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Abstract: Myocardial segmentation and classification play a major role in the diagnosis 
of cardiovascular disease. Dilated Cardiomyopathy (DCM) is a kind of common chronic 
and life-threatening cardiopathy. Early diagnostics significantly increases the chances of 
correct treatment and survival. However, accurate and rapid diagnosis of DCM is still 
challenge due to high variability of cardiac structure, low contrast cardiac magnetic 
resonance (CMR) images, and intrinsic noise in synthetic CMR images caused by motion 
artifact and cardiac dynamics. Moreover, visual assessment and empirical evaluation are 
widely used in routine clinical diagnosis, but they are subject to high inter-observer 
variability and are both subjective and non-reproducible. To solve this problem, we 
proposed an effective unified multi-task framework for dilated cardiomyopathy CMR 
segmentation and classification simultaneously, and we firstly update one independent 
encoder from both recovery decoder and parallel attention path sharing some partial 
weights. This can encode both task choices into good embedding, but each one can 
achieve significant improvements respectively from the given embedding. It consists of 
three branches: extraction path, attention path, and recovery path, which allows the model 
to learn more higher-level intermediate representations and makes a more accurate 
prediction. We validated our approach on a DCM dataset, which contains 1155 CMR 
LGE images. Experimental results show that our multi-task network has achieved 
accuracy of 97.63%, AUC of 98.32%, demonstrating effectively segmenting the 
myocardium, quickly and accurately diagnosing the presence or absence of dilation. 
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1 Introduction 
Dilated cardiomyopathy (DCM), characterized by dilatation and impaired contraction of the 
left or both ventricles, is a primary cardiomyopathy of unknown cause. It has become a 
leading cause of heart failure and heart transplantation in younger adults, or sudden cardiac 
death (SCD) [Caforio, Bottaro and Iliceto (2012); Cazeau, Ritter, Bakdach et al. (2010); 
Jefferies and Towbin (2010)]. Thus, immediate diagnosis and accurate assessment of 
dilated cardiomyopathy are critical for treatment and later recovery [Weekes, Wheeler, Yan 
et al. (2010); Hershberger, Morales and Siegfried (2010); Westenberg, Rj, Lamb et al. 
(2005)]. In routine clinical diagnosis, cardiac magnetic resonance (CMR), as a set of non-
invasive magnetic resonance imaging (MRI) techniques, is widely used which would 
produce detailed pictures of the structures within and around the heart. It can not only 
display the anatomical changes of each chamber, large blood vessels and valves, but can 
also perform quantitative atrial and ventricular analysis for qualitative and semi-
quantitative diagnosis. Moreover, CMR with late gadolinium enhancement (LGE) has 
emerged as the gold standard for infarct sizing and assessment of viability after myocardial 
infarction [Schelbert, Hsu and Anderson (2010)]. LGE has the advantages of multiple 
charts, and high spatial resolution allowing visualization of the whole heart and lesions, and 
its relationship with surrounding structures [Bauer, Wiest, Nolte et al. (2013); Haribabu, 
Bindu and Prasad (2012); Wang, Li and Liu (2013); Yin, Duan, Chu et al. (2016)]. This can 
help doctors study the structure and function of heart muscle, find the cause of a patient’s 
heart failure or identify tissue damage due to a heart attack. Visual assessment and 
empirical evaluation are widely used in routine clinical diagnosis. However, immediate 
diagnosis and accurate assessment of patients with DCM remains difficult even for 
experienced cardiologists. Moreover, they are subject to high inter-observer variability, and 
the results are subjective and non-reproducible. 
To solve the above problems, automatic computer-aided technologies are highly desirable. 
Many medical image segmentation and classification techniques have been developed to 
assist cardiologists to diagnose [Bar, Diamant, Wolf et al. (2015); Greenspan, Ginneken 
and Summers (2016); Moeskops, Wolterink, Velden et al. (2016)]. As the one of the most 
successful machine learning techniques today, convolutional neural network (CNN), has 
been been successfully applied to different image segmentation and classification tasks. 
For example, traditional CNN-based methods generally use image block around a given 
pixel as input for training and prediction of each pixel for segmentation. However, it has 
several disadvantages: high storage overhead, poor computational efficiency, and the size 
of the perceived area is limited by the size of the pixel block. Specially, the size of a pixel 
block is much smaller than the size of the entire image, and only some local features can 
be extracted, resulting in limited performance of the classification [Tao and Gao (2019)]. 
Fortunately, Jonathan Long et al. [Long, Shelhamer and Darrell (2014)] proposed the 
Fully Convolutional Networks (FCN) for image segmentation. It attempts to recover the 
category to which each pixel belongs from the abstract features. That is, the classification 
from the image level is further extended to the classification at the pixel level. Compared 
with traditional CNN-based image segmentation methods, FCN is more efficient by 
avoiding high storage overhead and can accept input images of any size [Wu, Zhang, 
Zhang et al. (2017)]. However, its segmentation results are not precise enough due to up-
sampling and ignores the spatial regularization and lacking spatial consistency. To 
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overcome the shortcomings of FCN, Ronneberger and his team proposed U-Net for 
Biomedical Image Segmentation [Ronneberger, Fischer and Brox (2015)]. However, 
these methods can not directly apply on DCM segmentation. 
Furthermore, deep learning techniques are also widely used in image classification field. 
A large number of networks has been proposed. The famous deep convolutional network 
VGG (e.g., VGG-16 and VGG-19) was proposed by Researchers at the Computer Vision 
Group at Oxford University and Google DeepMind. It has a significantly lower error rate 
than the previous state-of-the-art network architecture. However, VGG has a very 
significant drawback. When increase the depth of the network, lead to features loss and 
gradient dispersion. Therefore, to make up for the VGG shortcomings, He et al. [He, 
Zhang, Ren et al. (2016)] proposed a ResNet network which can effectively solve the 
problem of feature loss and gradient dispersion by constructing a structure of jump 
connections. Despite this, due to the high noise and low resolution in DCM medical 
images, ResNet cannot be directly applied to medical image classification tasks. 
However, immediate diagnosis and accurate assessment of dilated cardiomyopathy remains 
a challenging problem. Moreover, single classification or segmentation task learning 
ignores the relationship between tasks and does not effectively use the inextricable links 
between classification or segmentation task. In this work, we aim to propose a unified 
multi-task framework for dilated cardiomyopathy CMR segmentation and classification 
simultaneously. From a pixel perspective, the segmentation task can be considered as a 
pixel-level classification task. In deep neural networks, parameters sharing can be done for 
multi-task learning. By sharing representations between related tasks, we can improve our 
network generalization on our original task. Therefore, to compensate for the shortcomings 
of classification and segmentation tasks, we design an attention-based convolutional 
encoder-decoder network for DCM segmentation and classification simultaneously. In the 
proposed method, we firstly update one independent encoder from both recovery decoder 
and parallel attention path sharing some partial weights. This can encode both task choices 
into good embedding, but each one can achieve significant improvements respectively from 
the given embedding. It consists of three branches: extraction path, attention path, and 
recovery path, which allows the model to learn more higher-level intermediate 
representations and makes a more accurate prediction. We have fully extracted the semantic 
features of the image abstraction and fully fuses the different scale features of the image. 
Specially, inside each Attention Module, a bottom-up top-down structure is used to unfold 
the feed-forward and feed-back attention process into a single feed-forward process, 
suppressing other irrelevant features. We validated our approach on a DCM dataset, which 
contains 1155 CMR LGE images. Experimental results have demonstrated the 
effectiveness of the proposed method. 

2 Related work 
2.1 U-Net 
U-Nets yielded better image segmentation in medical imaging due to several main 
advantages. First, U-Net is full-convolution network which replace fully connected layer 
with convolutional layer. Since the fully connected layer must have a fixed image size 
that is not required by convolution, U-Net can input images of any size. Therefore, U-Net 
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is an end-to-end network. Second, U-Net fuse the features of each upsampling layer with 
the features of the corresponding downsampling layer. Upsampling can complement the 
features of the image, but it can cause feature loss problems, so it needs to be integrated 
with the features of the downsampling layer. However, it is not possible to use U-Net 
directly for myocardial segmentation tasks. It has been clearly identified: 1) The accuracy 
of the receptive field and positioning cannot be enhanced simultaneously. When the 
receptive field selection is comparatively larger, the dimension of the corresponding pool 
layer is expected to increase, it is expected to lead to lower positioning accuracy. 
Likewise, in the case of a small receptive field, the positioning accuracy is also expected 
to decrease. 2) A lot of noise exists in the myocardial image. The contrast between the 
myocardium and the surrounding tissue is quite poor, substantially lowering the accuracy 
of the segmentation. 3) The redundancy of using U-net for image segmentation tasks is 
excessively large. Owing to the fact that each pixel takes a patch, the similarity of patches 
of two adjacent pixels is quite high, resulting into an extensive amount of redundancy, 
making the network training very slow. 

2.2 Multi-task learning 
Compared with single-task learning, multi-task learning is a subfield of machine learning 
in which multiple related tasks are learned simultaneously by transferring knowledge 
between tasks to improve the learning process. As shown in Fig. 1, single-task learning 
ignores the relationship between tasks, but in actual learning tasks, there are always 
inextricable relationship between different tasks. The advantage of multitasking is that it 
can take advantage of the internal relationships between different tasks, it mainly 
includes 2 points: 1) Weight sharing of neurons of different tasks. In general, some 
seemingly different tasks actually have intrinsic links. For example, the semantic 
segmentation of an image is actually a pixel-level classification. 2) Mutual promotion 
between different tasks. For deep learning, massive amounts of data are critical, however, 
getting massive amounts of data is very difficult. From the perspective of data 
enhancement, multi-task learning is equivalent to adding random noise to another task, 
solving the problem of a small number of data sets to a certain extent, and improving the 
generalization performance and robustness of the network. 
Due to the above advantages of multitasking, it has been widely used in tasks such as 
image processing and natural language processing. Microsoft’s Liu et al. proposed a new 
multi-tasking deep neural network model MT-DNN. MT-DNN combines the advantages 
of BERT, effectively utilizing supervised data from many related tasks, and benefiting 
from regularization effects by mitigating over-fitting of specific tasks, thereby enabling 
learning weight to be embedded between tasks. The network has created new and most 
advanced results in multiple mainstream benchmarks. Xue et al. use multitasking learning 
methods to accomplish different classification tasks. They greatly improve the 
performance of classification by sharing the weights of neurons of different classification 
tasks and learning the deep intrinsic association features between different tasks. The 
experimental results show that the classification accuracy of the multi-task method is 
much higher than the accuracy of the single classification task. Collobert and his team 
proposed a natural language processing model based on multitasking learning. The model 
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shares the weights and parameters of the supervised learning network and the semi-
supervised learning network. Compared with the traditional natural language processing 
network, the multi-tasking network can accurately perform tasks such as language role 
judgment, semantic similar sentence discrimination, and voice tagging. 

 

Figure 1: Model comparison diagrams of multi-task method and single-task method 

2.3 Attention mechanism 
Attention in deep learning originates from the attention mechanism of the human brain. 
When the brain receives external information, such as visual information and auditory 
information, it will not process and understand all information, but will focus on some 
significant or interesting portions. This will help to filter out the unimportant information 
and improve the efficiency of information processing. Fei Wang et al. proposed the 
residual attention network, which can greatly improve the accuracy of target 
classification by drawing on the attention mechanism. 

 
Figure 2: Attention model 

There are currently many attention-based methods. The main contribution of our paper is 
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to propose an Attention Module, which uses the forward attention mechanism of Bottom-
up Top-down. As shown in Fig. 2, the module consists of trunk branch and soft mask 
branch. The former is composed of multi-layer convolution, and first extracts high-level 
features and enlarges the receptive field of the model. Simultaneously, the latter enlarges 
the size of the feature map to the same size as the original input through the same number 
of up samples, so that the area of attention corresponds to each pixel of the input. Finally, 
the Soft Mask Branch is integrated with the output of the Trunk Branch. Each pixel value 
in the attention map output of the Soft Mask Branch is equivalent to the weight of each 
pixel value on the original feature map, this enhances the meaningful features and 
suppresses no meaning information. Therefore, as shown in Eq. (1), the element-wise 
multiplication of the feature map output by Soft Mask Branch and Trunk Branch gives a 
weighted attention map. The weighted attention map performs an element-wise operation 
with the feature map of the original Trunk Branch. 

                             (1) 

where  ranges over all spatial positions,  is the index of the channel,  is the 
output of Soft Mask Branch and  is the output of the Trunk Branch. 

2.4 Residual neural network 
Residual neural network (ResNet) was proposed by He et al. [He, Zhang and Ren et al. 
(2016)]. ResNet with 152-layer neural network was successfully trained and won the 
championship in the ILSVRC2015 competition. The error rate on top 5 was 3.57%, and 
the parameter amount was lower than that of VGGNet. The main idea of ResNet is to add 
a direct connection channel to the network. It is very similar to that of Highway Network, 
which allows the original input information to be transmitted directly to the later layer. 
We know that it is difficult to fit a potential identity mapping function  directly 
at the network level, which is the reason why deep networks are difficult to train. 
However, if the network is designed as , it can be converted into 
learning a residual function . As shown in Fig. 3, as long as , 
it constitutes an identical mapping . Moreover, fitting residual must be easier. 

 
Figure 3: Residual unit 
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3 Method 
In this paper, we propose a multitasking network structure based on the attention 
mechanism. The attention mechanism has the advantage of being able to highlight features 
that are advantageous for classification tasks and to suppress useless features that are not 
conducive to classification tasks. In addition, we construct an encoder-decoder structure for 
segmentation task and simultaneously learn the classification task and segmentation task.  
Multi-tasking can improve the generalization ability of the model and can also improve the 
network training efficiency to improve the performance of the network. 

3.1 Network architecture 
The residual module and the attention module are used as basic units in the construction 
of networks, our network architecture is shown in Fig. 4. It consists of an extraction path, 
an attention path, and a recovery path. The attention path is used for classification tasks 
and the recovery path is used for classification tasks. The extraction path follows the 
typical architecture of a convolutional network. It consists of seven 1×1 convolutions and 
three residual block, each convolution followed by a normalized layer and a rectified 
linear unit (RELU) and a 2×2 max pooling operation with stride 1 for downsampling. 
Every step in the recovery path consists of an upsampling of the feature map followed by 
a deconvolution that halves the number of feature channels, a summation with the 
correspondingly cropped feature map from the extraction path. The attention path 
consists with Soft Branch and Mask Branch, the module highlights features that are 
beneficial to the task and suppresses features that are not conducive to the task. The 
cropping is necessary because of the loss of border pixels in every convolution. 

 

Figure 4: Network architecture 
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3.1.1 Extraction path 
Extraction path consists of seven convolution layers with kernel size 1×1 and three 
residual units. It can extract high-level abstract features of input images and effectively 
avoids feature loss. Firstly, the image is input into seven convolution layers to get the 
high-level features of the image. Because the convolution layer will lose the features of 
the original data, the features obtained from the previous layer are input into three 
residual units to obtain the corresponding high-level features. Residual unit constructs a 
jump connection structure, which takes the input and output of the upper layer as the 
input of the next layer. It can effectively avoid feature loss, and also solve the problem of 
gradient disappearance caused by the increase of network layers. The calculation formula 
of the jump connection structure is as follows: 

            (2)  

 is the number of the current layer,  is the input of the current network layer,  is the 
output of the previous layer,  is the input of the previous layer,  is the activation 

function (the RELU we use in this paper),  is the weight of the current network layer 
neurons,  is the paranoia of the current network layer. The input  of the current 
network layer is equal to the sum of the output  of the upper layer network and the 
input  of the upper layer network, and then the activation function is connected. 

3.1.2 Attention path 
The attention path consists of two Attention Modules, constructed in reference to the 
residual attention network. The Attention Module consists of two branches, a soft branch 
and a mask branch. The soft branch consists of multiple convolution layers, and the mask 
branch consists of the encoder layer and the decoder layer. In the soft branch, we 
construct multiple convolutions to learn the deep features. The number of convolutional 
layers can be set according to the experimental results. In this paper, we set the number of 
convolutional layers to 4. In the mask branch, we construct the encoder-decoder structure. 
Two convolution kernels with a convolution kernel size of 1×1 are used for the encoder, 
and two deconvolution kernels with a convolution kernel size of 7×7 are used for the 
decoder. The characteristics of the classification can be learned through the encoder-
decoder structure, and convolution kernels of different sizes can learn the characteristics 
of different fields of view. However, since the strategy of supplement 0 in deconvolution 
will lead to the increase of useless and unfavorable features and feature loss, we fuse the 
features of mask branch output with those of soft branch output, which can effectively 
compensate for the problem of feature noise and feature loss. For the process of attention 
path, first, the output of the soft branch is multiplied by the output of the mask branch, 
which filters out features that are not conducive to classification. Then, the output of the 
previous step is added to the output of the soft branch, avoiding the loss of features in the 
original data that are advantageous for classification. This allows the module to acquire 
features that are beneficial to classification and to suppress features that are not 
conducive to classification. 
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3.1.3 Recovery path 
The recovery path consists of four different channel sizes of deconvolution layers. The 
strategy of supplementing 0 used by the deconvolution layer is therefore likely to cause 
feature loss and feature dispersion problems. In order to solve the above problems, we 
received the U-Net inspiration, we constructed a jump connection structure, that is, the 
output of each deconvolution layer is merged with the output of the convolution layer of 
the previous residual unit, and input to the next In a deconvolution layer. Each 
deconvolution layer adopts a jump connection structure, which effectively avoids the 
problem of feature dispersion and feature loss, and greatly improves the feature reuse rate. 
Recovery path can restore the size of the extracted deep features to the same size of the 
input image, that is, inputting an image can directly obtain a predicted segmentation 
image of the same size as the input image. 

3.2 Loss metric 
3.2.1 Loss function for segmentation 
An inevitable difficulty in medical image classification and segmentation tasks is the 
class imbalance problem. The number of background pixels is much larger than the target 
pixel. Therefore, we need to choose a loss function that is immune to class imbalance 
problems. In this paper, we use the Jaccard (JACC) distance function as the loss function 
of the segmentation task, and the cross entropy (CE) function as the loss function of the 
classification task. The Jaccard index, also known as Intersection over Union (IoU), is a 
statistic used for assessing segmentation performance when ground-truth is available, as 
in Eq. (3): 

                      (3)  

where G is the ground-truth label map, (0,1)iG ∈ . Y is the predicted probabilistic 

response map by model, Y (0,1)i ∈ . N is the pixel number. 

3.2.2 Loss function for classification 
Cross entropy is often used for the classification loss function of deep neural networks. 
Here we use cross entropy as the loss function of the myocardial classification. Formally, 
it is defined as: 

1 [ log (1 ) log(1 )]
m

i i i i
CE

i
Loss y p p y

m
= − + − −∑              (4)  

where m  is the number of samples, iy is the label of the sample, and ip  is the predicted 

probability value, (0,1)ip ∈ . 

In the experiment, the total loss  function is the sum of the two loss function, but 
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because the segmentation task is relatively complex, the network needs to pay more 
attention to the segmentation task. So, we set the weight of the classification loss to 1, 
while constantly adjusting the weight of the segmentation loss to achieve the best 
performance. The total loss is defined as: 

                (5)  

where  is the loss function of the segmentation task, is the loss function of 

the classification task, and  is the weight of . By changing the value of , the 

network achieves the best performance. In addition, we did many experiments with different 
weights of segmentation loss. As shown in Fig. 5, results show that when the weight of 
segmentation loss is 3, the classification and segmentation performance is the best. 

 
Figure 5: Segmentation and classification results corresponding to weights of different 
segmentation losses 

4 Experiments and discussion 
4.1 Dataset, pre-processing and evaluation metrics 
4.1.1 Dataset 
CMR LGE images of 1155 slices of myocardium from the same hospital are trained and 
tested in the experiments, which contain 123 dead images and 1032 alive images with 
heart disease. For the segmentation task, the original image was the cardiac MRI raw data, 
and the label represents the myocardium manually labeled by the doctor. For the 
classification task, we divide the LGE data into dead or alive. 
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4.1.2 Pre-processing 
The ground truth of the training and the testing samples of images with the myocardium 
were manually annotated by an experienced cardiologist. The pixel size of each MRI 
image was 1.406×1.406 mm with a size ranging between 192×256 and 224×256. 
Considering the fact that the size of the myocardium is small and surrounded by a 
substantial amount of noise, we first resampled the resolution of the image to 1×1×1, and 
each image was cut to a fixed image size of 128×128. Finally, the intensity range of the 
LGE-mapping images was normalized to [0, 255]. 

4.1.3 Evaluation Metrics for Segmentation 
We use of four indicators for the purpose of measure the performance of the network, 
which includes the dice similarity coefficient (DSC), area under the curve (AUC), 
Jaccard similarity coefficient (JSC), and F1-score for the assessment of the segmentation 
accuracy. The DSC was mostly employed for the calculation of the overlap metric 
between the results of segmentation and the ground truth. The DSC for bit vectors was 
defined as: 

2

2 2

2 || ||
|| || || ||

PGDSC
P G

=
+

                 (6)  

where PG  is the element-wise product of the prediction P  and the ground truth G , and 

2|| ||x  is the L2-norm of x . The AUC is a probability value. The greater the AUC value, 
the better the performance. The AUC score was computed with a closed-form formula: 

0 0 0

0 1

( 1) 2S n nAUC
n n

− + ÷
=                 (7)  

where 0n  is the number of pixel that belong to the ground truth, 1n  is the opposite and 
0

0 1
in r

i
S

=
=∑ , where ir   is the rank given by the predict model of the ground truth to the 

i-th pixel in the CMR image. The F1 score is the harmonic average of precision and recall, 
wherein an F1 score reaches its best value at one (perfect precision and recall) and the 
worst at zero. The JSC is put to use for the improvement of similarities and differences 
between finite sample sets. The larger the JSC value, the higher the sample similarity. 

4.1.4 Evaluation Metrics for classification 
For the two-class task, we can define the discriminant evaluation based on the confusion 
matrix, as shown in Tab. 1. From the confusion matrix, TP and TN are defined as the 
number of positive and negative samples correctly classified. FP and FN are respectively 
defined as the number of positive and negative samples that are misclassified. 
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Table 1: Confusion matrix 

 Actual Positive Actual Negative 

Predicted Positive 
True  
Positive (TP) 

False Negative (FN) 

Predicted Negative False Positive (FP) True Negative (TN) 

We used four indicators to assess the performance of the network, which includes 
accuracy, sensitivity, specificity and AUC. Accuracy is the ratio of the correct number to 
the total quantity, it is the most commonly used indicator for measuring classification 
results. Accuracy is computed using a closed-form formula: 

TP TNAccuracy
TP FP TN FN

+
=

+ + +
               (8)  

Sensitivity is the probability of correctly predicting positive samples, and specificity is 
the probability of correctly predicting negative samples. Sensitivity is computed using a 
closed-form formula: 

TPSensitivity
TP FN

=
+

                (9) 

where TP  is the number of positive samples that are correctly predicted and FN  is the 
number of negative samples with incorrect prediction results. Similarly, specificity is 
computed using a closed-form formula:  

TNSpecificity
TN FP

=
+

              (10) 

where TN is the number of negative samples that are correctly predicted and FP  is the 
number of positive samples with incorrect prediction results. Generally, the higher the 
above four indicators, the better the performance of the experimental method. 

4.2 Implementation details 
In our experiment, 5-fold cross validation was used for performance evaluation and method 
comparison. We calculated the average score of each fold as the final score. The network is 
implemented by Keras and Tensorflow backend. Batch normalization and ReLU activation 
are attached to each convolution. We use the Adam optimizer with a learning rate of 0.0001. 
The cost functions of segmentation and classification are Jaccard distance and cross-
entropy, and the weight of loss function of segmentation task and classification task are 3 
and 1, respectively. Model training and testing run on Tesla M40 GPU with 40 epochs. 

4.3 Result 
To verify the performance of our network, for the segmentation task, we compared it with the 
classic segmentation networks U-Net, DeeplabV3 and SegNet. For the classification task, we 
compared it with the Residual attention networks, ResNet50 and ResNet101. Experiments on 
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LGE datasets showed state-of-the-art performance. We implemented all networks on the 
basis of tensorflow, and parameters were set to be the same as that of our network. 

4.3.1 Segmentation result 
Tab. 2 shows a comparison of the results of our method with the most advanced methods 
available. As can be seen from the table, our method is further improved and achieves 
around 3% absolute improvement over the best previous method DeeplabV3 on DSC. 
Our method also outperforms previous methods on AUC, F1-score and JSC with a large 
margin. Surprisingly, U-Net and SegNet, which are the best-performing method on 
medical image segmentation, did not achieve good results on our dataset. 

 Table 2: Experimental results of different networks for segmentation task 

Model DSC AUC    F1-score JSC 

DeepLabV3 0.7806  0.8561 0.7729 0.6127 

SegNet 0.7496  0.7751 0.7187 0.5155 

U-Net 0.7613 0.8168 0.7403 0.5611 

Ours 0.8165 0.9230 0.8164 0.6966 

Fig. 6 shows a block diagram of the DSC values for four networks. As can be seen from 
the figure, the span of our method block diagram was small, and the DSC values of the 
five experiments were mainly concentrated around $0.81$. However, the spans of U-Net, 
DeeplabV3 and SegNet were significantly larger than ours, and the DSC values of our 
five experiments were larger than those of U-Net, DeepLabV3 and SegNet. It can be seen 
that our method not only had better performance than U-Net, DeeplabV3 and SegNet, but 
also had better robustness. 

 
Figure 6: Box diagram of DSC for four different networks. Each network performs 5 
experiments, and the box plot was drawn based on the DSC value of each experimental result 
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To quantificationally evaluate the difficulty of the myocardium segmentation task, we 
adopt the Peak Signal to Noise Ratio (PSNR) for image segmentation to describe. The 
PSRN is defined as the Eq. (11): 

2

1020 log ( )oriMAXPSNR
MSE

=               (11)  

where the oriMAX  is the max value of original image. And MSE  is the Mean Square 
Error function, define as the Eq. (12): 

1 1
2

0 0

1 [ ( , ) ( , )]
m n

ORI SEG
i j

MSE I i j I i j
mn

− −

= =

= −∑ ∑             (12)  

where ORII  is the original image, SEGT  is the segmentation target, and the ,m n  are the 
image dimensions. 
In Fig. 7, we calculated the peak signal-to-noise ratio (PSNR) values for 1155 LGE 
mapping images, which ranged from 11.60 to 31.15. Obviously, the PSNR values are 
mainly concentrated around 23. 

 
Figure 7: Scatter diagram PSNR of 1155 slices with myocardium 

It may be observed from Fig. 8 that the proposed network is capable of segmenting the 
myocardial circle efficiently. Through the comparison of the segmentation results with U-
Net, DeeplabV3 and SegNet, we found that the segmentation result of our network was 
not only less noisy but also closer to the ground truth. In particular, by comparing the 
segmentation results in Fig. 8, we can see that U-NET, Deeplabv3 and SegNet will 
generate a lot of noise to interfere with myocardial segmentation, and even cannot 
accurately and completely segment the myocardial region. However, our myocardial 
segmentation is fairly smooth and achieves good results in the case of strong noise. 
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Figure 8: Comparison of segmentation results of different networks 

4.3.2 Classification results 
From Tab. 3 we can see that the classification performance of our method is much better 
than that of the other three networks on the LGE data set. Surprisingly, our method was 
5% higher than the most advanced method ResNet101 in accuracy, and our method was 
far superior to ResNet101 in both sensitivity and specificity. In addition, the accuracy, 
specificity and sensitivity of our method are all the highest at the same time, which shows 
that our method has the best robustness. 

Table 3: Experimental results of different networks for classification task 

Model Accuracy Sensitivity Specificity AUC 

Residual 
attention 
network 

  0.9258   0.1026   0.8375   0.9532 

ResNet50   0.9208   0.2251   0.8261   0.9429 

ResNet101 0.9431 0.2870 0.8729 0.9623 

Ours   0.9763   0.7592   0.9164   0.9832 

To further understand how the classifier predicts, we visualize the class-activation map 
(CAM) of the last convolutional layer. Negative and positive groups were shown in Fig. 9. 
There was a significant difference in the corresponding CAM of the negative (alive 
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control) and positive (death) samples. We can see that the heat map of the negative 
sample is more concentrated than the heat map of the positive sample. 

 
Figure 9: Class activation maps. The first row is examples of negative samples. The 
second row is examples of positive samples. (a) the original CMR images. (b) the 
activation maps. (c) The heatmap is overlaid on the original images 

5 Conclusion 
In this paper, we propose a muti-task approach for classification and segmentation. We 
demonstrate that our network trained using a multi-task method reaches the current state-
of-the-art performance, making it much better than comparable methods. Experimental 
results show that the performance of multi-task segmentation and classification is better 
than that of single-task segmentation or single-task classification. In addition, we used the 
attention mechanism, which greatly improved the overall performance of the network. 
Multi-scale convolution has the ability to perceive multi-scale features of the 
myocardium as well as hierarchical semantics and contextual information. To prove the 
validity of our proposed network, we compared it with the classic segmentation network 
and classification network. Experiment reveals the fact that the proposed network can 
significantly improve segmentation and classification performance. 
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