary layer flow over a thin 
needle moving in a parallel stream in the presence of nonlinear Rosseland radiation. 
Kumar et al. [Kumar, Archana, Gireesha et al. (2018)] discussed the cross diffusion effect 
on MHD mixed convection flow of nonlinear radiative heat and mass transfer of Casson 
fluid over a vertical plate. Gireesha et al. [Gireesha, Ramesh, Kumar et al. (2018)] 
studied the nonlinear convective heat and mass transfer of Oldroyd-B nanofluid over a 
stretching sheet in the presence of uniform heat source/sink. 
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The study of non-Newtonian fluids is one of the thrust areas of contemporary research 
because of their colossal potential regarding improved heat transfer. For example, food 
mixing, flow of blood, plasma, mercury amalgams and lubrications with heavy oils and 
greases. In view of these applications, many studies are focused on non-Newtonian fluids. 
Akbar et al. [Akbar, Nadeem, Haq et al. (2013)] discuss the Numerical solutions of Magneto 
hydrodynamic boundary layer flow of tangent hyperbolic fluid flow towards a stretching 
sheet with magnetic field. Nasrin et al. [Nasrin and Alim (2012)] analyzed the Prandtl 
number effect on free convective flow in a solar collector utilizing nanofluid. Nadeem et al. 
[Nadeem, Ijaz and Akbar (2013)] studied the nanoparticle analysis for blood flow of Prandtl 
fluid model with stenosis. Rehena et al. [Rehena, Salma and Alim (2016)] initiated the 
Prandtl number effect on assisted convective heat transfer through a solar collector. A few 
recent attempts in this direction can be stated through studies, Mishra et al. [Mishra, Khan, 
Al-mdallal et al. (2015); Shamshuddin, Beg, Ram et al. (2017); Khan, Malik, Hussain et al. 
(2017); Hussain, Malik, Awais et al. (2017); Malik, Hussain, Salahuddin et al. (2016); Beg, 
Thumma and Kadir (2017); Thumma and Shamshudin (2018)]. 
In view of the above the investigations, it is worth noticing that little attention has been 
given to investigate the motion of melting heat transfer and nonlinear thermal radiation 
effect on flow and heat transfer of Non Newtonian fluids. In the present study, we intend 
to analyze the boundary layer flow and melting heat transfer of a Prandtl fluid over a 
stretching surface in the presence of fluid particles suspension. The governing systems of 
partial differential equations have been transformed to a set of coupled ordinary 
differential equations by applying appropriate similarity transformations. The reduced 
equations are solved numerically. The pertinent parameters are discussed through tables 
and plotted graphs.  

2 Mathematical formulation 
Steady flow of an incompressible Prandtl fluid with suspended dust particles over a 
stretching sheet is considered. The flow is assumed to be confined to a region of 𝑦𝑦 > 0. 
The flow is generated by action of two equal and opposite forces along the 𝑥𝑥-axis and𝑦𝑦-
axis being normal to the flow. A uniform magnetic field 𝐵𝐵0 is imposed along 𝑦𝑦-axis, and 
sheet is being stretched with velocity 𝑢𝑢𝑤𝑤(𝑥𝑥) along 𝑥𝑥-axis. Let 𝑇𝑇𝑚𝑚 be the temperature of the 
melting surface while the temperature in the free-stream condition is 𝑇𝑇∞, where 𝑇𝑇∞ > 𝑇𝑇𝑚𝑚. 
The governing equations of motion of dusty fluid with uniform distribution of fluid and 
dust particles are: 
For fluid phase: 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

+ ∇. (𝜌𝜌𝑢𝑢�⃗ ) = 0,                (2a) 

𝜌𝜌�(𝑢𝑢�⃗ .∇)𝑢𝑢�⃗ � = 𝑣𝑣 A
c
∇2𝑢𝑢�⃗ + νA

2c3
(∇𝑢𝑢)2 + 𝑘𝑘𝑁𝑁(�⃗�𝑣 − 𝑢𝑢�⃗ ) + 𝜎𝜎𝐵𝐵02𝛻𝛻𝑢𝑢�⃗ ,                                   (2b) 

𝜌𝜌𝐶𝐶𝑝𝑝�(𝑢𝑢�⃗ .∇)𝐸𝐸� = 𝑄𝑄 + (�⃗�𝑣 − 𝑢𝑢�⃗ ). �⃗�𝐹 + 𝑘𝑘∇. (∇𝑇𝑇)− 𝛻𝛻𝑞𝑞𝑟𝑟,            (2c) 
For dust phase: 
∇. (𝑁𝑁�⃗�𝑣) = 0                                        (2d) 
𝜌𝜌𝑝𝑝�(�⃗�𝑣.∇)�⃗�𝑣� = �⃗�𝑘 + 𝑘𝑘𝑁𝑁(𝑢𝑢�⃗  − �⃗�𝑣 )                   (2e) 
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where 𝑢𝑢�⃗  and �⃗�𝑣 are the velocity for the fluid and dust phase respectively, 𝑄𝑄 = 𝜕𝜕𝑝𝑝𝐶𝐶𝑝𝑝�𝑇𝑇𝑝𝑝−𝑇𝑇�
𝜏𝜏𝑇𝑇

   

is the thermal interaction between fluid and dust particles phase, 𝐹𝐹 = (𝑣𝑣�⃗ −𝑢𝑢��⃗ )
𝜏𝜏𝑣𝑣

 is the velocity 

of interaction force between the fluid and dust, 𝜏𝜏𝑣𝑣 = 𝑚𝑚
6𝜋𝜋𝜋𝜋𝜋𝜋

= 𝑚𝑚
𝐾𝐾

 is the velocity relaxation 

time of dust particles, 𝜏𝜏𝑣𝑣 = 𝑚𝑚𝐶𝐶𝑝𝑝
4𝜋𝜋𝜋𝜋𝜋𝜋

 is the thermal relaxation time of the dust particles, 
𝑘𝑘∇. (∇𝑇𝑇) is the rate of heat added to the fluid by conduction in unit volume. 𝜌𝜌,𝑝𝑝, 𝜈𝜈,𝑇𝑇,𝐶𝐶𝑝𝑝 
and 𝑘𝑘 are density, pressure, kinematic viscosity, temperature, specific heat and thermal 
conductivity of the fluid respectively.  𝜌𝜌𝑝𝑝 = 𝑚𝑚𝑁𝑁 is density of dust particle. 𝑁𝑁,𝑇𝑇𝑝𝑝, 𝑐𝑐𝑚𝑚 and 
𝑚𝑚 are number density, temperature, specific heat and mass concentration respectively.  

 
Figure 1: Flow configuration and coordinate system 

Under the boundary layer approximations, the governing Eqs. 2(a), 2(b), 2(d) and 2(e) 
take the following forms, 
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

=  0,               (2.1) 

u ∂u
∂x

+ v ∂u
∂y

= ν A
c
∂2u
∂y2 + νA

2c3
�∂u
∂y
�
2 ∂2u
∂y2

+ KN
ρ
�up– u�– σB02

ρ
u,                                           (2.2) 

∂up
∂x

+ ∂vp
∂y

= 0,                          (2.3) 

ρp �up
∂up
∂x

+ vp 
∂up
∂y
� = K N �u– up�,            (2.4) 

The appropriate boundary conditions applicable to the present problem are: 
u = uw,    at   y = 0,  
u → 0,    up → 0, vp → v as y → ∞,                                                                              (2.5) 
Eqs. (2.1)-(2.4) subjected to boundary conditions Eq. (2.5) admits self-similar solution in 
terms of the similarity functions 𝑓𝑓,𝐹𝐹 and similarity variable 𝜂𝜂,  and they are defined as: 

𝑢𝑢 =  𝑏𝑏𝑥𝑥𝑓𝑓′(𝜂𝜂),        𝑣𝑣 = −√𝑣𝑣𝑏𝑏𝑓𝑓(𝜂𝜂),      𝜂𝜂 = �𝑏𝑏
𝑣𝑣
𝑦𝑦,     

𝑢𝑢𝑝𝑝 =  𝑏𝑏𝑥𝑥𝐹𝐹′(𝜂𝜂),    𝑣𝑣𝑝𝑝 = −√𝑣𝑣𝑏𝑏𝐹𝐹(𝜂𝜂),                                                             (2.6) 
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the Eqs. (2.1) and (2.3) are identically satisfied in terms of relations Eq. (2.6). In addition, 
Eqs. (2.2) and (2.4) are reduced to following set of non-linear ordinary differential 
equations; 
𝛼𝛼𝑓𝑓′′′(𝜂𝜂)– [𝑓𝑓′(𝜂𝜂)]2  +  𝑓𝑓′′(𝜂𝜂)𝑓𝑓(𝜂𝜂) + 𝛽𝛽𝑓𝑓′′2(𝜂𝜂)𝑓𝑓′′′(𝜂𝜂)  + 𝑙𝑙 𝛽𝛽𝑣𝑣[𝐹𝐹′(𝜂𝜂) − 𝑓𝑓′(𝜂𝜂)]–𝑀𝑀𝑓𝑓′(𝜂𝜂) =
0,                                                                                                                                                       (2.7)     
𝐹𝐹 (𝜂𝜂) 𝐹𝐹′′ (𝜂𝜂) – [ 𝐹𝐹 ′(𝜂𝜂)]2  + 𝛽𝛽𝑣𝑣  [ 𝑓𝑓 ′(𝜂𝜂)  −  𝐹𝐹 ′(𝜂𝜂) ]  = 0.                      (2.8) 
Transformed boundary conditions are; 
𝑓𝑓′(𝜂𝜂) = 1,   at 𝜂𝜂 = 0,         
𝑓𝑓′(𝜂𝜂) → 0     𝐹𝐹′(𝜂𝜂)  →  0,    𝐹𝐹 (𝜂𝜂)  → 𝑓𝑓(𝜂𝜂) as  𝜂𝜂 → ∞,                              (2.9) 
where 

 𝛼𝛼 = 1
𝜋𝜋𝜇𝜇𝜇𝜇

β , = 𝑏𝑏𝑢𝑢𝑤𝑤2

2𝜇𝜇2𝜈𝜈
 , 𝑙𝑙 =  𝑁𝑁𝑚𝑚

∗

𝜕𝜕
, 𝑀𝑀 = 𝜎𝜎𝐵𝐵𝑜𝑜2

𝜕𝜕𝑏𝑏
, 𝜏𝜏𝑣𝑣 = 𝑚𝑚∗

𝐾𝐾
 and 𝛽𝛽𝑣𝑣 = 1

𝑏𝑏𝜏𝜏𝑣𝑣
. 

3 Heat transfer analysis 
The governing boundary layer heat transport equations for both fluid and dust phases are 
given by; 

𝐶𝐶𝑝𝑝𝜌𝜌 �𝑢𝑢
 𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥

+ 𝑣𝑣 𝜕𝜕𝑇𝑇 
𝜕𝜕𝜕𝜕
�  =  𝑘𝑘 𝜕𝜕

2𝑇𝑇
𝜕𝜕𝜕𝜕2

 + 
𝜕𝜕𝑝𝑝𝐶𝐶𝑝𝑝
𝜏𝜏𝑇𝑇

�𝑇𝑇𝑝𝑝 –  𝑇𝑇� +  𝜕𝜕𝑝𝑝 

𝜏𝜏𝑣𝑣
�𝑢𝑢𝑝𝑝–𝑢𝑢 �2 −  𝜕𝜕𝜕𝜕𝑟𝑟

𝜕𝜕𝜕𝜕
,                     (3.1)    

𝑢𝑢𝑝𝑝
𝜕𝜕𝑇𝑇𝑝𝑝
𝜕𝜕𝑥𝑥

+ 𝑣𝑣𝑝𝑝
𝜕𝜕𝑇𝑇𝑝𝑝
𝜕𝜕𝜕𝜕

=  − 𝐶𝐶𝑝𝑝
𝜇𝜇𝑚𝑚𝜏𝜏𝑇𝑇

�𝑇𝑇𝑝𝑝–  T�,                                                 (3.2)    

Using the Rosseland approximation for radiation, radiation heat flux is simplified as; 

𝑞𝑞𝑟𝑟 = −16𝜎𝜎∗

3𝜋𝜋∗
𝑇𝑇3 𝑑𝑑𝑇𝑇

𝑑𝑑𝜕𝜕
,                                                                                                          (3.3)    

where 𝜎𝜎∗ -the Stefan-Boltzmann constant and 𝑘𝑘∗ -mean absorption coefficient. 𝑇𝑇  is 
temperature across the boundary. 
In view of the Eq. (3.3), the energy Eq. (3.1) becomes; 

𝐶𝐶𝑝𝑝𝜌𝜌 �𝑢𝑢
𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥

+ 𝑣𝑣 𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕
� = 𝑘𝑘 �𝜕𝜕

2𝑇𝑇
𝜕𝜕𝜕𝜕2

� + 16𝜎𝜎∗

3𝜋𝜋∗
�𝑇𝑇3 𝜕𝜕

2𝑇𝑇 
𝜕𝜕𝜕𝜕2

+ 3𝑇𝑇2 �𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕
�
2
�+ 𝜕𝜕𝑝𝑝𝐶𝐶𝑝𝑝

𝜏𝜏𝑇𝑇
�𝑇𝑇𝑝𝑝–  𝑇𝑇� +

 𝜕𝜕𝑝𝑝
𝜏𝜏𝑣𝑣
�𝑢𝑢𝑝𝑝–𝑢𝑢 �2,                                                                                                                  (3.4) 

Corresponding boundary conditions for the temperature are considered as; 

𝑇𝑇 = 𝑇𝑇𝑚𝑚, 𝑘𝑘 �𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕
�
𝜕𝜕→0

= 𝜌𝜌[𝐸𝐸 + 𝐶𝐶𝑠𝑠(𝑇𝑇𝑚𝑚 − 𝑇𝑇0)]𝜐𝜐(𝑥𝑥, 0)  at  𝑦𝑦 = 0, 

𝑇𝑇 → 𝑇𝑇∞,    𝑇𝑇𝑝𝑝 → 𝑇𝑇∞ as  𝑦𝑦 →  ∞,                                                                                    (3.5) 
where 𝐸𝐸 is the latent heat of the fluid, and 𝐶𝐶𝑠𝑠 is heat capacity of the solid surface. Eq. 
(3.5) states that heat conducted to melting surface is equal to heat of melting plus the 
sensible heat required raising the solid temperature 𝑇𝑇0 to its melting temperature 𝑇𝑇𝑚𝑚. 
𝑇𝑇 = 𝑇𝑇∞(1 + (𝜃𝜃𝑤𝑤 − 1)𝜃𝜃),    𝑇𝑇𝑝𝑝 = 𝑇𝑇∞(1 + (𝜃𝜃𝑤𝑤 − 1)𝜃𝜃𝑝𝑝),                                                      (3.6) 

where 𝜃𝜃𝑤𝑤 = 𝑇𝑇𝑤𝑤
𝑇𝑇∞

, 𝜃𝜃𝑤𝑤 > 1 being the temperature ratio parameter.  
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Using Eqs. (3.6) into (3.2) and (3.4), we obtain the following non-linear ordinary 
differential equations: 

𝜃𝜃′′(𝜂𝜂) + 𝑅𝑅 ��1 + (𝜃𝜃𝑤𝑤 − 1)𝜃𝜃(𝜂𝜂)�3𝜃𝜃′′(𝜂𝜂) + 3(𝜃𝜃𝑤𝑤 − 1)𝜃𝜃′2(𝜂𝜂)�1 + (𝜃𝜃𝑤𝑤 − 1)𝜃𝜃(𝜂𝜂)�2� +  

𝑃𝑃𝑟𝑟 𝜃𝜃′(𝜂𝜂)𝑓𝑓(𝜂𝜂) + 𝑙𝑙𝑃𝑃𝑟𝑟𝛽𝛽𝑡𝑡 �𝜃𝜃𝑝𝑝(𝜂𝜂) − 𝜃𝜃(𝜂𝜂)� + 𝛽𝛽𝑣𝑣𝑙𝑙 𝐸𝐸𝑐𝑐𝑃𝑃𝑟𝑟[ 𝐹𝐹 ′(𝜂𝜂) − 𝑓𝑓 ′(𝜂𝜂)] 2 = 0,             (3.7) 

𝜃𝜃𝑝𝑝′ (𝜂𝜂)𝐹𝐹 (𝜂𝜂)  − 𝛾𝛾𝛽𝛽𝑡𝑡�𝜃𝜃𝑝𝑝(𝜂𝜂) − 𝜃𝜃(𝜂𝜂)� = 0,                                                                         (3.8) 
with 
𝑃𝑃𝑟𝑟𝑓𝑓(0) + 𝑚𝑚𝜃𝜃′(0) = 0,    𝜃𝜃(𝜂𝜂) = 0  at   𝜂𝜂 = 0  
𝜃𝜃(𝜂𝜂) → 1,    𝜃𝜃𝑝𝑝(𝜂𝜂) → 1    as 𝜂𝜂 → ∞.                                                                               (3.9) 

where 𝑃𝑃𝑟𝑟 = 𝜋𝜋𝐶𝐶𝑝𝑝
𝜋𝜋

, 𝑅𝑅 = 16𝜎𝜎∗𝑇𝑇∞3

3𝜋𝜋∗𝜋𝜋
, 𝐸𝐸𝑐𝑐 = 𝑢𝑢𝑤𝑤2

𝜇𝜇𝑝𝑝(𝑇𝑇∞−𝑇𝑇𝑚𝑚)
, 𝛾𝛾 =  𝜇𝜇𝑝𝑝

𝜇𝜇𝑚𝑚
, 𝛽𝛽𝑡𝑡 = 1

𝑏𝑏𝜏𝜏𝑇𝑇
. 

𝑚𝑚 -dimensionless melting parameter which is defined as 𝑚𝑚 = 𝜇𝜇𝑓𝑓(𝑇𝑇∞−𝑇𝑇𝑚𝑚)
𝜆𝜆+𝜇𝜇𝑠𝑠(𝑇𝑇𝑚𝑚−𝑇𝑇0)

, which is a 

combination of Stefan numbers 𝜇𝜇𝑓𝑓
(𝑇𝑇∞−𝑇𝑇𝑚𝑚)

𝜆𝜆
 and 𝜇𝜇𝑠𝑠(𝑇𝑇𝑚𝑚−𝑇𝑇0)

𝜆𝜆
 for liquid and solid phases, 

respectively.  
The physical quantities of interest like skin friction coefficient �𝐶𝐶𝑓𝑓� and local Nusselt 
number (𝑁𝑁𝑢𝑢𝑥𝑥) are defined as; 
𝑐𝑐𝑓𝑓 = 𝜏𝜏𝑤𝑤

𝜕𝜕 𝑢𝑢𝑤𝑤2
     and   𝑁𝑁𝑢𝑢𝑥𝑥 = 𝑢𝑢𝑤𝑤𝜕𝜕𝑤𝑤

𝜋𝜋𝜋𝜋(𝑇𝑇∞−𝑇𝑇𝑤𝑤)    

where the shear stress (𝜏𝜏𝑤𝑤) and surface heat flux (𝑞𝑞𝑤𝑤) are given by; 

𝜏𝜏𝑤𝑤 = A
c
𝜕𝜕𝑢𝑢
𝜕𝜕y

+ 𝜇𝜇
2𝜇𝜇3

�𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕
�
3
and   𝑞𝑞𝑤𝑤 = −𝑘𝑘 𝜕𝜕𝑇𝑇

𝜕𝜕𝜕𝜕
+ 𝑞𝑞𝑟𝑟. 

Using the non-dimensional variables, one can get; 

�𝑅𝑅𝑒𝑒𝑥𝑥𝐶𝐶𝑓𝑓 = [𝛼𝛼 𝑓𝑓′′(0) + 𝛽𝛽𝑓𝑓′′(0)3] and  1
�𝑅𝑅𝑒𝑒𝑥𝑥

𝑁𝑁𝑢𝑢 = −[1 + 𝑅𝑅𝜃𝜃𝑤𝑤3 ]𝜃𝜃′(0),  

where 𝑅𝑅𝑒𝑒𝑥𝑥 = 𝑢𝑢𝑤𝑤2

𝜋𝜋𝜈𝜈
 is the local Reynold’s number. 

4 Numerical method 
The non-linear ordinary differential Eqs. (2.7)-(2.8) and (3.7)-(3.8) along with the 
boundary conditions Eqs. (2.9) and (3.9) are solved numerically using RKF-45 order 
method. In our numerical computations, the step size is chosen as 𝛥𝛥𝜂𝜂 = 0.001 and the 
convergence criteria were set to 10−6. The non-dimensional velocity and temperature 
profiles are shows in Figs. 2-17 for several values of different physical parameters. To 
validate the employed method, the authors have compared the results of 𝑓𝑓′′(0) with 
published work. These comparisons are given in Tab. 1, and it shows that the results are 
in very good agreement. 
 
 
 
 



 
 
 
138                                                                                          FDMP, vol.16, no.2, pp.131-146, 2020 

   Table 1: Comparison values of skin friction co-efficient (𝛼𝛼 = 𝛽𝛽 = 0) 

𝑀𝑀  [Akbar, Nadeem, Haq et al. 
(2013)] 

 [Fathizadeh, Madani, Khan 
et al. (2013)] 

Present result 

1 -1.41421 -1.41421 -1.41421 
5 -2.44948 -2.44948 -2.44949 
10 -3.31662 -3.31662 -3.31662 
50 -7.14142 -7.14142 -7.14143 

500 -22.3830 -22.3830 -22.38302 
1000 -31.6386 -31.6386 -31.63858 

5 Result and discussion 
The ultimate goal of this work is to initiate the study of boundary layer flow and melting 
heat transfer of a Prandtl fluid over a convective surface in the presence of fluid particles 
suspension. In this section, we focus on the physical behaviors of the involved parameters 
on the velocity and temperature profiles.  
Figs. 2 and 3 illustrate the variation of Prandtl parameter (𝛼𝛼) on velocity and temperature 
profiles. As the value of Prandtl fluid parameter rises, the velocity of the fluid in the 
boundary layer increases for both phases. This is because of the increase in the Prandtl 
fluid parameter which results in the viscosity of fluid decrease. Consequently, fluid 
becomes less viscous for higher values of Prandtl fluid parameter. From Fig. 3, we 
observed that the dimensionless temperature profile and corresponding boundary layer 
thickness increases with increase in the Prandtl parameter. 

        
Figure 2: Influence of 𝛼𝛼 on velocity field    Figure 3: Influence of 𝛼𝛼 on temperature field 

Fig. 4 elaborates the curves of velocity profile for various values of elastic parameter (𝛽𝛽).  
It is observed that an enhancement occurred in the velocity profile and momentum 
boundary layer thickness when the values of elastic parameter enhance. The importance 
of elastic parameter on temperature profile is characterized in Fig. 5. Here, we explored 
that the larger values of elastic parameter enhance the temperature profile and 
corresponding boundary layer thickness.  
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Figure 4: Influence of 𝛽𝛽 on velocity field    Figure 5: Influence of 𝛽𝛽 on temperature field 

Figs. 6 and 7 are plotted to show the variations of velocities and temperature profiles of fluid 
and dust phase for different values of magnetic parameter (𝑀𝑀). From these plots, it is 
observed that velocity and temperature profiles and their associated thicknesses of boundary 
layer reduce for the enhancement of magnetic parameter. Because resistive force tends to 
slow down the motion of the fluid along the plate, it causes decrease in its temperature. 

     
Figure 6: Influence of 𝑀𝑀 on velocity field  Figure 7: Influence of 𝑀𝑀 on temperature field 

The variation of velocity and temperature profiles for both the phases are illustrated for 
different values of mass concentration parameter (𝑙𝑙), and are shown in Figs. 8 and 9 
respectively. Here, the velocity profile for both the phases decreases by increasing values 
of mass concentration parameter and the opposite trend is observed for temperature 
profiles. Figs. 10 and 11 explain effect of 𝛽𝛽𝑣𝑣 and 𝛽𝛽𝑡𝑡 on velocity and temperature profiles, 
respectively. Increase of 𝛽𝛽𝑣𝑣 will decrease fluid phase velocity and increase dust phase 
velocity. As expected, increase of 𝛽𝛽𝑡𝑡 will increase fluid phase temperature, and decrease 
the dust phase temperature. This is because an increase in 𝛽𝛽𝑣𝑣 results the decrease of 𝜏𝜏𝑣𝑣 , 
and it is obvious that the time required by a dust particle to adjust its velocity relative to 
the fluid also decreases with decrease of 𝜏𝜏𝑣𝑣. 
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Figure 8: Influence of 𝑙𝑙 on velocity field      Figure 9: Influence of 𝑙𝑙 on temperature field 

         
Figure 10: Influence of 𝛽𝛽𝑣𝑣 on velocity field  Figure 11: Influence of 𝛽𝛽𝑡𝑡 on temperature field 

Fig. 12 illustrates the influence of melting parameter (𝑚𝑚) on the temperature profile. An 
increase in the melting parameter reduces the temperature of both fluid and dust phases 
and also boundary layer thickness. This is because an increase in 𝑚𝑚  will increase the 
intensity of melting as well the melting progresses. Henceforth, the sheet gradually 
transforms to a liquid, causing the temperature of the fluid decreases rapidly. The effect 
of an increase in Prandtl number on the temperature for both fluid and dust phase are 
captured in Fig. 13. It is obvious from this figure that the temperature and thermal 
boundary layer thickness increase with an increment values of 𝑃𝑃𝑟𝑟.  
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Figure 12: Influence of 𝑚𝑚 on temperature field   Figure 13: Influence of  𝑃𝑃𝑟𝑟 on temperature      

field 

The variation of temperature profile for both the phases is illustrated for different values 
of radiation (𝑅𝑅), and temperature ratio parameter (𝜃𝜃𝑤𝑤) are shown in Figs. 14-15. One can 
see that the temperature profile and thermal boundary layer thickness area unit decreased 
by ascent values of radiation and temperature ratio parameter. Larger values of radiation 
parameter manufacture a lot of heat to operating fluid that shows an associate in 
augmenting within temperature field. The thermal boundary thickness conjointly grows 
once 𝑅𝑅 is exaggerated. Here, due to the effect of melting, temperature profile decreases 
by enhancing values of 𝑅𝑅.  

   
Figure 14: Influence of 𝑅𝑅 on temperature field  Figure 15: Influence of 𝜃𝜃𝑤𝑤 on temperature     

field 

Figs. 16-17 are plotted to understand the influence of Eckert number and specific heat 
ratio on temperature profile. As anticipated, the temperature profile increases with 
increasing 𝐸𝐸𝑐𝑐,  and this is shown in Fig. 16. From the plot 17, one can infer that thermal 
boundary layer thickness decreases by increasing specific heat ratio.  
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Figure 16: Influence of 𝐸𝐸𝑐𝑐 on temperature field  Figure 17: Influence of 𝛾𝛾 on temperature     

field 
Table 2: Numerical values of skin friction coefficient and Nusselt number for different 
physical parameter 
𝜃𝜃𝑤𝑤 𝐸𝐸𝑐𝑐 𝛾𝛾 𝑀𝑀 𝑅𝑅 𝑃𝑃𝑟𝑟 𝛼𝛼 𝛽𝛽 𝛽𝛽𝑣𝑣 𝛽𝛽𝑡𝑡 𝑙𝑙 𝑚𝑚 −�𝑅𝑅𝑒𝑒𝑥𝑥𝐶𝐶𝑓𝑓 −

𝑁𝑁𝑢𝑢𝑥𝑥
�𝑅𝑅𝑒𝑒𝑥𝑥

 

1.4            2.63479 3.91105 
1.5            2.63900 4.60747 
1.6            2.64336 5.42572 

 0.1           2.63900 4.60747 
 0.2           2.64603 4.79977 
 0.3           2.65276 4.98479 
  1          2.62271 4.16450 
  2          2.60780 3.76233 
  3          2.60088 3.57642 
   0.5         1.76334 5.13457 
   1         2.21198 4.82621 
   1.5         2.63900 4.60747 
    0        2.67509 1.72441 
    0.5        2.63900 4.60747 
    0.7        2.62841 5.51519 
     3       2.65460 3.77662 
     4       2.63900 4.60747 
     5       2.62754 5.36936 
      0.5      2.63900 4.60747 
      1      2.56062 4.98995 
      1.5      2.60303 5.25357 
       0     1.12917 4.16933 
       0.3     2.18997 4.46087 
       0.6     2.63900 4.60747 
        0.1    2.38592 4.66105 
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        0.5    2.56616 4.60387 
        0.7    2.61814 4.60373 
         0.5   2.63117 4.39425 
         1   2.64652 4.81342 
         1.5   2.65357 5.00716 
          0  2.26847 3.11317 
          0.1  2.31387 3.32441 
          0.3  2.35803 3.52060 
           0.4 2.61249 4.86076 
           0.5 2.63900 4.60747 
           0.6 2.66229 4.37327 

Table 3: Numerical values of Nusselt number for different physical parameter values for 
linear and nonlinear radiation 

 
𝐸𝐸𝑐𝑐 

 
𝛾𝛾 

 
𝑅𝑅 

 
𝑃𝑃𝑟𝑟 

 
𝛽𝛽𝑡𝑡 

 
𝑙𝑙 

 
𝑚𝑚 

−
𝑁𝑁𝑢𝑢𝑥𝑥
�𝑅𝑅𝑒𝑒𝑥𝑥

 

Linear radiation Nonlinear radiation 
0.1       1.24043 4.60747 
0.2       1.30018 4.79977 
0.3       1.35766 4.98479 

 1      1.14883 4.16450 
 2      1.05060 3.76233 
 3      1.00014 3.57642 
  0     1.50743 1.72441 
  0.5     1.24043 4.60747 
  0.7     1.16240 5.51519 
   3    1.02387 3.77662 
   4    1.24043 4.60747 
   5    1.43254 5.36936 
    0.5   1.17122 4.39425 
    1   1.31170 4.81342 
    1.5   1.38277 5.00716 
     0  0.77165 3.11317 
     0.1  0.83446 3.32441 
     0.3  0.89188 3.52060 
      0.4 1.29917 4.86076 
      0.5 1.24043 4.60747 
      0.6 1.18547 4.37327 

Tab. 2 displays variation of skin friction coefficient and Nusselt number for different values 
of physical parameter. It is reported that the Nusselt number is a decreasing function of 
𝛾𝛾,𝛽𝛽𝑣𝑣 , 𝑚𝑚  and 𝑀𝑀 , but an increase can be found in increase of 𝜃𝜃𝑤𝑤,𝐸𝐸𝑐𝑐,𝑅𝑅,𝑃𝑃𝑟𝑟,𝛼𝛼  and  𝛽𝛽 . 
Additionally, the skin friction coefficient increases while enhancing the values of 
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𝜃𝜃𝑤𝑤,𝐸𝐸𝑐𝑐,𝑀𝑀,𝛽𝛽,𝑚𝑚 and   𝛽𝛽𝑣𝑣. Tab. 3 shows the variation of Nusselt number on different physical 
parameter for linear and nonlinear radiation. From this table, we observed that Nusselt 
numbers rates are higher in presence of nonlinear radiation compared to linear radiation. 

6 Conclusion 
The present study deals with the boundary layer flow and melting heat transfer of a 
Prandtl fluid over a stretching surface in the presence of nonlinear thermal radiation. The 
important findings of the present study are listed as follows: 
• Temperature profile and rate of heat transfer is lesser for larger values of 𝑅𝑅. 
• The velocity and temperature profile increases by with increasing values of 𝛼𝛼 and 𝛽𝛽. 
• The temperature profile and its corresponding boundary layer is increased with 

increasing Prandtl number. 
• Higher values of 𝐸𝐸𝑐𝑐 enhances the thermal boundary layer thickness.  
• Rate of heat transfer decreases by increasing melting parameter. 
• Due to the effect of melting parameter, the rate of heat transfer decreases by 

increasing values of 𝜃𝜃𝑤𝑤 . 
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