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Abstract: Calculating the semantic similarity of two sentences is an extremely 
challenging problem. We propose a solution based on convolutional neural networks 
(CNN) using semantic and syntactic features of sentences. The similarity score between 
two sentences is computed as follows. First, given a sentence, two matrices are 
constructed accordingly, which are called the syntax model input matrix and the semantic 
model input matrix; one records some syntax features, and the other records some 
semantic features. By experimenting with different arrangements of representing the 
syntactic and semantic features of the sentences in the matrices, we adopt the most 
effective way of constructing the matrices.  Second, these two matrices are given to two 
neural networks, which are called the sentence model and the semantic model, 
respectively. The convolution process of the neural networks of the two models is carried 
out in multiple perspectives. The outputs of the two models are combined as a vector, 
which is the representation of the sentence. Third, given the representation vectors of two 
sentences, the similarity score of these representations is computed by a layer in the 
CNN. Experiment results show that our algorithm (SSCNN) surpasses the performance 
MPCPP, which noticeably the best recent work of using CNN for sentence similarity 
computation. Comparing with MPCNN, the convolution computation in SSCNN is 
considerably simpler. Based on the results of this work, we suggest that by further 
utilization of semantic and syntactic features, the performance of sentence similarity 
measurements has considerable potentials to be improved in the future. 
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1 Introduction 
Computation of semantic similarity between sentences has broad application areas. For 
example, we want to build an Intelligent Question Answering (IQA) system. When a user 
asks a question, if we can find a similar question in the knowledge base, then the existing 
answer can be provided. In this article, we present a solution for computing semantic 
similarity of sentences which is based on convolution neural networks (CNN) [Kim 
(2014)] and modeling sentences using their syntactic and semantic features.  
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1.1 Related work   
Because language expressions are multitudinous and the corresponding sentence semantics 
are complex, calculating the semantic similarity of two sentences is extremely challenging. 
Before researchers started using machine learning on natural language processing (NLP), 
the traditional techniques of NLP have significant achievements such as the understanding 
of rules of sentence syntax. However, most of the recent exciting performance 
improvements of solutions to NLP problems are based on machine learning techniques. 
For the area of sentence similarity computation, the most noticeable recent researches are 
using deep neural networks. Frameworks of deep neural networks include Convolutional 
Neural Network (CNN) [Goodfellow, Bengio and Courville (2016)] and Recurrent 
Neural Network (RNN) [Siegelmann and Son-tag (1995)]. Long Short-Term Memory 
(LSTM) [Hochreiter and Schmid-huber(1997)] has become a more applied form of RNN  
in NLP research areas.  
Zeng et al. [Zeng, Liu, Lai et al. (2014)] presented a well-known paper using CNN to 
classify relationships between words and to extract sentence features.  
Tai et al. [Tai, Socher and Manning (2015)] proposed the Tree-LSTM model, which 
achieved very good results of computing sentence similarity.  
Mueller et al. [Mueller and Thyagarajan (2015)] have presented a Siamese adaptation of 
LSTM called MaLSTM, which achieved state-of-art results using the SemEval 2014 
dataset [Marelli, Bentivogli, Baroni et al. (2014)], and outperformed the Tree-LSTM model.  
He et al. [He, Gimpel and Lin (2015)] have proposed Multi-Perspective CNN (MPCNN) 
for modelling of sentence similarity. With MPCNN, sentence features can be extracted 
from more prospects that can improve the accuracy of sentence similarity computation.  
MPCNN also achieved state-of-art results and outperforms the Tree-LSTM model.  
The design idea of modeling sentences with more features in the work of this paper is like 
MPCNN. Besides other new features of the proposed solution, we have unique modeling 
considerations of sentence syntactic and semantic features. 
Choosing the underlying neural network architecture is a dimension of consideration for 
designing an algorithm. It is difficult to say which choice is better, CNN or RNN (LSTM), 
for solving an NLP problem. In this work, we choose the research direction of using 
CNN. The experience that we gained in this research, including the integration of 
syntactic of semantic features of sentences, could have positive influences on designing 
better algorithms using other neural network architecture, like LSTM, with similar 
insights or techniques for performance improvements.  

2 Overview of the sentence similarity computation process   
A sentence model is designed to compute sentence representations. The proposed model 
consists of two parts. One is the syntax model that computes using the syntactic features 
of a sentence, the other is the semantic model that computes using the semantic features 
of the words in a sentence. The computation of the model has multiple ways of 
convolution and pooling like those used by the MPCNN algorithm. This model doesn’t 
require a dictionary environment like WordNet; thus, the dependence on detailed 
definitions of every word is avoided. It needs word embeddings, which can be obtained 
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from published resources. Comparing to the previously published works, the main 
differences of our solution lie in our unique ways of constructing the input matrices of the 
neural network, and the ways of conducting the convolutions.  
As shown in Fig. 1, a sentence is processed in parallel by the computation of the semantic 
and syntactic models. Through the full connection layer, based on the outputs of the two 
models, a synthesized sentence representation is computed, which is a vector. Given two 
sentence representation vectors, their similarity is computed by the similarity 
computation layer the CNN. The output of the similarity computation layer is a similarity 
score, which is a value between 0 and 1 and can be scaled up to some range like [0, 5].  

 
Figure 1: The process of computing similarity scores  

3 Text segmentation and vectorization 
Given a sentence, we want to partition its sequence of characters into a sequence of 
tokens (words), which is the text segmentation process. Once the token list of a sentence 
is obtained, we want to obtain a vector (embeddings) of each word that can represent 
some semantic features of the word in multiple dimensions. This is the word 
vectorization process and can be done using the popular software package Word2Vec 
[Bojanowski, Grave, Joulin et al. (2017)]. The distance between two vectors of two 
words should correspond to the semantic similarity between the two words. 
Although the presented experiment results are purely for English sentences, we have also 
experimented with Chinese sentences, since we are also interested in solving NLP 
problems with Chinese sentences. For Chinese sentences, we used the software package 
JIEBA to obtain the tokens. For English sentences, we can use the NLTK [Wagner 
(2010)] packages to do text segmentation. In the final stage of our experiments, whose 
results are presented in this paper, we used the Stanford CoreNLP package [Marneffe and 
Manning (2008)] to do text segmentation for English sentences, and we used the pre-
trained Word2Vec file provided by the Stanford GloVe [Pennington, Socher and 
Manning (2014)] website.   
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4 Sentence model  
4.1 Semantic model 
4.1.1 Input matrix to the semantic model 
Given a sentence, after the word segmentation and vectorization process, suppose there 
are n words, we can construct a n×n matrix M as follows. The item at the row j and 
column k, denoted as M[j, k], where j ≠ k, is the cosine distance (shown as Eq. (1)) 
between the vectors of the jth word and the kth word.   
Given two vectors A and B, the cosine distance between them is a value between 0 and 1 
computed by the following equation.  

similarity = cosSimi (𝐴𝐴, 𝐵𝐵) = 𝐴𝐴∙𝐵𝐵
   �|𝐴𝐴|� �|𝐵𝐵|�  

= ∑ 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖𝑛𝑛
𝑖𝑖=1

�∑ 𝐴𝐴𝑖𝑖
2𝑛𝑛

𝑖𝑖=1  �∑ 𝐵𝐵𝑖𝑖
2𝑛𝑛

𝑖𝑖=1

                                          (1) 

The vector of the jth word in a sentence is denoted as vec(s[j]); in our expedient, it is an 
existing value already computed by GloVe.  Therefore, the input matrix of a sentence s 
for the semantic model can be defined as follows:   
𝑀𝑀[𝑗𝑗][𝑘𝑘] = cosSimi�vec(𝑠𝑠[𝑗𝑗]), vec(𝑠𝑠[k])�                                                                       (2) 

4.1.2 The convolution layer of the semantic model 
The convolution computation is shown in Fig. 2. We propose two ways of convolution 
that are called the convolution on sub-sentences and convolution on words.  
The convolution on sub-sentences is shown in the upper part of Fig. 2. Each square 
marked with a red border is the shifting window of a convolution filter. Given a sentence 
with len words, the windows of the filters of the convolution on sub-sentences all have a 
width 2, but with different heights ranging from len to 2.  

 
Figure 2: The semantic model 

A convolution filter F is defined as a tuple <tF, wF, bF, h>, where tF is the height of the 
shifting window of F whose width is always 2; 𝑤𝑤𝐹𝐹 ∈ 𝑅𝑅𝑡𝑡×2 is the weight matrix for the 
filter; bF ∈ R is the bias of the filter; h is the activation function that is the same for all 
filters in our model. In our experiments, the choice of the activation function h is the 
sigmoid function, which is shown in Eq. (3), where z is an input value, and h (z) is a 
value between 0 and 1.  
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ℎ(𝑧𝑧) = 1
1+𝑒𝑒(−𝑧𝑧)                                                                                                                   (3) 

For a sentence with len words, the output of the convolution using a filter F, denoted as 
outF, is a vector of len−1 values, since the shifting window of the filter will appear in 
len−1 positions from left to right. The jth entry of outF is defined by Eq. (4), where X [j] ∈ 
t × 2 is the matrix of the window of the filter at the jth shifting position.   
𝑜𝑜𝑜𝑜𝑜𝑜𝐹𝐹[𝑗𝑗] = ℎ(𝑊𝑊𝐹𝐹 ∙ 𝑋𝑋[𝑗𝑗]) + 𝑏𝑏𝐹𝐹                                                                                            (4) 
Given a filter F, outF represents some potentially valuable summary of the semantic 
information of the sub-sentence at F; hence, it is called the convolution on sub-sentences. 
Since there are len−1 filters, and each filter outputs a vector or len−1 entries, the output 
of the convolution on sub-sentences using all the len−1 filters will be a matrix of 
(len−1) × (len−1) entries.  
The other way of convolution is the convolution on words, as shown in the lower part of 
Fig. 2, where each filter has its height 1 and width 2.  The computation output at each 
window is the same as Eq. (4), while the shifting window size is different from those for 
the convolution on sub-sentences. In the convolution on words, a filter will shift its 
window from left to right, and produce a vector of len−1 values, which represent some 
potentially valuable summary of the semantic meaning of a word against each word in the 
sentence, therefore the name “convolution on words”. The output of this convolution 
using all the len filters will be a matrix of len  × (len−1).  

4.1.3 The pooling layer of the semantic model 
For the output matrix M (with len-1 rows), in the pooling layer, three functions of max, 
mean, and min are applied to M. For a function p ∈{max, min, mean}, p (M) is a vector 
of len−1 entries, whose jth entry is computed by applying p to the jth row of m, denoted as   
p (M[j]). Therefore, 3 vectors of len−1 values are obtained, as shown in the upper-right 
part of Fig. 2.  
For the len × len−1 output matrix of the convolution of words, we choose each small 
area of 2 × 2 in the output matrix to apply the max, min, and mean functions. Therefore, 
we obtain three matrices, each has (len-1) × (len-2) entries. 

4.2 Syntactic model  
We believe that when a sentence is parsed according to some deep understanding of NLP, 
the syntactic association between words can show important logic and meanings between 
words, which are important aspects of semantics. Therefore, we construct a neural 
network especially designed for exploiting the syntactic information of the words in a 
sentence. Other researches on sentence similarity do not use syntactic information as we 
do; for example, the work of the MPCNN paper [He, Gimpel and Lin (2015)] does not 
consider the syntax of a sentence at all. Utilizing syntactic information should be a reason 
that supports the advantages of the performance of our solution. 

 

4.2.1 The Stanford CoreNLP syntactic relationships between words 
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We use the software package provided by the Stanford CoreNLP library [Manning, 
Surdeanu, Bauer et al. (2014)] to lexically analyze a sentence to obtain its tokens and 
syntactically analyze the tokens to label the syntactic relationships between them. There 
are more than 50 relationships between two words that Stanford CoreNLP can identify; 
some of them are listed in Tab. 1 as examples. Further descriptions of these relationships 
and their labels can be found on the website of Stanford CoreNLP 1 .We use these 
relationships to construct the input matrix to the syntax model.  

Table 1: Some syntactic relationships between words in a sentence 

Name Description 
amod Adjectival modifier; An adjectival modifier of an NP is any 

adjectival phrase that serves to modify the meaning of the NP. 
nsubj Nominal subject; A nominal subject is a noun phrase which is the 

syntactic subject of a clause. The governor of this relationship 
might not always be a verb: when the verb is a copular verb, the 
root of the clause is the complement of a copular verb, which can 
be an adjective or noun. 

nmod Modification of compound nouns. 
case Object pointing preposition. 
det Determiner; Decision words, such as articles, etc.  

 
Fig. 3 shows an example of the syntactic relationship between the words of a sentence 
that are labelled by the analysis of the Stanford CoreNLP software package.  

 
Figure 3: An example showing the syntactic relationships labeled by Stanford CoreNLP 
between the tokens in a sentence  

4.2.2 Input matrix to the syntactic model 
Given a sentence, afterword segmentation, suppose it has len words, we use the CoreNLP 
package to obtain the labeled relationships between the words of the sentence. Suppose 
the jth word and the kth word of the sentence have some relationship that is labeled as L, 
this fact is denoted as:   
𝑟𝑟𝑟𝑟la[𝑗𝑗][𝑘𝑘] = 𝐿𝐿 
Otherwise, if there is no relationship labeled between the two words, it is denoted as: 
rela[𝑗𝑗][𝑘𝑘] = ε 

 
1 stanfordnlp.github.io/CoreNLP 

https://stanfordnlp.github.io/CoreNLP/index.html
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The items at the diagonal of the matrix are specially chosen as the TF-IDF values [Wu, 
Luk, Wong et al. (2008)] of each word in the sentence so that an item M [j, j], for some j, 
is a value between 0 and 1 that represents the semantic weight of the jth token in the 
sentence with the consideration of the entire corpus in the background.  
The computation formula of a TF-IDF value is described in the following. Considering 
the jth word of a sentence s, denoted as s[j], its frequency in s, denoted as tf (j, s), is the 
number of occurrences of the word s[j] in s divided by the number of words in s. Given a 
corpus c, the number of sentences in c is denoted as |c|. Here we consider each sentence is 
a document in c.  The document frequency of a word x in a corpus c is the number of 
documents (sentences) in c where x appears, denoted as df (x, c). The Inverse Document 
Frequency of s[j] in c is computed by Eq. (5):  

idf(𝑗𝑗, 𝑠𝑠, 𝑐𝑐) =  𝑙𝑙𝑜𝑜𝑙𝑙𝑒𝑒 �
|𝑐𝑐|

df(𝑠𝑠[𝑗𝑗],𝑐𝑐)�                                                                                             (5) 

The TF-IDF value of the s[j] of a corpus c is computed by Eq. (6):   
tf_idf(𝑗𝑗, 𝑠𝑠, 𝑐𝑐) =  tf(𝑗𝑗, 𝑠𝑠) × idf(𝑗𝑗, 𝑠𝑠, 𝑐𝑐)                                                                                  (6) 
We consider using TF-IDF values at the diagonal is much more meaningful than using 
the cosine distance values between words that will always be 1 at the diagonal. This 
special choice of diagonal values makes a remarkable contribution to the performance of 
our algorithm. The related experiment details will be elaborated in Section 7.1.   
A len × len matrix can be constructed for the sentence as follows:  

M[j][k] = �
ifidf(𝑠𝑠𝑒𝑒𝑠𝑠,𝑗𝑗), if(𝑗𝑗 = 𝑘𝑘)

cosSim(vec(sen[𝑗𝑗]), vec(sen[𝑘𝑘])),  if�𝑗𝑗 ≠ 𝑘𝑘, 𝑎𝑎𝑎𝑎𝑎𝑎, (rela[𝑗𝑗][𝑘𝑘] ≠ 𝜀𝜀, 𝑜𝑜𝑟𝑟, rela[𝑘𝑘][𝑗𝑗] ≠ 𝜀𝜀)�
0,  else

         (7) 

In the example of Fig. 3, there are 9 tokens, so, the input matrix M to the syntactic model 
is (9×9). Since there is a relationship from the second word to the first word, 
M[1][2]=M[2][1]= cosSim(vec(sen[1]), vec(sen[2])) . Since there is no relationship 
between the 3rd and the 9th words, M [3][9]=M[9][3]=0. Again, the diagonal entries of the 
input matrix will be the TF-IDF values of the tokens. 

4.2.3 The convolution layer of the syntactic model 
The convolution process of the syntactic model is shown in Fig. 4. Comparing to the 
semantic model, the differences of the convolution process in the syntactic model is that, 
there are no multiple convolutions on different perspectives since there is only one filter 
used, which has a shifting window of size 2×2. Therefore, given a sentence with len 
tokens, the convolution of the syntactic model will output a matrix of size 
(len−1)×(len−1). The pooling computation is the same as the pooling computation after 
the word convolution of the semantic model (the lower part of Fig. 2), where a window of 
2×2 is used to apply the three pooling functions. Therefore, the pooling layer will output 
3 matrices of size (len−2)×(len−2).  
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Figure 4: The convolution and pooling layers of the syntactic model 

5 The similarity computation of sentence representations 
Given a sentence, the output of the syntactic model and semantic model includes vectors 
and matrices. A long vector is formed by concatenating all these vectors, and the columns 
of these matrices, following a certain order. This is done by the full connection layer in 
the neural network. Given two sentences, if they have different numbers of tokens, then 
their vectors will have different lengths. We add trailing 0’s to the shorter one to make 
the two vectors equal in length. We call such a long vector computed based on a sentence 
the representation vector of the sentence. We apply the cosine similarity formula (shown 
in Eq. (1)) to the two representation vectors of the two sentences to obtain the similarity 
score between them.  

6 Comparing the model computation of SSCNN with MPCNN 
The convolution in multiple perspectives in the semantic model is designed to capture the 
potential semantic meanings of the sentences, which is similar to the MPCNN algorithm 
[He, Gimpel and Lin (2015)]. The sub-sentence filters of our solution are similar to the 
holistic filer mentioned in the MPCNN paper, but we choose sub-sentence filters with 
different heights and a fixed-width, while the holistic filters in the MPCNN paper have 
fixed height but with variable widths. Our word filters are similar to the per-dimensional 
filters in the MPCNN paper, but our filters have a fixed width, while the per-dimensional 
filters have variable widths.  
The way that we choose the pooling functions is also similar to the MPCNN paper. There 
are two pooling functions, max and min, used by MPCNN, while we have three, with 
mean as the added one.  
Comparing with MPCNN, the computation of SSCNN is much simpler. In the MPCNN 
paper, convolutions are done separately to each different pooling function, while in our 
work the pooling functions all based on the same convolution computation. This simply 
implies that our solution is easier and faster to be implemented and executed. Experiments 
show that our solution, while simpler, has even better performance than MPCNN.  
Most of all, the input matrix to the neural networks of our work is completely different 
from the input matrix of the MPCNN paper, in which each column is the word vector of a 
word. We consider the special design of the input matrix in our work is crucial for the 
excelling performance of our solution.  
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7 Experiments 
In this section, we introduce the settings and results of the experiments, and how we 
designed experiments to optimize the algorithm.  

7.1 Implementation and comparison methods 
The authors of the original MPCNN paper published their code and data at an open 
repository on GitHub. However, the code is based on the PyTorch platform, while we 
prefer the TensorFlow platform for its popular technical convenience.  
There is a recently published project on GitHub that implements the algorithm of 
MPCNN on TensorFlow; we call it the MPCNN20181 project.  We found that the quality 
of MPCNN2018 is notably good comparing with other recent implementations of 
MPCNN.  We have scrutinized the code of MPCNN2018 and provided a considerable 
amount of updates to make sure that the model computation process of the MPCNN 
algorithm is exactly implemented on the TensorFlow platform. We have avoided some 
mistakes in the setting that of MPCNN2018, such as including the testing data as part of 
the training data. We used the same dataset that is used in the MPCNN2018 project. The 
code of our implementation of MPCNN, which we call the MPCNN2019 project2, has 
been uploaded to the open repository on GitHub.  
Our experimental setting has differences comparing with the original MPCNN paper. For 
example, our training data sets are different; also, some customized loss functions are 
used in the experiment setting of the original MPCNN paper, while we used a common 
Mean Square Error (MSE) loss function. These differences do not affect the validity of 
our experiment results regarding to comparing the performance of the algorithm of 
MPCNN and our algorithm, since the code of MPCNN2019 has correctly implemented 
the convolutional neural network algorithm of MPCNN, and in our experiments the two 
algorithms, MPCNN2019 and SSCNN, are tested with the same data sets and the same 
experimental settings.  
We implemented the neural networks using the framework of TensorFlow [Abadi, 
Barham, Chen et al. (2016)] with version 1.4.  TensorFlow has a feature that significantly 
simplifies the implementation work; for example, it provides the default implementation 
of the standard computations of CNN, such as the gradient descent computation, the loss 
function, etc. 

7.2 Preparing the source data 
We prefer to use some larger and more recent data sets than those used in the MPCNN 
project where the used data set is SemEval 2014; in comparison, we used all the data sets 
of SemEval from 2012 to 2017.  
We downloaded the files of the pretrained word vectors of English words from the GloVe 
[Pennington, Socher and Manning (2014)] website. We used the vectors of the words in a 
sentence to construct the input matrices to the neural networks.  

 
1 https://github.com/Fengfeng1024/MPCNN 
2 https://gitlab.com/rudyshine/SSCNN 

https://github.com/Fengfeng1024/MPCNN
https://gitlab.com/rudyshine
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The same set of word vectors are applied to the SSCNN and MPCNN models in the 
experiments for fairness of the comparison. The choice of using the pretrained word 
embeddings of GloVe provides some technical convenience and is sufficient to show the 
advantage of our model in the comparison. The output of Word2Vec varies on different 
datasets. Since the word embeddings are used in the two parts of the sentence model, we 
consider that the usage of word embeddings is more extensive in our model than other 
models, and our model will be more sensitive to the quality of word embeddings. If we 
compute the word embeddings using the Word2Vec algorithm directly on our experiment 
datasets and obtain word embeddings with better quality, we expect that the advantage of 
our model could be more obvious.   
The training data of the neural networks in our experiment are gathered from the 
SemEval system1, which includes all the training data that are published by SemEval for 
semantic similarity analysis from 2012 to 2017, totally about more than 20,000 pairs of 
sentences. For each pair of them, a similarity score from 0.0 to 5.0 is already marked.  
The testing data file is published by SemEval in 2017 (2017.dev), which includes more 
than 1000 pairs of sentences.  

7.3 Choosing the best configuration of input matrices 
In the early stage of the experiments, we trained the SSCNN model with 20,000 pairs of 
sentences without special considerations of the diagonals at the input matrices; i.e., the 
diagonals of input matrices of the semantic and syntactic models have all entries as 1.  
With the model trained like this, we tried different combinations to construct the input 
matrices for the convolutional neural networks. One choice is about to use the semantic 
model only, or the syntax model only, or both. Another choice is about putting the TF-
IDF values on the diagonal (left-top to lower-bottom) of which input matrix; we can 
choose to do it only to the input matrix to the semantic model, or only to the matrix to the 
syntactic model, or both, or none. For a matrix whose diagonal does not have the TF-IDF 
values, all entries on the diagonal are 1.  
Therefore, 8 different settings of these choices are tried. For each setting, we tested it 
with 400 pairs of sentences, and we record how many pairs of sentences have the correct 
similarity score (comparing the closest integers of the computed score and the already 
marked value). The results are shown in Tab. 2. The entry marked with the description 
string “(semantic)+(syntactic diagonal)” means that we chose to run both the semantic 
model (without the TF-IDF diagonal on its matrix), and the syntactic model (with the TF-
IDF diagonal).  The settings of the other entries in Tab. 2 are marked with the 
corresponding description strings.  
From Tab. 2, the best result belongs to the first row, which means that the best setting 
could be that we run both the syntactic and semantic models and put the TF-IDF diagonal 
only on the semantic model. Therefore, the SSCNN models are settled with this 
optimized setting and trained again. All the later comparison experiments are based on 
the optimized models, whose results are described in the rest of this section.  

 
1 https://en.wikipedia.org/wiki/SemEval 

https://en.wikipedia.org/wiki/SemEval
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Table 2: Experimenting different settings of the input matrices 

Model  setting Total  sentence 
pair num 

Success 
sentence pair 

num 

Precision 
rate 

(semantic diagonal)+(syntactic)  400 348 87% 
(semantic)+(syntactic diagonal)  400 332 83% 
(semantic)+(syntactic) 400 324 81% 
(semantic diagonal) 400 312 78% 
(semantic) 400 299 74% 
(semantic diagonal)+(syntactic 
diagonal)   400 154 38% 

(syntactic diagonal) 400 120 30% 
(semantic) 400 103 26% 

7.4 Experiment results and analysis 
7.4.1 Results of running SSCNN    

 

 
Figure 5: Results of training the SSCNN model 

Fig. 5 shows the results of training the SSCNN model with 20,000 pairs of sentences in 
9,000 steps. The pictures are automatically generated by the TensorBoard module of the 
TensorFlow system.  For each step, a set of 100 (the batch size) pairs of sentences are 
randomly chosen for the training computation. Among these 100 pairs of sentences, the 
computation results of 20 pairs of sentences are randomly chosen to draw the graph. The 
dark lines show the average values and the light lines show the highest and lowest values 
of every range of steps, with some chosen small range size.  
Given a batch of n sentence pairs, for the tth pair among them, for some number t, its 
labeled similarity value and computed similarity value are denoted as Ot and Pt 
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respectively.  The Mean Square Error of the computation on a batch of n sentence pairs is 
described by the following equation:  

MSE = 1
𝑁𝑁
∑  (O𝑡𝑡 − P𝑡𝑡)2𝑠𝑠
𝑡𝑡=1                                                                                                (8) 

The upper part of Fig. 5 shows the loss values at different steps computed by Eq. (8). A 
loss value shows some overall status of the errors of all the experimental samples (at a 
step). Therefore, with some higher loss value, the model is more error-prone at the step. 
The lower part of Fig. 5 shows the accuracy rate, which is the number of pairs of sentences 
with correct computed similarity scores divided by the total number of samples (100).  
We can see that for the SSCNN model, at the beginning of the training the model 
produces many errors. At the 9000th step, the results become stabilized at the best level. 

7.4.2 Results of running the MPCNN model  

 

 
Figure 6: Results of training the MPCNN model 

Fig. 6 shows the results of running the MPCNN model (code of the MPCNN2019 project) 
using the same experiment setting for the SSCNN model  (Fig. 5), which means the same 
training data sets, same experiment parameters, and the same text segmentation process and 
Word2Vec library provided by Stanford CoreNLP.    

7.4.3 Comparing the performance of the two models  
The experiment results in Figs. 5 and 6 are summarized in Tab 3. 
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Table 3: Experiment results of comparing the two models 

Condition of collected 
experiment data 

Number  of correct 
sentence pairs 

in training 

Accuracy of 
training  

Number of correct 
sentence pairs in 

testing 

Accuracy 
of testing 

Both models are correct 24611/29239 84.17% 808/1217 66.39% 

MPCNN is correct 26073/29239 89.17% 889/1217 73.05% 

SSCNN is correct 26504/29239 90.65% 927/1217 76.17% 

Comparing the two models, we can see that the SSCNN model has the following 
advantages over MPCNN: 
● More accurate. The SSCNN model stabilizes at the accuracy rate of around 76.17%, 
while the stabilized accuracy of the MPCNN model is around 73.05%.  
● Less variance. If we print the values of the samples as dots the graph, we can see that 
the track of dots for SSCNN is more condense, while MPCNN’s graph is sparser.  It 
suggests that the performance of SSCNN has less variance and more stable.   
● Faster. SSCNN surpasses MPCNN on accuracy at the step 2,000, when the achieved 
accuracy of SSCNN is about 60%.  In contrast, MPCNN needs about 2700 steps to 
achieve 60% accuracy. It suggests that less computation time is required by SSCNN to 
obtain some nearly optimal results. Also note that, since the convolution of SSCNN is 
much simpler than MPCNN, the computation time needed for each step is significantly 
less than MPCNN.  

8 Summary and future work 
We designed an algorithm (SSCNN) based on CNN for sentence similarity computation. 
Comparing with MPCNN, which is the most notable CNN-based algorithm for sentence 
similarity computation, SSCNN has simpler computation and better performance in terms 
of accuracy.  
In the future, we want to improve SSCNN by better utilization of syntax features. 
Although the algorithm has achieved positive effects by utilizing syntactic features of the 
sentences, there are a lot of useful syntactic features that are ignored by the algorithm.  
The direction and type of the relationship between two tokens are totally ignored in the 
input matrix to the syntactic model. We believe that if we can use these syntactic features 
more sufficiently, we can construct some more effective algorithms.  
We expect that SSCNN has potentials that are especially suitable for an IQA environment 
[Cui, Xiao, Wang et al. (2017)], for the following reasons: First, SSCNN requires less 
amount of computation, which can support the demand of quick response of Human-
Computer Interaction in an IQA environment. Second, in an IQA environment, the 
question sentences of users can be restricted to, or translated to, some certain forms of 
grammar structure for the convenience of the computation of an IQA system. According 
to our observation, when the grammar features of sentences are similar, the performance 
of SSCNN to compute the semantic similarity of the sentences is especially good. Third, 
for an IQA, the question sentences are likely to relate to a certain domain of purpose or 
knowledge. In this scenario, if some computation method is designed with the 
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consideration of the whole corpus, such as the TF-IDF formula adopted by the SSCNN 
model, its performance will be especially good.  
This research is partly motived by solving some practical problems of an IQA 
environment. We plan to integrate the algorithm deeply in an IQA with features of 
perpetual learning [Du (2018)]. Such a system will be updated manually or automatically 
upon the failure and success cases of processing question sentences. For example, if two 
words have similar meanings while the system judges them dissimilar, a library of similar 
word pairs can be updated to mitigate this problem. The SSCNN algorithm can evolve in 
an environment of an IQA system, which can work as an experimenting platform for the 
SSCNN algorithm. When the IQA and the SSCNN are deployed, the IQA will keep on 
processing more data through interaction with users, which means that the SSCNN model 
will keep on improving itself by continuous training.   
We expect that our approach to design SSCNN based on CNN can be similarly applied in 
a future task to design a better algorithm based on another model of neural networks, 
such as LSTM.  
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