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Abstract: Supervised machine learning approaches are effective in text mining, but their 
success relies heavily on manually annotated corpora. However, there are limited numbers 
of annotated biomedical event corpora, and the available datasets contain insufficient 
examples for training classifiers; the common cure is to seek large amounts of training 
samples from unlabeled data, but such data sets often contain many mislabeled samples, 
which will degrade the performance of classifiers. Therefore, this study proposes a novel 
error data detection approach suitable for reducing noise in unlabeled  biomedical event 
data. First, we construct the mislabeled dataset through error data analysis with the 
development dataset. The sample pairs’ vector representations are then obtained by the 
means of sequence patterns and the joint model of convolutional neural network and long 
short-term memory recurrent neural network. Following this, the sample identification 
strategy is proposed, using error detection based on pair representation for unlabeled data. 
With the latter, the selected samples are added to enrich the training dataset and improve 
the classification performance. In the BioNLP Shared Task GENIA, the experiments 
results indicate that the proposed approach is competent in extract the biomedical event 
from biomedical literature. Our approach can effectively filter some noisy examples and 
build a satisfactory prediction model. 
 
Keywords: Biomedical event extraction, pair representation, error data detection, sample 
identification. 

1 Introduction 
PubMed is one of the largest and most widely-used electronic medical literature resources. 
The medical literature in PubMed grows at approximately two pages per second, and there 
are currently at least 26 million articles in PubMed [Lu (2011)]. In the face of this rapid 
growth of unstructured literature, the number of topics that are of interest to researchers 
will surpass their ability to personally read and vet each potentially relevant article. 
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Therefore, the ability to automatically extract biomedical information would be helpful to 
researchers. Although many tools or methods for named entity recognition and relation 
extraction exist in the biomedical field, this simple approach is unable to meet researchers’ 
needs. Instead, extracting an understanding of biomedical events and their descriptions 
from biomedical literature is necessary. A biomedical event is a process of molecular 
interactions; finding them involves extracting the semantic and role information of 
biological events. Thus, accurately and effectively extracting complex biomedical events is 
a great challenge. Consequently, the possibility of automatically extracting biomedical 
events from large volumes of biomedical text has attracted increasing attention. 
Early detection of biomedical events is a simple process that extracts pairwise relations 
between entities, such as interactions between drugs (DDI) [Yamazaki (2018)], interactions 
between proteins (PPI) [Antonov, Dietmann, Rodchenkov et al. (2009)], and relationships 
between genes and disease [Lee, Ahmed, Loriot et al. (2018)]. However, these simple 
relationships are insufficient to represent the more complex relations often encountered in 
real-world situations. Therefore, a series of challenges entitled BioNLP Shared Task 
(BioNLP-ST) [Kim, Ohta, Pyysalo et al. (2009)] was formulated starting in 2009 by the 
BioNLP special interest group. The goal of these tasks is to extract rich, complex, structured 
biological process relationships from biomedical texts. The most important of these tasks is 
GE, which represents dynamic biological processes that involve a change in location or 
interactions between entities, such as genes, cells, and some chemicals.  
In general, a biomedical event extends binary relations by adding to their types and nesting. 
A binary relation consists of a trigger and one or more arguments. Most triggers are verbs 
(although a few are nouns) that cause interesting events. The arguments are the entities that 
participate in such events. A biomedical event extraction system must be able to identify 
triggers, their corresponding arguments, and the type of event to which they belong. For 
example, one biomedical event type in BioNLP-ST GENIA Event Extraction 2011 (GE’11) 
is divided into nine categories and was further extended to fourteen categories in BioNLP-ST 
GENIA Event Extraction 2013 (GE’13), such as gene_expression, transcription, localization, 
protein_catabolism and phosphorylation. These five events are called simple events (SVT) 
because each event has only one theme as its argument. In contrast, the three events 
regulation, positive_regulation, and negative_regulation may have complex structures that 
may include both a theme and an optional cause as their arguments; these typify a regulation 
event (REG). A binding is called a BIND event and may have two arguments. The 
complexity of such events can be demonstrated as an example: given the sentence “Sp1 and 
Sp3 regulate basal transcription of human APOBEC3G gene”, a biomedical event extraction 
system should extract the events shown in Fig. 1 and listed below. 
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(a) Sp1 and Sp3 regulate basal transcription of the human APOBEC3G gene

(b)

(c)

Sp1  and  Sp3        regulate    basal   transcription   of the human  APOBEC3G  gene
protein protein proteinTranscriptionRegulation

ThemeThemeCause
Cause

T1 Protein 0 3 Sp1
T2 Protein 8 11 Sp3
T3 Protein 54 62 APOBEC3G
T4 Regulation 12 20 regulate
T5 Transcription 27 40 transcription
E1 Transcription:T5 Theme:T3
E2 Regulation:T4 Theme:E1 Cause:T1
E3 Regulation:T4 Theme:E1 Cause:T2

 
Figure 1: Examples of biomedical events. (a) an example of sentences. (b) annotated 
event examples of the given sentence. (c) event examples visualization 

Supervised machine learning (SML) has been widely used in biomedical event extraction. 
The Turku system [Björne, Ginter and Salakoski (2012)] and the EVEX system [Kai, 
Landeghem, Salakoski et al. (2013)] use machine learning (ML) to extract biomedical 
events. Their approach relies on the pipeline model, the process of which can be divided 
into three phases: trigger identification, argument assignment and event element detection. 
Their pipeline models have achieved excellent results, but are subject to errors because 
each phase is conducted based on the previous step; thus, when a prior step obtains an 
incorrect result, the subsequent steps will also be incorrect—a situation known as 
“cascading errors.” The problem of cascading errors was overcome by the joint model 
[Björne, Heimonen, Ginter et al. (2009); Miwa, Saetre, Kim et al. (2010)]. Although joint 
models perform well, their computational cost is high because they regard all word 
combinations as possible events. The pairwise model [Özgür and Radev (2009); Xiao, 
Bordes and Grandvalet (2013)] is a combination of the pipeline and joint models that 
solves some of their shortcomings. The authors of Hou et al. [Hou and Ceesay (2015); 
Kolya, Ekbal and Bandyopadhyay (2012)] manually constructed suitable patterns for 
extracting biomedical events; the resulting models are called rule-based models. All the 
abovementioned systems are supervised learning approaches. 
However, one critical issue is not addressed well by the systems mentioned above. 
Annotated corpora are limited and imbalanced; they are insufficient to fully train a model, 
which may limit system performance. Manually constructing annotated corpora is a time- 
and labor-intensive task. To solve this problem, one feasible solution is to use large-scale 
unlabeled corpora because such unlabeled data are always easier to obtain. Wang et al. 
[Wang, Xu, Lin et al. (2013)] designed rich features that improved the accuracy of the 
trigger identification of biomedical event extraction using a semisupervised method. Zhou 
et al. [Zhou and Zhong (2015)] proposed a method that could automatically assign event 
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type by calculating the distance between sentences from unlabeled corpus and the 
sentences in the annotated corpus. Although the semisupervised method has its advantages, 
with the increase of training times, noise in the data is increasing and classification 
performance is decreasing, which requires an effective method to address this problem. 
Deep neural network models are often used to generate high-level semantic vectors and 
classification. Xiong et al. [Xiong, Shen, Wang et al. (2018)] used a new model which 
combines the CBOW model and CNN to generate sentence and paragraph vectors for the 
task of natural language processing. 
In this paper, we propose an error detection pair representation-based (EDPR) method to 
solve the problems mentioned above in biomedical event extraction. Our method is an 
iterative learning process using self-training (ST). First, we build a mislabeled dataset and 
generate sequential patterns from the mislabeled dataset to determine the patterns of those 
mislabeled samples. We then present the pattern-based vector representation of pairs, 
which is obtained by the means of convolutional neural network (CNN), long short-term 
memory recurrent neural network (C-LSTM), and sequence patterns. Following this, we 
design a sample identification strategy to remove those noisy samples which have a 
negative effect on the subsequent learning process. With the latter, the selected samples are 
added to enrich the training dataset and improve the classification performance. 

2 Materials and methods 
2.1 Text processing 
The text is preprocessed using natural language tools such as a parser, etc. For example, 
here, the labeled training data are analyzed by tokenization, sentence splitting and 
dependence parsing. We used the set of features proposed by Xiao et al. [Xiao, Bordes and 
Grandvalet (2013)] for classification. The features are as follows: 
Candidate entity features include base features, such as stem, part-of-speech (POS) and n-gram 
features (n = 2,3,4). Also, the base features of neighborhood around the candidate entity. 
Argument features include base features, the context around the argument and knowledge 
base features when the argument is a protein.  
Pairwise features include base features between candidate and argument, shortest 
dependency path features. Such as the E-walk (dep-tag, token, dep-tag) and V-walk (token, 
dep-tag, token) features between candidate and argument over the shortest path, where 
tokens are stem and POS tags, and dep-tags are the dependency labels. Besides, token 
sequence feature over the shortest path. 
The output of the text preprocessing step is used as the input for the subsequent step. 

2.2 Definitions in learning process 
The initial labeled dataset includes k event types and n samples is denoted as 𝐷𝐷𝐿𝐿 = {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑛𝑛 , 
let the label of 𝑥𝑥𝑖𝑖 be 𝑦𝑦𝑖𝑖 = j, j ∈ {0,1, … ,𝑘𝑘}, where 𝑥𝑥𝑖𝑖 belongs to the event type j. Among 
the initial labeled samples, those in the training dataset are denoted as 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛, 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 ⊂ 𝐷𝐷𝐿𝐿, 
while those in the development dataset are denoted as 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑, 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑 ⊂ 𝐷𝐷𝐿𝐿. Each sample 𝑥𝑥𝑖𝑖 
is represented as a pair (trigger, argument), where the trigger and argument exist in the 
same sentence. A base linear classifier F is trained on 𝐷𝐷𝐿𝐿, next the unlabeled dataset 𝐷𝐷𝑈𝑈 is 
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labeled using F. Then, the self-training method is applied to selects appropriate samples to 
add them into the training set. Our method is an iterative learning process until the 
maximum iteration number is satisfied. 

2.3 Sample identification based on error detection 
During the self-training process, with the unlabeled data which labeled incorrectly by the 
initial classifier incorporating into the training dataset, the classification performance is 
dramatically degraded. To solve this problem, we propose the EDPR method to identify the 
mislabeled samples. The purpose of EDPR is to ensure the credibility and integrity of 
predicted events. The training process of the proposed method are depicted in Fig. 2. We first 
build a mislabeled dataset and generate sequential patterns from the mislabeled dataset. 
Further, the sample pairs vector representations are obtained by the means of C-LSTM 
model and sequence patterns. Finally, a sample identification strategy based on EDPR 
analysis method is presented. 

2.3.1 The construction of mislabeled dataset   
In this study, we construct a mislabeled dataset. First, a linear classifier F0 is trained on 
𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛, which is used to predict a class label for each item in 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑. Then, the pseudo labeled 
development dataset is obtained, which is denoted as 𝐷𝐷𝑝𝑝𝑝𝑝𝑑𝑑. Second, for each sample 𝑥𝑥𝑝𝑝𝑝𝑝𝑑𝑑 in 
𝐷𝐷𝑝𝑝𝑝𝑝𝑑𝑑, if the corresponding label 𝑦𝑦𝑝𝑝𝑝𝑝𝑑𝑑 is different as it appears in raw 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑, the sample 𝑥𝑥𝑝𝑝𝑝𝑝𝑑𝑑 
is considered as mislabeled. Then, the mislabeled dataset is obtained denoted as 𝐷𝐷𝑚𝑚𝑖𝑖𝑝𝑝.  

 
Figure 2: An overview of training process in EDPR 
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2.3.2 Pattern generation 
In the pattern generation phase, the mislabeled dataset is used for pattern extraction. 
Initially, the typed dependency sequence generated from the shortest dependency path 
between pairs is denoted as 𝐷𝐷𝑚𝑚𝑖𝑖𝑝𝑝(𝑠𝑠) = {𝑠𝑠𝑛𝑛|𝑠𝑠1, 𝑠𝑠2,⋯ , 𝑠𝑠𝑛𝑛}. For example, the sequence 𝑠𝑠1 =
< 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑡𝑡𝑎𝑎,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 >is a typed dependency sequence. Following this, the 
PrefixSpan algorithm [Pei, Han, Mortazavi-Asl et al. (2002)] is applied to 𝐷𝐷𝑚𝑚𝑖𝑖𝑝𝑝(𝑠𝑠). And 
the frequent sequential pattern set is obtained. Sequential pattern mining aims to find 
frequent sub-sequences that satisfy the minimum support. Tab. 1 shows part of frequent 
sequential patterns, and the minimum support is set 2. 

Table 1: Part of frequent sequential patterns 
ID Sequence database  Frequent sequential pattern  
𝑠𝑠1 <prep_through, xsubj, nn> 

<prep_in, nn> 
<amod, nn> 

𝑠𝑠2 <amod, prep_to, prep_in, nn> 
𝑠𝑠3 < dobj nsubj prep_in nn> 
𝑠𝑠4 <amod, nn> 

2.3.3 Pairs representation 
A C-LSTM model-based vector representation of pairs is proposed in this study. The 
shortest dependency path parser is one of famous for syntactic analysis in biomedical event 
extract. Pairs vector representations make use of the shortest dependency path between 
pairs, which can capture rich semantic information. We expand the shortest dependency 
path by adding the subtrees to obtain more information, which was proposed by Yang et al. 
[Yang, Wei, Li et al. (2015)]. An example of expending shortest dependency path for pair 
(expression, IRF4) as follow: 
Raw Sentence: Absence of IRF-4 expression in leukemia cells is not due to promoter alterations. 
The word sequence of shortest dependency path: expression IRF-4. 
After expended word sequence: absence of IRF-4 expression in cells. 
The expended word sequence is denoted as 𝑆𝑆 =< 𝑤𝑤1,𝑤𝑤2,⋯ ,𝑤𝑤𝑛𝑛 > for a pair. Next, a 
sequence of vectors 𝑝𝑝 = [𝑥𝑥1,𝑥𝑥2,⋯ , 𝑥𝑥𝐿𝐿 ] for S is obtained by pre-training word vectors 
[Pyysalo, Ginter, Moen et al. (2013)], which gained from published materials 
PubMed-and-PMC-w2v word embedding (http://evexdb.org/pmresources/vec-space-models/). 
And the 𝑝𝑝 as raw input for the input layer of C-LSTM. The pair vector representation �⃗�𝑣𝑝𝑝 is 
then encoded by applying C-LSTM model. 
Neural network models can learn powerful features and have been achieved excellent 
results in sentence and text modeling. The C-LSTM model which combines convolution 
neural network with long short-term memory network is adopted in this paper. We 
followed the work of Zhou et al. [Zhou, Sun, Liu et al. (2015)] to build our C-LSTM 
model. They proposed the C-LSTM model can learn phrase-level features through 
convolutional layer and are fed into the LSTM to obtain the sentence representation.  
1) Convolution Neural Network 



Biomedical Event Extraction Using a New Error Detection                     929 

 
 

The C-LSTM model applies CNN to learn higher-level window features. Given a candidate 
pair (𝑡𝑡𝑖𝑖,𝑎𝑎𝑗𝑗), the corresponding expended word sequence is 𝑆𝑆 = {𝑤𝑤1,𝑤𝑤2,⋯ ,𝑤𝑤𝑛𝑛}. In the 
input layer, the sequence of vectors 𝑝𝑝 as raw input for CNN. Let 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑑𝑑 correspond to the 
d-dimensional word vectors for 𝑤𝑤𝑖𝑖 in an input 𝑆𝑆 (d is equal to 200). Then we get the word 
sequence matrix 𝑀𝑀 = [𝑥𝑥1,𝑥𝑥2,⋯ , 𝑥𝑥𝐿𝐿] ∈ 𝑅𝑅𝐿𝐿×𝑑𝑑, where L is the length of the sequence. In 
addition, if the length of input sequence has less than L, we pad zero vectors at the end (we 
set L=30). In the convolutional layer, a convolution operation is applied to produce a new 
feature through a filter. Let k be the length of the filter W ∈ 𝑅𝑅𝑘𝑘×𝑑𝑑. A window vector with k 
consecutive word vectors can be constructed to a matrix 𝑀𝑀𝑖𝑖,𝑖𝑖+𝑘𝑘−1 =
[𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1,⋯ , 𝑥𝑥𝑖𝑖+𝑘𝑘−1]𝜖𝜖𝑅𝑅𝑘𝑘×𝑑𝑑. Filter W convolves with matrix 𝑀𝑀𝑖𝑖,𝑖𝑖+𝑘𝑘−1 generate a feature 𝑐𝑐𝑖𝑖 
as follow: 
𝑐𝑐𝑖𝑖 = 𝑓𝑓(𝑊𝑊 ∙ 𝑀𝑀𝑖𝑖,𝑖𝑖+𝑘𝑘−1 + 𝑏𝑏)                                (1) 
where 𝑏𝑏 ∈ R is a bias term and f is a non-linear function, we choose the Rectified Linear 
Unit (Relu) as the non-linear function. Then, a feature map c is generated through a filter 
convolves with the k-window vectors at each position. 
c = [𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝐿𝐿−𝑘𝑘+1]                                      (2) 
After the convolutional layer, max-pooling operation is not applied to feature maps to 
extract the most important feature, instead, LSTM is stacked on the top of the CNN. LSTM 
is able to capture continuous features. Sequences of such higher-level representations are 
then fed into the LSTM to learn long-term dependencies.   
2) Long Short-Term Memory Networks 
LSTM to learn sequential correlations from higher-order sequential features. Here, the 
LSTM model describe the implementation used by the standard architecture [Hochreiter 
and Schmidhuber (1997)]. 𝑥𝑥𝑡𝑡 is the current input. At each time step, an old hidden state 
ℎ𝑡𝑡−1, an input gate 𝑖𝑖𝑡𝑡 , a forget gate 𝑓𝑓𝑡𝑡 , an actual input and an output 𝑎𝑎𝑡𝑡, these gates 
control the information flow for current memory cell 𝑐𝑐𝑡𝑡 and hidden state ℎ𝑡𝑡. The LSTM 
transition equations are the following: 
𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ∙ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)                                    (3) 
𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓 ∙ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)                                   (4) 
𝑢𝑢𝑡𝑡 = tanh(𝑊𝑊𝑞𝑞 ∙ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑞𝑞)                                 (5) 
𝑎𝑎𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)                                   (6) 
𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝑢𝑢𝑡𝑡                                      (7) 
ℎ𝑡𝑡 = 𝑎𝑎𝑡𝑡 ⊙ tanh(𝑐𝑐𝑡𝑡)                                          (8) 
where ⊙ denotes element-wise multiplication, 𝜎𝜎 is the logistic sigmoid function that 
make the gating values in [0,1]. LSTM is useful for learn long-term dependencies in 
sequences. In this paper, we regard the output of the hidden state at the last time step of 
LSTM to represent the vector of a pair. 
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2.3.4 Error detection approach 
The mislabeled dataset 𝐷𝐷𝑚𝑚𝑖𝑖𝑝𝑝 is divided into k-class subsets based on their event types at 
first, where 𝐷𝐷𝑚𝑚𝑖𝑖𝑝𝑝 = {𝐷𝐷𝑆𝑆𝑚𝑚𝑖𝑖𝑝𝑝

𝑚𝑚 }𝑚𝑚=1𝑘𝑘 . Given a mislabeled pair 𝑃𝑃𝑚𝑚𝑖𝑖𝑝𝑝_𝑖𝑖𝑗𝑗(𝑡𝑡𝑖𝑖,𝑎𝑎𝑗𝑗), 𝑃𝑃𝑚𝑚𝑖𝑖𝑝𝑝_𝑖𝑖𝑗𝑗(𝑡𝑡𝑖𝑖,𝑎𝑎𝑗𝑗) ∈
𝐷𝐷𝑆𝑆𝑚𝑚𝑖𝑖𝑝𝑝𝑚𝑚 , 𝑎𝑎 ∈ 𝑘𝑘, if the argument is a protein, we replace the protein name as keyword 
“protein”. For example, the pair (express, IRF4) is represented as (express, protein). There 
exist a variety of extended word sequence in different sentences for pair 𝑃𝑃𝑚𝑚𝑖𝑖𝑝𝑝_𝑖𝑖𝑗𝑗(𝑡𝑡𝑖𝑖,𝑎𝑎𝑗𝑗). Let 
the extended word sequence set for the pair 𝑃𝑃𝑚𝑚𝑖𝑖𝑝𝑝_𝑖𝑖𝑗𝑗(𝑡𝑡𝑖𝑖 ,𝑎𝑎𝑗𝑗) is 𝑆𝑆𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚_𝑚𝑚𝑖𝑖 = �𝑠𝑠𝑖𝑖𝑗𝑗�𝑖𝑖𝑗𝑗=1

𝑛𝑛 . Then 
each sequence 𝑠𝑠𝑖𝑖𝑗𝑗 of the pair 𝑃𝑃𝑚𝑚𝑖𝑖𝑝𝑝_𝑖𝑖𝑗𝑗(𝑡𝑡𝑖𝑖 ,𝑎𝑎𝑗𝑗) sequence set is feed into the C-LSTM model 
to obtain sequence vector �⃗�𝑣𝑝𝑝𝑚𝑚𝑖𝑖 . For each mislabeled pair 𝑃𝑃𝑚𝑚𝑖𝑖𝑝𝑝_𝑖𝑖𝑗𝑗(𝑡𝑡𝑖𝑖,𝑎𝑎𝑗𝑗) , the vector 
representation employs weighted mean method is computed as follows: 

�⃗�𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚_𝑚𝑚𝑖𝑖 =
∑ 𝑑𝑑�⃗ 𝑚𝑚𝑚𝑚𝑖𝑖∙𝑓𝑓𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖∈𝑆𝑆𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚_𝑚𝑚𝑖𝑖
∑ 𝑓𝑓𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖∈𝑆𝑆𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚_𝑚𝑚𝑖𝑖

                                     (9) 

�⃗�𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚_𝑚𝑚𝑖𝑖  represents the vector of the mislabeled pair 𝑃𝑃𝑚𝑚𝑖𝑖𝑝𝑝(𝑡𝑡𝑖𝑖 ,𝑎𝑎𝑗𝑗). Let the frequent patterns 
set is FS, 𝑓𝑓𝑝𝑝𝑚𝑚𝑖𝑖  is the number of sequences that 𝑠𝑠𝑖𝑖𝑗𝑗  contains in FS. For example, let 
sequences FS1 = {amod, prep_to, nn}, FS2={amod, nn} and FS3={prep_to, nn} are the 
three frequent sequences in FS. For the sequence 𝑠𝑠𝑖𝑖𝑗𝑗 = {amod, prep_to, prep_in, nn}, it 
contains the three frequent sequences, so 𝑓𝑓𝑝𝑝𝑚𝑚𝑖𝑖=3. For each predicted pair 𝑃𝑃𝑝𝑝𝑡𝑡𝑑𝑑_𝑔𝑔ℎ(𝑡𝑡𝑔𝑔,𝑎𝑎ℎ), 
use C-LSTM model to obtain sequence vector �⃗�𝑣𝑝𝑝𝑔𝑔ℎ, where 𝑠𝑠𝑔𝑔ℎ represents the sequence 
between the trigger 𝑡𝑡𝑔𝑔 and argument 𝑎𝑎ℎ. If the 𝑎𝑎ℎ is a protein, we replace the 𝑎𝑎ℎ  as 
keyword “protein”. Then calculated similarity of mislabeled and predicted pair 
corresponding to the same class based on pair vector. The formula is given as follows. 

𝑆𝑆𝑖𝑖𝑎𝑎�𝑃𝑃𝑝𝑝𝑡𝑡𝑑𝑑_𝑔𝑔ℎ,𝑃𝑃𝑚𝑚𝑖𝑖𝑝𝑝_𝑖𝑖𝑗𝑗� �
cos(�⃗�𝑣𝑝𝑝𝑔𝑔ℎ , �⃗�𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚_𝑚𝑚𝑖𝑖) 𝑖𝑖𝑓𝑓 𝑔𝑔 = 𝑖𝑖 and ℎ = 𝑗𝑗

0 𝑎𝑎𝑡𝑡ℎ𝑝𝑝𝑝𝑝𝑤𝑤𝑖𝑖𝑠𝑠𝑝𝑝
                                      (10) 

Given a threshold α, if the 𝑆𝑆𝑖𝑖𝑎𝑎�𝑃𝑃𝑝𝑝𝑡𝑡𝑑𝑑_𝑔𝑔ℎ,𝑃𝑃𝑚𝑚𝑖𝑖𝑝𝑝_𝑖𝑖𝑗𝑗� > 𝛼𝛼, this predicted pair is considered as 
mislabeled sample. Algorithm 1 summaries the learning process of the proposed method. 

Algorithm 1  
1: Initialize: 
2: Given an initial labeled dataset 𝐷𝐷𝐿𝐿，𝐷𝐷𝐿𝐿 = 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 ∪ 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑，and 

unlabeled dataset 𝐷𝐷𝑈𝑈. 
3: Maximum iteration number t 
4: Train an initial classifier 𝐹𝐹0 using 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 
5: 𝐷𝐷𝑚𝑚𝑖𝑖𝑝𝑝 = Data_process () 
6: while (not reach maximum iteration t) do 
7:    if 𝑡𝑡 = 0 then 
8:       𝐹𝐹 =  𝐹𝐹0 
9:    else 
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10:      Train classifier F using 𝐷𝐷𝐿𝐿 
11:   end if 
12:   Select a batch of candidate samples 𝐷𝐷𝑏𝑏𝑡𝑡𝑡𝑡𝑏𝑏ℎ from 𝐷𝐷𝑈𝑈. 
13:   Obtain the prediction set 𝐷𝐷𝑏𝑏𝑡𝑡𝑛𝑛𝑑𝑑 by current classifier F 
using 𝐷𝐷𝑏𝑏𝑡𝑡𝑡𝑡𝑏𝑏ℎ. 
14:   𝐷𝐷𝑏𝑏𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛=Error_Detection (𝐷𝐷𝑏𝑏𝑡𝑡𝑛𝑛𝑑𝑑) 
15:   Update 𝐷𝐷𝐿𝐿 = 𝐷𝐷𝐿𝐿 + 𝐷𝐷𝑏𝑏𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛, 𝐷𝐷𝑈𝑈 = 𝐷𝐷𝑈𝑈 − 𝐷𝐷𝑏𝑏𝑡𝑡𝑡𝑡𝑏𝑏ℎ. 
16: end while 
17: procedure Data_process () 
18:   Initialize 𝐷𝐷𝑚𝑚𝑖𝑖𝑝𝑝 = ∅. 
19:   Use 𝐹𝐹0 to predict class label of 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑, and obtain the 
pseudo labeled dataset 𝐷𝐷𝑝𝑝𝑝𝑝𝑑𝑑. 
20:   Given (𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑,𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑) ∈ 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑 
21:   for each �𝑥𝑥𝑝𝑝𝑝𝑝𝑑𝑑,𝑦𝑦𝑝𝑝𝑝𝑝𝑑𝑑� ∈ 𝐷𝐷𝑝𝑝𝑝𝑝𝑑𝑑 do 
22:     if �𝑥𝑥𝑝𝑝𝑝𝑝𝑑𝑑,𝑦𝑦𝑝𝑝𝑝𝑝𝑑𝑑� in 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑 then 
23:       if 𝑦𝑦𝑝𝑝𝑝𝑝𝑑𝑑 ! = 𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑 then  
24:          𝐷𝐷𝑚𝑚𝑖𝑖𝑝𝑝 = 𝐷𝐷𝑚𝑚𝑖𝑖𝑝𝑝 ∪ (𝑥𝑥𝑝𝑝𝑝𝑝𝑑𝑑 ,𝑦𝑦𝑝𝑝𝑝𝑝𝑑𝑑) 
25:       end if 
26:     end if 
27:   end for 
28:  Divide 𝐷𝐷𝑚𝑚𝑖𝑖𝑝𝑝 into k subsets based on event types, 𝐷𝐷𝑚𝑚𝑖𝑖𝑝𝑝 =
{𝐷𝐷𝑆𝑆𝑚𝑚𝑖𝑖𝑝𝑝

𝑚𝑚 }𝑚𝑚=1
𝑘𝑘 . 

29:  return 𝐷𝐷𝑚𝑚𝑖𝑖𝑝𝑝. 
30: end procedure 
31: procedure Error _Detection (𝐷𝐷𝑏𝑏𝑡𝑡𝑛𝑛𝑑𝑑) 
32:  Obtain pair vector �⃗�𝑣𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚_𝑚𝑚𝑖𝑖  of 𝑃𝑃𝑚𝑚𝑖𝑖𝑝𝑝_𝑖𝑖𝑗𝑗(𝑡𝑡𝑖𝑖,𝑎𝑎𝑗𝑗)  using Eq. 
(9),𝑃𝑃𝑚𝑚𝑖𝑖𝑝𝑝_𝑖𝑖𝑗𝑗 ∈ 𝐷𝐷𝑆𝑆𝑚𝑚𝑖𝑖𝑝𝑝𝑚𝑚 , 𝐷𝐷𝑆𝑆𝑚𝑚𝑖𝑖𝑝𝑝

𝑚𝑚 ⊂ 𝐷𝐷𝑚𝑚𝑖𝑖𝑝𝑝 
33:  Select samples set 𝐷𝐷𝑏𝑏𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 based on pair vector using Eq. 
(10), 𝐷𝐷𝑏𝑏𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 ⊂ 𝐷𝐷𝑏𝑏𝑡𝑡𝑛𝑛𝑑𝑑 
34:  return 𝐷𝐷𝑏𝑏𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛. 
35: end procedure 

3 Results 
3.1 Experimental setup 
In this section, we evaluate our proposed EDPR approach on the GE’11 and GE’13 corpora. 
We use a linear support vector machine (SVM) with a “one-vs-the-rest” multiclass strategy 
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as the base classifier and adopt the Charniak-Johnson parser with the biomedical parsing 
model of McClosky et al. [Mcclosky, Surdeanu and Manning (2011)] to create dependency 
features. Nine types of events are defined in GE’11 but fourteen types of events are defined 
in GE’13. Because very few samples of the newly defined event types in GE’13 are 
available, this study uses only the nine event types defined in GE’11 for this evaluation. In 
our experiment the unlabeled corpora including proteins annotations 
(bioconcepts2pubtator_offsets.gz) are downloaded from PubTator 
(ftp://ftp.ncbi.nlm.nih.gov/pub/lu/PubTator/) [Wei, Kao and Lu (2013)]. We limited the 
full learning process to 5 iterations, and 300 articles per iteration, the threshold of a sample 
identification strategy is 0.6. During each iteration, the samples meet the criteria of EDPR 
will be added to the training dataset automatically. An official online assessment tool is 
applied to optimize all the parameters on the development set, and all our experimental 
results are reported as approximate span, recursive. 

3.2 Experiment results 
To verify the effectiveness of our proposed EDPR method, we conduct the experiments 
with GENIA dataset. Tab. 2 provides details of the GE’11 test results, the F-score of SVT 
event class reaches 73.82, while that of Bind event class is 52.10 and that of REG event 
class is 45.19, and the total F-score of 55.74 achieves good results. Tab. 3 gives the results 
of the experiment using the proposed method on GE’13 test set. 

Table 2: Results of our method on test set of GE’11 

Event class Event type Rec. (%) Prec. (%) F (%) 

SVT 

Gene_expression 75.15 83.39 79.06 
Transcription 53.45 70.45 60.78 
Protein_catabolism 80.00 80.00 80.00 
Phosphorylation 69.19 86.49 76.53 
Localization 31.41 86.96 46.15 
TOTAL 66.75 82.56 73.82 

BIND Binding 51.73 52.48 52.10 

REG 

Regulation 41.82 47.21 44.35 
Positive_regulation 40.40 52.33 45.60 
Negative_regulation 48.51 41.65 44.82 
TOTAL 42.56 48.16 45.19 

ALL TOTAL 52.08 59.96 55.74 
Performance is shown in Recall (REC.), Precision (Prec.) and F-score (F). 
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Table 3: Results of our method on test set of GE’13 

Event class Event type Rec. (%) Prec. (%) F (%) 

SVT 

Gene_expression 81.42 85.71 83.51 
Transcription 49.50 71.43 58.48 
Protein_catabolism 57.14 57.14 57.14 
Phosphorylation 78.75 78.75 78.75 
Localization 27.27 87.10 41.54 
TOTAL 72.00 82.85 77.04 

BIND Binding 40.24 44.82 42.41 

REG 

Regulation 23.61 43.87 30.70 
Positive_regulation 37.52 61.54 46.62 
Negative_regulation 42.40 47.55 44.83 
TOTAL 36.78 54.46 43.91 

ALL TOTAL 47.83 63.20 54.45 
Performance is shown in Recall (REC.), Precision (Prec.) and F-score (F). 

3.3 Experiment analysis and performance evaluation 
This section gives a more detailed analysis of performances of the proposed method. To 
better build a mislabeled dataset, we analyze the proportion of each event in the training set, 
and the different distribution of error samples of each event in the five section groups of 
GE’13 development (GE’13 development provides online error analysis). Fig. 3(a) shows 
the proportion of each event in the training set, where positive_regulation accounts for 31.8% 
of the total, followed by Gene_expression, Negative_regulation, Reuglation and Binding, 
which is 21.6%, 13.6%, 11% and 9.5% respectively. And we can see from Fig. 3(b) that the 
error rate of Positive_regulation, Gene_expression, Binding, Neagtive_regulation and 
Regulation are the largest in the five section groups of GE’13, other events with less error 
rate in Fig. 3(b) have less proportion in Fig. 3(a). Therefore, when we build the mislabeled 
dataset, we only consider the aforementioned events, which have more mislabeled samples, 
because too few samples of event are not conducive to the next stage of pair representation, 
thus affecting the predictive performance of the classifier in this event.  
Sample identification process for some examples are summarized in Tab. 4. For example, the 
first row shows that a candidate pair (positive, CD40) in Sentence ID 8 of PMID-10096561 
is predicted to Gene_expression event type. We will find generated vector for pair (positive, 
protein) by the proposed method in the mislabeled database, and then compare the similarity 
with the corresponding candidated sample (positive, CD40). The similarity score of the pair 
(positive, protein) and candidatedsample (positive, CD40) is 0.89, which is higher than the 
threshold 0.6. We consider that the candidated sample is noise and it will be discarded and 
not added to the training set. The event type of the pair (positive, CD40) in the development 
set is None in fact. Therefore, this EDPR method is effective. 
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Figure 3: (a) Event proportion in training set. (b) Error event distribution in different 
sections of GE’13 development set 

Table 4: Examples of error event 

To illustrate the effectiveness of EDPR, we compare EDPR, the original model and 
original model with ST (Original-ST) on the GE’11 development set; the paper shows only 
the results from 300, 600, 900, 1200 and 1500 articles. As show in Fig. 4, during the 
iteration process, the F-score of the green and blue curves show a trend of first rising and 
then falling, but the F-score of green curve is always higher than that of blue curve. The 

Document ID Sentence 
ID Sample pair Short Sentence Similarity 

Score Predicted Type True 
Type 

PMID-10096561 8 
positive, 

CD40 

some CD40 positive 
immunogenic human 

MMs 
0.89 Gene_expression None 

PMID-9796702 11 in response 
to, activated 

PKB is activated in 
response to triggering 

required sufficient  
0.85 Positive_regulation None 

PMID-9796963 5 altered, 
expression 

characterize altered 
expression TCRzeta 

activation 
0.79 Regulation Negative_

regulation 

PMID-10415075 0 expression, 
p65-RelA 

associated decreased 
p65-RelA protein 

expression 
0.8 Gene_expression None 

PMID-10096561 4 triggering, 
CD40  

stimulation beta CD40 
triggering 0.92 Positive_regulation None 
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phenomenon shows that the approach of EDPR is more effective under the same 
semi-supervised condition. Tab. 5 provides the number of samples added by EDPR and 
Original-ST model during these five iterations. Obviously, EDPR adds fewer samples than 
Original-ST model in each iteration process, this also shows that the proposed method can 
effectively remove noise and achieve better performance of the classifier. 

 
Figure 4: Event proportion in training set 

Table 5: Statistics on the added samples 
Numbers of articles 

method 
0 300 600 900 1200 1500 

Original 11419 - - - - - 
Original-ST 11419 13456 15314 17206 19104 21466 

EDPR  11419 12705 13882 15069 16266 17366 

To further demonstrate the effectiveness of EDPR, we present a detailed analysis 
comparing EDPR, original model with and without ST on GE’11 (GE’13) development set 
when they are optimal in the iteration process. As shown in Fig. 5, we find that the F-score 
of each event of EDPR and original -ST model is higher than that of original model without 
ST. However, those less proportionate event in the training dataset do not improve 
significantly. Two reasons to cause the problem have been studied, 1) the classifier itself 
has a high accuracy in predicting those events; 2) we do not build these events into the 
mislabeled dataset. In addition, although the Binding event do not achieve the desired 
results, which may be caused by its particularity. A possible explanation for this is that 
Binding event may have one or two arguments which is protein (see Section 1). However, 
the proposed method is pairwise-based, that is to say, all our work is done in the case of 
extracting pair (trigger, argument). Although Binding event accounts for a larger 
proportion in training set (see Fig. 3(a)), we do not take into account the case of Binding 
event including two arguments, which would result in too few samples of Binding event in 
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the mislabeled dataset. The data in Tab. 6 can illustrate this problem, take GE’13 
development set for example, the number of Binding events including one argument 
(trigger, argument) is 187, while the number of Binding events including two arguments 
(trigger, argument, argument) is 215. Therefore, the number of error samples we generated 
is insufficient in mislabeled dataset, which leads to the less improvement of Binding event. 
Nevertheless, the effect of REG event (positive_regulation, regulation and 
negative_regulation) which is complex and the most challenge event type is very obvious. 

Table 6: Statistics of Binding event with different argument in training and development set 

Item 
Training Devel 

GE’11 GE’13 GE’11 GE’13 
Binding (Theme(P))  708 91 190 187 

Binding (Theme(P)+)  280 104 185 215 
Total 988 195 375 402 

Theme(P) denotes one parameter, Theme(P+) denotes two parameters. 

 
Figure 5: Comparison the optimal F-score of EDPR (error detection pair 
representation-based) and Original model (original labeled dataset) for each event on the 
GE’11 development set 

3.4 Performance comparision with different methods on gene corpus 
Tab. 7 shows the results of comparisons with other systems reported in Lu et al. [Lu, Ma, 
Lu et al. (2016); Kim, Wang, Takagi et al. (2011); Munkhdalai, Namsrai and Ryu (2015)]. 
As shown, our proposed method achieves a better performance than do the other systems 
with different types of algorithms. For example, UMass is rule-based, UTurku, MSR-NLP 
and study [Lu, Ma, Lu et al. (2016)] involve SML methods, and Research [Mehryary, 
Kaewphan, Kai et al. (2016)] is a combination of supervised and unsupervised approach. 
The overall F-score of EDPR for all event types is 55.74, which is slightly higher than 
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UMass (approximately 0.54 points) a rule-based system. Moreover, it is higher than the 
other four machine learning systems for all event types (Research [Mehryary, Kaewphan, 
Kai et al. (2016)] is 54.71, Study [Lu, Ma, Lu et al. (2016)] is 53.81, UTurku is 53.30 and 
MSR-NLP is 51.50). In addition, almost every value obtained from our approach performs 
well on the various event classes. These results demonstrate that our approach EDPR is 
effective on the GE’11 test set.  

Table 7: Performance comparison with other systems on GE’11 test set 

System 
SVT BIND REG All 

Rec./Prec./F-score Rec./Prec./F-score Rec./Prec./F-score Rec./Prec./F-score 
Ours 66.75/82.56/73.82 51.73/52.48/52.10 42.56/48.16/45.19 52.08/59.96/55.74 

UMass 67.01/81.40/73.50 42.97/56.42/48.79 37.52/52.67/43.82 48.49/64.08/55.20 
Research [Mehryary, 
Kaewphan, Kai et al. 

(2016)] 
- - - 48.78/62.27/54.71 

Study [Lu, Ma, Lu et 
al. (2016)] 

68.60/80.34/74.01 47.66/56.52/51.71 38.97/43.88/41.28 50.35/57.79/53.81 

UTurku 68.22/76.47/72.11 42.97/43.60/43.28 38.72/47.64/42.72 49.56/57.65/53.30 
MSR-NLP 68.99/74.30/71.54 42.36/40.47/41.39 36.64/44.08/40.02 48.64/54.71/51.50 

Performance is shown in Recall (REC.), Precision (Prec.) and F-score (F). 

The GE’13 test set contains only full text and does not include abstracts, which is different 
from the GE’11 test data. Therefore, it is most “realistic” and the most challenging dataset. 
To evaluate the performance of the proposed method, we compared our method’s results 
with those of EVEX, TEES 2.1, BIOSEM, NCBI and Study [Lu, Ma, Lu et al. (2016)] on the 
GE’13. The other results were reported in Kim et al. [Kim, Wang and Yasunori (2013)]. 
EVEX and TEES 2.1 are typical SVM-based pipleline model, BIOSEM uses a ruled-based 
method, Study [Lu, Ma, Lu et al. (2016)] is also pairwise model like us and NCBI adopts the 
method of joint model. From Tab. 8, we can see that the Precision and F-score of ALL of 
proposed approach are the highest in all systems, but the performance on BIND is far worse 
than that on BIOSEM which is the best on BIND extraction by far. Moreover, the recall of 
ALL of proposed method is slightly lower than Study [Lu, Ma, Lu et al. (2016)] which use 
the method of improving recall on the premise of ensuring accuracy, the recall of ours is 
47.83 and Study [Lu, Ma, Lu et al. (2016)] is 48.65. In general, the results show that our 
approach performed very well regarding F-score of ALL, which may be attributed to our 
EDPR algorithm filtering some noisy examples. Therefore, our method is shown to be 
effective, it can extract biomedical events well from the GE’13 test set. 
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Table 8: Performance comparison with other systems on GE’13 test set 
      Event class 

System 
SVT BIND REG ALL 

Ours 72.00/82.85/77.04 40.24/44.82/42.41 36.78/54.46/43.91 47.83/63.20/54.45 
Study [Lu, Ma, Lu 

et al. (2016)] 74.12/77.56/75.80 39.34/44.11/41.59 37.24/45.74/41.05 48.65/56.24/52.17 

EVEX 73.82/77.73/75.72 41.14/44.77/42.88 32.41/47.16/38.41 45.87/58.03/51.24 
TEES 2.1 74.52/77.73/76.09 42.34/44.34/43.32 33.08/44.78/38.05 46.60/56.32/51.00 
BIOSEM 67.71/86.90/76.11  47.45/52.32/49.76 28.19/49.06/35.80 42.47/62.83/50.68 

NCBI 72.99/72.12/72.55 37.54/41.81/39.56 24.74/55.61/34.25 40.53/61.72/48.93 

Performance is shown in recall/precision/F-score. 

4 Discussion 
This study has concentrated on error data detection to reduce noise from unlabeled corpus to 
improve the classifier performance. The proposed method involves analyzing the data and 
can be split into three steps: construction of mislabeled dataset, pair vector generation of 
error samples, and a sample identification strategy. Extensive experiments were conducted to 
evaluate the system’s performance. These experimental results provide substantial evidence 
for the proposed method. Furthermore, pair vector representation of error samples has played 
a very important role, the representation and sample identification strategy in filter noisy 
samples performed very well. Overall, the proposed approach both achieves the desired 
effectiveness and improves the biomedical event extraction performance.  
Despite the great advantages, the proposed method has also various disadvantages. First of 
all, events with minority classes samples are ignored when building mislabeled dataset. Too 
few samples are not conducive to the pattern generation of error samples. In this case, it may 
introduce more noise. Secondly, the effectiveness of extracting multi-argument events needs 
to be improved. And then, due to the limitation of GENIA corpus, the number of error 
samples of constructing mislabeled dataset is also limited. Finally, the validity of the 
proposed method is verified in GENIA corpus, but not in the latest biomedical literatures. In 
the future, we will expand the mislabeled dataset by adding samples of minority classes 
event and multi-argument event, test further by latest biomedical literature.  

5 Conclusion 
In this paper, we described a biomedical event extract approach based on error data 
detection using deep learning techniques. In the BioNLP Shared Task GENIA, the 
experiment results indicate that the proposed approach is competent in extract the biomedical 
event from biomedical literature. We compared the performance of the proposed approach 
with other systems and achieved a significant effect in biomedical event extract. 
Further research on biomedical complex event is necessary. The error detection for 
multi-parameter complex events can be used to improve our approach in future studies. And 
we will further study protein complexes through existing methods in the future. 
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