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Abstract: With the continuous expansion of software scale, software update and 
maintenance have become more and more important. However, frequent software code 
updates will make the software more likely to introduce new defects. So how to predict the 
defects quickly and accurately on the software change has become an important problem 
for software developers. Current defect prediction methods often cannot reflect the feature 
information of the defect comprehensively, and the detection effect is not ideal enough. 
Therefore, we propose a novel defect prediction model named ITNB (Improved Transfer 
Naive Bayes) based on improved transfer Naive Bayesian algorithm in this paper, which 
mainly considers the following two aspects: (1) Considering that the edge data of the test 
set may affect the similarity calculation and final prediction result, we remove the edge data 
of the test set when calculating the data similarity between the training set and the test set; 
(2) Considering that each feature dimension has different effects on defect prediction, we 
construct the calculation formula of training data weight based on feature dimension weight 
and data gravity, and then calculate the prior probability and the conditional probability of 
training data from the weight information, so as to construct the weighted bayesian 
classifier for software defect prediction. To evaluate the performance of the ITNB model, 
we use six datasets from large open source projects, namely Bugzilla, Columba, Mozilla, 
JDT, Platform and PostgreSQL. We compare the ITNB model with the transfer Naive 
Bayesian (TNB) model. The experimental results show that our ITNB model can achieve 
better results than the TNB model in terms of accurary, precision and pd for within-project 
and cross-project defect prediction. 
 
Keywords: Cross-project defect prediction, transfer Naive Bayesian algorithm, edge 
data, similarity calculation, feature dimension weight. 

1 Introduction 
As the software scale and its complexity increase, the number of defects generated will 
increase dramatically. Based on the software defect problem in the current software 
development field, some researchers have proposed software defect prediction technology, 
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which is to mine and extract historical information and code information in the process of 
software project development, and analyze the strongly related information, and then 
establish a specific prediction model by mathematical statistics, machine learning and other 
methods to predict the software defects [Malhotra and Khanna (2017)].  
Software defect prediction has the following research significance: (1) Reasonable 
allocation of test resource. Defect prediction technology can help testers to locate the 
position and number of software modules in advance, so as to allocate test resources 
reasonably, improve test efficiency and save cost [Li, Zhang, Wu et al. (2012)]. (2) 
Discover software defects in time and improve the quality of software products. (3) Help 
the new project to establish a reasonable cross-project prediction model through other 
project information. 
Most of the current defect prediction methods are for the within-project defect prediction. 
Some defect data in the same project are used as the training set to build the prediction 
model, and the remaining small number of data are used as test set to test the performance 
of the prediction model. However, it is often a new project that needs to be predicted in the 
actual development. Due to relatively few historical information of the newly established 
project, the training data that can be extracted is too small to conduct accurate defect 
prediction. Therefore, we can use historical defect data from other projects to construct a 
reasonable defect prediction model for the new project by learning the idea of transfer 
learning, that is, cross-project defect prediction [Xu, Liu, Luo et al. (2018)]. Since 
application scenarios, development environment, developers and development languages 
between two different projects are not necessarily the same, the features of the dataset 
between the source project and the target project tend to be quite different [Herbold, 
Trautsch and Grabowski (2017)], so how to transfer effective feature from the source 
project to construct the prediction model of the target project will be a challenge. 
Due to the similarity of data sets on the within-project defect prediction, it is relatively 
simple to extract relevant features, and can achieve better prediction result. However, in 
terms of cross-project defect prediction, because of the large difference between two 
different projects, it is particularly important to extract the common features between 
source project and target project [Zhang, Keivanloo and Zou (2017)]. The current transfer 
Naive bayesian model mainly extracts features from common feature spaces between 
different projects, and transfers effective information to reduce data differences, but 
sometimes discarded data may be useful data, resulting in relatively poor prediction 
effect [Ma, Luo, Zeng et al. (2012)]. 
In order to solve the problem that the transfer Naive bayesian model cannot fully reflect 
the data feature and the detection effect is not ideal enough, we propose a novel defect 
prediction model named ITNB (Improved Transfer Naive Bayes) based on improved 
transfer Naive Bayesian algorithm in this paper. 
The main contributions of this paper are as follows: 
(1) we propose a novel defect prediction model named ITNB based on improved transfer 
Naive Bayesian algorithm in this paper. The model removes the edge data in the test set 
when calculating the data similarity between the training set and the test set, and 
constructs the calculation formula of training data weight based on feature dimension 
weight and data gravity. 
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(2) We conduct a large number of within-project and cross-project software defect 
prediction experiments on six datasets from large open source projects, and compare the 
ITNB model with the transfer Naive Bayesian (TNB) model. The experimental results 
show that our ITNB model can achieve better results than the TNB model in terms of 
accurary, precision and pd.  
The rest of this paper is organized as follows. Section 2 describes the background and 
related work. Section 3 details the proposed ITNB model. Section 4 shows the 
experimental setup, including data sets and evaluation metrics. Section 5 evaluates the 
performance of our ITNB model. Section 6 describes the threats to our work. We 
conclude this paper and describe future work in Section 7. 

2 Background & related work 
2.1 Within-project defect prediction 
At present, some researchers mainly use the machine learning algorithm to construct the 
defect prediction model on the within-project defect prediction. In addition, how to 
optimize the data structure and extract effective feature are also the focus of current 
research. Some important research works will be summarized below. 
Elish et al. [Elish and Elish (2008)] use support vector machine (SVM) to conduct defect 
prediction and compare its predictive performance with eight statistical and machine 
learning models on four NASA data sets. Lu et al. [Lu, Kocaguneli and Cukic (2014)] 
leverage active learning to predict defect, and they also use feature compression techniques 
to make feature reduction on defect data. Li et al. [Li, Zhang, Wu et al. (2012)] propose a 
novel semi-supervised learning method-ACoForest, which can sample the prediction 
modules that are most helpful for learning. Rodriguez et al. [Rodriguez, Herraiz, Harrison 
et al. (2014)] compare different methods for different data preprocessing problems, such as 
sampling method, cost sensitive method, integration method and hybrid method. The final 
experimental results show that the above different methods can effectively improve the 
accuracy of defect prediction after performing the class imbalance. Seiffert et al. [Seiffert, 
Khoshgoftaar, Van Hulse et al. (2014)] analyze 11 different algorithms and 7 different data 
sampling techniques, and find that class imbalance and data noise would have the negative 
impact on prediction performance. 

2.2 Cross-project defect prediction 
For cross-project software defect prediction, since application scenarios, development 
environment, developers and development languages between two different projects are 
not necessarily the same, the features of the dataset between the source project and the 
target project tend to be quite different, so how to transfer effective feature from the 
source project to construct the prediction model of the target project will be a challenge. 
Briand et al. [Briand, Melo and Wust (2002)] first propose the earliest cross-project 
defect prediction, which uses logistic regression and MARS (Multivariate Adaptive 
Regression Splines) to construct the defect prediction model for the Xpose project, and 
conducts perform prediction for the Jwrite project. They find that the performance of 
cross-project defect prediction is lower than that of within-project defect prediction, and 
the main reason for this result is the feature difference between different projects. 
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Ma et al. [Ma, Luo, Zeng et al. (2012)] propose a transfer Naive Bayesian (TNB) model, 
which sets weight for instance in the source project, and effectively improves the 
accuracy of defect prediction. But the TNB model only uses the maximum and minimum 
values of the feature to construct the feature weight, and cannot fully reflect the features 
of the data. 
Watanabe et al. [Watanabe, Kaiya and Kaijiri (2008)] propose a defect prediction method 
based on different metric elements, which corrects metric element values of the target 
project and the source project, and they find that both the accuracy and the recall are 
significantly improved. Jureczko et al. [Jureczko and Madeyski (2010)] use k-means and 
kohonen neural network to analyze multiple related projects. The experimental results 
show that predicting a project using multiple similar projects can achieve better 
prediction effect. Cheng et al. [Cheng, Wu and Yuan (2016)] calculate the difference 
between the source project and the target project, and then convert it into weight 
information, so as to establish the defect prediction model. Chen et al. [Chen, Fang, 
Shang et al. (2015)] argue that the distribution disparity between cross-company data and 
within-company data often makes it difficult to establish high-quality cross-project defect 
prediction model. They narrow the gap by reducing the negative samples for the cross-
company data, thereby improving the performance of cross-project defect prediction. 
Abaei et al. [Abaei, Rezaei and Selamat (2013)] propose the self-organizing mapping 
(SOM) prediction model with the threshold, which can help testers to mark modules 
without the need of experts. 

3 Methodolody 
We propose the ITNB model based on improved transfer Naive Bayesian algorithm. The 
model removes the edge data in the test set when calculating the data similarity between 
the training set and the test set, and constructs the calculation formula of training data 
weight based on feature dimension weight and data gravity. 
For within-project defect prediction, we group the data into the training set and the test set 
according to the time sequence. For cross-project defect prediction, we use the data sets 
constructed by different projects as the training set and test set respectively for experiments. 
The workflow of the ITNB model is shown in Fig. 1. The model consists of the following 
four steps: (a) Feature extraction; (b) Data preprocessing; (c) Improved transfer Naive 
Bayesian model construction; (d) Within-project and cross-project defect prediction. 

3.1 Feature extraction 
Because the quantity and quality of features will directly affect the final prediction effect, 
we must first extract effective features from the software history repository. 
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Figure 1: Framework of the ITNB model 

We first extract various quantifiable change features from the software history repository 
(i.e., the change of known label), which can distinguish whether the change is defective 
or not. In this paper, we use 11 basic defect change features proposed by Kamei et al. 
[Kamei, Shihab, Adams et al. (2012)], these features can be classified into the following 
four dimensions: diffusion, size, purpose and experience, as shown in Tab. 1. 

Table 1: Descriptions of 11 basic change features 

Dimension Name Description 

Diffusion 

NS The number of modified subsystems 
ND The number of modified directories 
NF The number of modified files 

Entropy Distribution of modified code across each file 

Size 
LA Lines of code added 
LD Lines of code deleted 
LT Lines of code in a file before the change 

Purpose FIX Whether or not the change is a defect fix 

Experience 
EXP Developer experience 

REXP Developer experience on a subsystem 
SEXP Developer experience on a subsystem 

3.2 Data preprocessing 
The data preprocessing in this paper includes two parts: class imbalance processing and 
data standardization. 

3.2.1 Class imbalance processing 
Class imbalance is a common problem in software defect data sets. The distribution of 
software defect in the project is roughly in line with the pareto principle, that is, 20% of 
the program modules contain about 80% of the defects. For the defect prediction data set, 
the number of defective modules (a few class) is less than that of the non-defective 
modules (majority class). If there is the serious class imbalance problem in the software 
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defect data set, the prediction effect of the model is relatively poor. 
In this paper, we adopt the SMOTE (Synthetic Minority Oversampling Technique) 
method [Chawla, Bowyer, Hall et al. (2002)] to conduct the class imbalance processing. 
This method is an improved scheme based on random oversampling algorithm. Because 
random oversampling adopts the strategy of simply copying samples to increase the 
number of a few class samples, the model is easy to overfit, and the SMOTE algorithm 
can avoid the problem of overfitting to a certain extent. The basic idea of SMOTE 
algorithm is to analyze a few class samples and manually synthesize new samples based 
on a few class samples, and add them to the dataset at the same time. In summary, the 
SMOTE algorithm synthesizes new samples for a few class based on interpolation. 
This step is critical for software defect prediction, because it helps the trained classifier 
does not bias towards non-defective modules (majority class), thereby improving the 
performance of software defect prediction. 

3.2.2 Data standardization 
Since the distribution of the 11 basic defect change feature values extracted is of large 
difference, even not in the same order of magnitude, if the original measure value is used 
for analysis, the function of the higher value in the comprehensive analysis will be 
highlighted, and the function of the lower value is relatively weakened. 
Therefore, in order to ensure the reliability of the results, we adopt the min-max 
standardization method [Nam, Pan and Kim (2013)], which can make the values of 
each metric in the same dimension and can be consistent with feature values of the 
original distribution. 
The calculation equation for the min-max normalization method is as shown in Eq. (1): 

)()(

)(~j

i ss
sss jj

jj

i

minmax

min

−

−
=                                                                                                 (1) 

where max(sj) and min(sj) are the maximum and minimum values in the vector sj, 
respectively. 

3.3 Improved transfer naive Bayesian model construction 
After data preprocessing, we will construct a weighted Bayesian model for these 
numerical features. We first remove the edge data in the test set when calculating the 
similarity between the test set and the training set. Then, based on the feature dimension 
weight and the data gravity, we construct the calculation formula of the training data 
weight. Finally, we calculate the prior probability and conditional probability of training 
data based on the weight information, so as to construct the weighted Bayesian classifier 
for software defect prediction. 

3.3.1 Similarity calculation 
Because the features between the training set and the test set may be different, especially 
development languages, development process and developers among different projects 
are different, and the feature differences are even greater. Therefore, we first need to 
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calculate the similarity between the training set features and the test set features. 
Before calculating the feature difference between the training set and the test set, we find 
that the proportion of edge data is often less by analyzing the data distribution of each 
feature, and the maximum and minimum vectors constructed by a small amount of data 
will affect the prediction effect, so we first need to remove these edge data. 
The values of each feature in the test set need to be rounded approximately, and divided 
into [0,10] intervals, namely [0,1], (1,2], ..., (9,10]. Then we calculate the percentage of 
each feature in each interval, and we remove the intervals where the percentage is less 
than 5%. We construct the maximum vector and minimum vector by taking the maximum 
value and minimum value of each feature in the test set with edge data removed. 
After obtaining the maximum and minimum vectors, we assume that the features of each 
dimension have the same effect on the classifier. For each training instance, we can 
obtain the similarity of the training set and the test set by calculating the position of each 
feature between the maximum value vector and the minimum value vector. 
In this paper, we define each instance as Ai={ai1,ai2,...,aik}, aij is the jth feature of Ai, and k is 
the number of features. For each instance Ai in the training set, we calculate the number of 
similar features, the equation is as shown in Eq. (2) [Ma, Luo, Zeng et al. (2012)]: 
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Then we can calculate whether each feature value in each instance Ai is between the 
maximum vector and the minimum vector of each feature defined in the test set according 
to the above formula. If the feature value of the instance is between the maximum vector 
and the minimum vector, the similarity of the instance is increased by 1, otherwise the 
similarity is unchanged. In this way, we can calculate the similarity value of each 
instance in the training set. 
The pseudo code of the similarity calculation algorithm between training set and test set 
is as shown in the algorithm 1. 
Through the pseudo code of the algorithm 1, we can summarize the steps of similarity 
calculation as follows: (1) Remove a small amount of edge data in the test set; (2) 
Calculate the maximum vector and the minimum vector of each feature in the test set; (3) 
Calculate the similarity of each instance data in the training set by comparing the 
maximum vector and the minimum vector. 
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Algorithm 1 Similarity calculation algorithm between training set and test set 
Input:  

training set: Tr={tr1, tr2,..., trn}; test set:  T={t1, t2, ..., tm}; the number of features 
in the training set and test set: k 
Output: 

D: the set of instance similarity in the training set: S[i] 
1:   len1←the length of training set Tr; 
2:   len2←the length of test set T; 
3:   Define the two-dimensional array arr1[len2][k] in the test set; 
4:  Define the two-dimensional array arr2[len2][k] of interval values into which the 

feature values in the test set are converted; 
5:   Define the array arrMax[k] of the largest vector in the test set; 
6:   Define the array arrMin[k] of the smallest vector in the test set; 
7:   Define the similarity array S[len1] for each instance in the training set; 
8:   # Calculate the interval value of the feature in the test set 
9:   for i←0 to len2-1 do 
10:      for j←0 to k-1 do 
11:   arr1[i][j]←the jth feature value in the test set; 
12:          arr2[i][j]←the interval value into which the jth feature value in the test set 

is converted; 
13:      end for 
14: end for 
15: # Remove edge data in array arr2[i][j] 
16: if the percentage of the arr2[i][j] interval <5% then 
17:     Remove arr2[i][j] interval; 
18: else 
19:     Save arr2[i][j] interval; 
20: end if 
21: # Calculate the maximum vector and minimum vector of each feature in the test set 
22: for i ←0 to len2-1 do 
23:      for j←0 to k-1 do 
24:   if arr1[i][j]>arrMax[j] then 
25:        arrMax[j]← arr1[i][j]; 
26:   end if 
27:   if arr1[i][j]<arrMin[j] then 
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28:      arrMin[j]←arr1[i][j]; 
29: end if 
30:     end for 
31: end for 
32: # Calculate the similarity of each instance data in the training set 

33: for i←0 to len1-1 do 
34:     for j← 0 to k-1 do 
35:  if arr[i][j] >=arrMin[j] && arr[i][j] <=arrMax[j] then 
36:       S[i]=S[i]+1; 
37:  end if 
38:     end for 
39: end for 
40: return S[i]    

3.3.2 Training data weight calculation 
After calculating the similarity values of each instance in the training set, we convert 
these similarity values into the weights of training data, which are mainly constructed by 
feature dimension weight and data gravity. 
Different from the traditional transfer Naive Bayesian model [Ma, Luo, Zeng et al. (2012)], 
we consider the feature dimension weight in this paper. We leverage feature dimension 
information to construct dimension-based weight. In the Section 3.1, we can distinguish the 
feature values extracted by different methods into four dimensions according to their 
features, each of which contains a part of the feature value information. 
We obtain the dimension weight of the training instance by calculating the weights of four 
dimensions of a training instance respectively. The specific method is as follows: First, we 
calculate whether each feature value in the first dimension is between the maximum value 
and minimum value of the corresponding feature in the test instance. If it is between the 
maximum value and the minimum value, the similarity of the feature is 1, otherwise 0. 
Then, when obtaining the similarity of each feature value in one dimension, we calculate 
the weighted average value of these feature and take it as the weight value of these features 
in the dimension. Finally, we repeat the above method to obtain the weighted average 
values of other dimensions, so as to get the weight value of each dimension. The dimension 
weight equation of one training instance is as shown in Eq. (3): 
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where i is the number of one instance, n is the number of dimensions, which is 4 in this 
paper, and win is the weight of one dimension. 
In order to effectively transfer the information in the test set, we leverage the idea of data 
gravity to construct the data weight. Data gravity refers to the idea of universal gravitation 
used in data analysis to simulate the gravity between data [Peng, Yang, Chen et al. (2009)]. 
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The weight between the training data and the test data is like the gravitation F in the 
universal gravitation. We assume that the quality of one feature in the instance is M, then 
the quality of the test data is kmM, and the quality of the training data between the 
maximum vector and the minimum vector is MSi. Therefore, the weight wi of the training 
instance Ai is inversely proportional to r2=(k-Si+1)2, and is proportional to kSimM2 [Ma, 
Luo, Zeng et al. (2012)]. Combined with the information of the above dimension weights, 
we further conclude that it is proportional to wdiSi. Therefore, the weighting equation of 
one training instance Ai is defined as shown in Eq. (4): 
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where Si is the similarity value of each instance Ai, and k is the number of feature. 
From the above formula, we can know that the more similar the feature data of the 
training instance Ai is to the test set, the greater the weight of the instance Ai will be. 
When the value of the similarity Si is equal to the number k of features, all the features 
are located between the maximum vector and the minimum vector. At this time, the k-
Si+1 is equal to 1, and the feature weight will be the largest and only affected by the 
weight value of the dimension. 
Then we need to calculate the prior probability based on the weighted data. The 
individual probability on the right side of the original bayesian prior probability equation 
is estimated based on the weighted data. In order to reflect the class distribution of the 
test data, we need to modify the original bayesian equation. If the training data is more 
similar to the test data, we need to give the training data a higher weight, and assign 
higher weight to the class of the training data. According to Frank et al. [Frank, Hall and 
Pfahringer (2002)], we rewrite the equation of prior probability as shown in Eq. (5): 
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where wi is the weight of the training instance, yi is the class value of the training instance 
Ai, n is the total number of training instances, ny is the total number of classes, and the 
function λ (yi, y) is an index function, when yi=y, λ (yi,y)=1, otherwise λ (yi,y)=0. 
The equation for the conditional probability is rewritten as shown in Eq. (6):                                                                        
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where aij is the jth feature value in the ith training instance, aj is the jth feature value, and 
nj is the number of different values of the jth feature. 

3.3.3 Weighted bayesian classifier construction 
We define Tr={(x1,y1),(x2,y2),...,(xn,yn)} as the source project data set, where xi represents 
the ith instance, yi is the feature of the instance xi, and n is the number of the data, yi ∈  
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(true,false). We define the test data set as T={t1,t2,...,tm}, where m is the number of 
instances in the test dataset. Based on the prior probability P(y) and the conditional 
probability P(aj | y) in the above section, we can define the following bayesian classifier 
to classify the instance t in the test dataset [Ma, Luo, Zeng et al. (2012)]: 
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where t={a1,a2,...,ak}, aj is the jth feature of the test data instance t, k is the number of 
features, P(y | u) represents the posterior probability, and P(y) represents the priori 
probability, P(aj | y) represents the conditional probability. 

3.4 Within-project and cross-project defect prediction 
When constructing the defect prediction model, we need to verify the validity of the 
model. We conduct the within-project defect prediction and the cross-project defect 
prediction to verify our ITNB model, respectively. 
For within-project defect prediction, we consider that many new technologies and 
development methods will affect the new code submitted after the update, and even 
introduce new defects in software development. Therefore, we first sort the data according 
to time sequence, and then divide the data of two years into a group, and select the data of 
the previous year as the training set and the data of the next year as the test set. This not 
only guarantees the integrity of a project development cycle, but also guarantees that the 
amount of data for two years in the training set is sufficient enough, so as to make the result 
of the within-project defect prediction more accurate. 
For cross-project defect prediction, we combine six data sets in pairs as training set and 
test set respectively, and use our ITNB model to conduct defect prediction on any pair of 
combinations. This can not only make the amount of data sufficient in the training set and 
the test set, but also ensure the diversity of instances. 
The pseudo code for our ITNB is shown in the algorithm 2: 

4 Experimental setup 
In this section, we will introduce the experimental setup, including data sets, evaluation 
metrics. We conduct the experiments on a 3.6 GHz i7-4790 CPU machine with 8 GB RAM. 

4.1 Data sets 
In this paper, we use six datasets from large open source projects, namely Bugzilla, Columba, 
Mozilla, JDT, Platform and PostgreSQL, which are large, well-known and long-term projects 
covering a wide range of fields and scales [Kamei, Shihab, Adams et al. (2012)]. 
 
 
 
 

 

   



902                                                                              CMC, vol.63, no.2, pp.891-910, 2020 

Algorithm 2 ITNB 
Input: 

training set: Tr = {tr1, tr2,..., trn}; test set: T = {t1, t2, ..., tm} 
Output: 

result set: R 
1:   for one training instance tri∈Tr do 
2:       Calculate the data similarity of the instance Ai by the Eq. (2); 
3:   end for 
4:   for one training instance tri∈Tr do 
5:        Calculate the dimension weight of the instance Ai by the Eq. (3); 
6:         Calculate the data weight of the instance Ai by the Eq. (4); 
7:   end for 
8:  Construct a weighted bayesian model by the data weight of the training instance Ai, 

Eqs. (5) and (6); 
9:   for one test instance ti∈T do 
10:   Conduct within-project defect prediction and cross-project defect prediction by Eq.  

(7); 
11:     Store the defect prediction result in R; 
12: end for 
13: return R 

Tab. 2 lists the statistics for six datasets from these projects. As can be seen from Tab. 2, 
the first column and the second column are the project name and the time period for 
collecting changes, respectively. The third to sixth columns are the total number of 
changes, the percentage of defect-inducing changes, the average LOC for each change, 
and the number of files modified on average per change. The total number of changes in 
these six data sets are from 4,455 to 98,275, which are very helpful for us to conduct 
empirical research. All datasets in this paper are unbalanced, and the percentage of 
defect-inducing changes ranges from 5% to 36%. Therefore, both the training set and the 
test set need to perform class imbalance processing first.  
To make our results more reliable, we use 10 times 10-fold cross-validation to evaluate 
the performance of the ITNB model, so each dataset is randomly divided into 10 folds, 
where 9 folds are used as the training dataset and the remaining 1 fold is used as the test 
dataset. To further reduce experimental error, we perform 10 times cross-validation and 
record the average performance. 
 
 
 
 

Table 2: Statistics of the datasets 
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Project                 Period                Total       % of       Avg LOC   #Modified Files 
                                                              Changes   Defects   Per Change    Per Change 

Bugzilla 08/1998-12/2006 4620 36% 37.5 2.3 
Platform 05/2001-12/2007 64250 14% 72.2 4.3 
Mozilla 01/2000-12/2006 98275 5% 106.5 5.3 

JDT 05/2001-12/2007 35386 14% 71.4 4.3 
Columba 11/2002-07/2006 4455 31% 149.4 6.2 

PostgreSQL 07/1996-05/2010 20431 25% 101.3 4.5 

4.2 Evaluation metrics 
In order to evaluate the experimental results of the ITNB model, we use five metrics such 
as accurary, precision, recall, F1, and pf, which are widely used to evaluate the 
performance of software defect prediction [Menzies, Milton, Turhan et al. (2010); 
Monden, Hayashi, Shinoda et al. (2013); Zhong, Khoshgoftaar and Seliya (2004); Yang, 
Zhou, Liu et al. (2016); Zimmermann, Premraj and Zeller (2007)]. They can all be 
calculated from the confusion matrix of classification results. The confusion matrix is 
shown in Tab. 3. The calculation equation for these five metrics are as follows: 

Table 3: Confusion matrix of classification results 

Confusion 
matrix 

Predicted 
Positive(P) Negative(N) 

Actual 
True(T) TP FN 
Flase(F) FP TN 

accurary: In the defect prediction, the proportion of the correct result predicted by the 
predictor to the total program module, as shown in Eq. (8): 

TNFPFNTP
TNTPaccurary

+++
+

=                                                                                   (8) 

precision: The proportion of defective modules in the defective module predicted by the 
predictor, as shown in Eq. (9): 

FPTP
TPprecision
+

=                                                                                                      (9) 

recall: In all defective modules, the proportion of defective modules predicted by the 
predictor, as shown in Eq. (10): 

FNTP
TPrecall
+

=                                                                                                          (10) 

F1: The harmonic mean of precision and recall, as shown in Eq. (11): 

recallprecision
recallprecisionF

+
××

=
21                                                                                          (11) 
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pf: In all non-defective modules, the proportion of defective modules predicted by the 
predictor. The smaller the pf value, the better the model prediction effect, as shown in 
Eq. (12): 

FPTN
FPpf
+

=                                                                                                               (12) 

5 Experimental results 
In this section, we will introduce our experimental results. We evaluate and discuss the 
performance of our ITNB model by setting up the following three research questions (RQ). 
RQ1: For within-project and cross-project defect prediction, can class imbalance 
processing improve the performance of the ITNB model? 
For the class imbalance problem in the within-project and cross-project defect prediction, 
we use the SMOTE method to conduct class imbalance processing, as shown in Figs. 2 
and 3. The evaluation metric values in the comparison figure is the average of the 
experimental results in the six data sets. 

 
Figure 2: Comparison figure before and after class imbalance processing for within-
project defect prediction 
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Figure 3: Comparison figure before and after class imbalance processing for cross-
project defect prediction 

From Figs. 2 and 3, we can find that the experimental effect on the data sets with class 
imbalance processing is significantly better in terms of accuracy, precision and F1 for 
within-project defect prediction and cross-project defect prediction. Only on the recall of 
within-project defect prediction, the effect on the data sets without class imbalance 
processing is better. This is because the similarity of the data sets for within-project is 
high, so it is better on the recall without class imbalance processing. However, due to the 
large difference between data sets, the effect is better on the recall with class imbalance 
processing for cross-project defect prediction. 
Through the QR1, we can find that because the defection class is significantly less than 
the non-defection class, the final experimental results often cannot reflect the true 
prediction result of a few class. Therefore, it is very necessary for us to conduct class 
imbalance processing before defect prediction. 
RQ2: Is the performance of our ITNB model better than the transfer naive Bayesian 
(TNB) model for within-project defect prediction? 
For within-project defect prediction, we first sort the data according to time sequence, 
and then divide the data of two years into a group, and select the data of the previous year 
as the training set and the data of the next year as the test set. This not only guarantees the 
integrity of a project development cycle, but also guarantees that the amount of data for 
two years in the training set is sufficient enough. 
We use the ITNB model and the TNB model to conduct within-project defect prediction 
based on the partitioned data. The experimental results are shown in Tab. 4. 
From Tab. 4, we can find that the ITNB model is better than the TNB model on the 
accuracy, precision and pf. However, consider that the accuracy and precision may be 
more important in the defect prediction, so our ITNB model is very meaningful. We also 
find that in these experiments with a small amount of data, the final results are often poor. 
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For example, the prediction interval of Bugzilla is 2000.01-2001.12 and the prediction 
interval of Platform is 2007.01-2007.12, where the former has a small amount of data in 
the training set and the latter has a small amount of data in the test set. 

Table 4: Comparison table of the experiment results for within-project defect prediction 
Data 
sets 

Time 
interval 

precision recall accurary pf F1 
ITNB TNB ITNB TNB ITNB TNB ITNB TNB ITNB TNB 

Bug 2000.01-2001.12 0.489 0.442 0.072 0.124 0.378 0.333 0.123 0.201 0.126 0.194 
2002.01-2003.12 0.687 0.631 0.098 0.201 0.421 0.398 0.071 0.104 0.173 0.305 
2004.01-2005.12 0.777 0.753 0.253 0.341 0.489 0.457 0.120 0.198 0.382 0.469 
2006.01-2006.12 0.845 0.841 0.417 0.453 0.617 0.598 0.106 0.156 0.559 0.589 

Col 2004.01-2005.12 0.911 0.900 0.434 0.487 0.633 0.623 0.064 0.089 0.588 0.632 
2006.01-2006.12 0.925 0.912 0.586 0.611 0.743 0.719 0.060 0.109 0.717 0.732 

JDT 2003.01-2004.12 0.920 0.921 0.582 0.578 0.744 0.698 0.060 0.167 0.713 0.710 
2005.01-2006.12 0.913 0.894 0.635 0.619 0.772 0.749 0.069 0.098 0.749 0.732 

2007.01-2007.12 0.915 0.887 0.646 0.639 0.784 0.778 0.066 0.145 0.757 0.743 
Moz 2002.01-2003.12 0.913 0.902 0.811 0.849 0.862 0.849 0.083 0.102 0.859 0.860 

2004.01-2005.12 0.930 0.891 0.825 0.883 0.878 0.883 0.066 0.089 0.874 0.869 

2006.01-2006.12 0.910 0.901 0.753 0.812 0.837 0.812 0.077 0.092 0.824 0.813 
Pla 2003.01-2004.12 0.923 0.921 0.588 0.598 0.749 0.698 0.058 0.113 0.718 0.725 

2005.01-2006.12 0.926 0.897 0.646 0.663 0.776 0.753 0.064 0.103 0.761 0.762 

2007.01-2007.12 0.302 0.321 0.191 0.201 0.876 0.795 0.048 0.093 0.234 0.247 
Pos 1998.01-1999.12 0.937 0.895 0.527 0.601 0.700 0.649 0.051 0.078 0.675 0.719 

2000.01-2001.12 0.951 0.921 0.511 0.532 0.693 0.632 0.039 0.067 0.664 0.674 
2002.01-2003.12 0.955 0.945 0.583 0.641 0.737 0.702 0.040 0.059 0.724 0.764 
2004.01-2005.12 0.930 0.887 0.602 0.652 0.745 0.667 0.061 0.108 0.731 0.752 
2006.01-2007.12 0.935 0.921 0.600 0.598 0.752 0.694 0.054 0.106 0.731 0.725 
2008.01-2009.12 0.925 0.931 0.671 0.643 0.792 0.734 0.064 0.113 0.778 0.761 

2010.01-2010.05 0.930 0.927 0.554 0.559 0.745 0.721 0.046 0.087 0.695 0.697 
Average 0.857 0.838 0.527 0.552 0.715 0.680 0.068 0.113 0.638 0.658 

RQ3: Is the performance of our ITNB model better than the TNB model for cross-
project defect prediction? 
For cross-project defect prediction, we combine six data sets in pairs as training set 
andtest set respectively, and use the ITNB model and the TNB model to conduct defect 
prediction on any pair of combinations. This can not only make the amount of data 
sufficient in the training set and the test set, but also ensure the diversity of instances. The 
experimental results are shown in Tab. 5. 
From Tab. 5, we can find that our ITNB model is better than the TNB model on accuracy, 
precision and pf. The TNB model is better than the ITNB model in terms of recall and F1. 
Considering that the ITNB model removes edge data when calculating similarity, it is likely 
to remove some useful data, so ITNB model is not able to find as many defects as possible 
on recall. Although we remove some test set data for similarity calculation, the removal of 
some useless information and the reassigned weight of each dimension make the weight of 
each feature no longer the same, which improves the accuracy and precision of the final 
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prediction results. 

Table 5: Comparison table of the experimental results for cross-project defect prediction results 
Data 
sets 

Test 
sets 

precision recall accurary pf F1 
ITNB  TNB ITNB  TNB ITNB  TNB ITNB  TNB ITNB  TNB 

Bug 
 

Col 0.860 0.833 0.390 0.401 0.603 0.601 0.091 0.112 0.537 0.541 
JDT 0.883 0.879 0.546 0.637 0.716 0.718 0.085 0.125 0.675 0.739 
Moz 0.881 0.867 0.739 0.751 0.815 0.759 0.106 0.156 0.804 0.805 
Pla 0.873 0.881 0.552 0.589 0.715 0.711 0.095 0.123 0.676 0.706 
Pos 0.889 0.859 0.515 0.549 0.686 0.669 0.085 0.091 0.652 0.670 

Col Bug 0.929 0.893 0.216 0.398 0.510 0.459 0.026 0.067 0.350 0.551 

JDT 0.923 0.916 0.534 0.558 0.725 0.659 0.052 0.119 0.677 0.694 

Moz 0.911 0.897 0.734 0.749 0.827 0.763 0.075 0.121 0.813 0.816 

Pla 0.931 0.882 0.530 0.601 0.725 0.698 0.046 0.068 0.675 0.715 

Pos 0.901 0.901 0.505 0.583 0.688 0.682 0.068 0.070 0.650 0.708 
JDT Bug 0.922 0.887 0.390 0.491 0.606 0.574 0.052 0.099 0.548 0.632 

Col 0.870 0.849 0.415 0.487 0.618 0.601 0.089 0.128 0.562 0.619 

Moz 0.869 0.801 0.837 0.886 0.851 0.831 0.133 0.157 0.852 0.832 
Pla 0.931 0.873 0.674 0.721 0.797 0.772 0.059 0.089 0.782 0.790 

Pos 0.875 0.821 0.631 0.649 0.737 0.668 0.121 0.149 0.733 0.725 
Moz Bug 0.958 0.923 0.470 0.512 0.663 0.641 0.032 0.095 0.631 0.659 

Col 0.837 0.801 0.444 0.491 0.621 0.606 0.124 0.198 0.580 0.609 

JDT 0.894 0.881 0.692 0.721 0.790 0.779 0.096 0.154 0.780 0.793 
Pla 0.914 0.904 0.708 0.701 0.807 0.799 0.078 0.134 0.798 0.790 

Pos 0.870 0.819 0.673 0.695 0.756 0.715 0.135 0.211 0.759 0.752 
Pla Bug 0.939 0.907 0.484 0.501 0.665 0.667 0.050 0.094 0.638 0.645 

Col 0.850 0.825 0.431 0.443 0.619 0.601 0.109 0.192 0.572 0.576 

JDT 0.902 0.891 0.667 0.712 0.782 0.751 0.085 0.102 0.767 0.792 
Moz 0.864 0.808 0.840 0.841 0.850 0.825 0.140 0.159 0.852 0.824 

Pos 0.865 0.851 0.638 0.641 0.736 0.609 0.133 0.156 0.734 0.731 
Pos Bug 0.943 0.928 0.379 0.401 0.606 0.582 0.036 0.079 0.036 0.560 

Col 0.864 0.812 0.453 0.562 0.635 0.617 0.103 0.198 0.594 0.664 

JDT 0.908 0.894 0.608 0.649 0.755 0.744 0.072 0.101 0.728 0.752 

Moz 0.884 0.853 0.788 0.796 0.838 0.795 0.109 0.143 0.833 0.824 

Pla 0.920 0.921 0.613 0.623 0.762 0.733 0.063 0.099 0.736 0.743 
Average 0.896 0.869 0.570 0.611 0.717 0.688 0.085 0.126 0.667 0.709 

6 Threats to validity 
In this section, we discuss three kinds of validity threats that may affect our experimental 
results, namely internal validity, external validity and construct validity. 

6.1 Internal validity 
Internal validity is related to uncontrolled aspects that may affect our experimental results, 
such as errors in the experiment. We examined our experiment process carefully. However, 
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there may still be errors that we have not noticed. 

6.2 External validity 
External validity is related to the quality and universality of the datasets. In this paper, we 
use six open source projects, which belong to different application fields, cover a long 
time, and are written with different programming languages. We analyze six datasets, and 
think that the number of change instances used in the paper is large enough and has a 
certain universality. In the future, we also plan to further reduce this threat by analyzing 
more change instances in other open source and commercial projects. 

6.3 Construct validity 
Construct validity involves the applicability of our evaluation methods. In this paper, we 
use five evaluation metrics, namely accurate, precision, recall, F1, and pf. These metrics 
have been used in previous studies [Menzies, Milton, Turhan et al. (2010); Monden, 
Hayashi, Shinoda et al. (2013); Zhong, Khoshgoftaar and Seliya (2004); Yang, Zhou, Liu 
et al. (2016); Zimmermann, Premraj and Zeller (2007)], so we believe that the construct 
validity should be acceptable. The experimental design may also affect our experimental 
results. Recent studies have pointed out that defect prediction models with different 
parameter settings may produce different results. In order to reduce the threat to the 
experimental design of parameter settings, we plan to use parameter optimization 
techniques for more experiments. 

7 Conclusions and future work 
As the software scale and its complexity increase, the number of defects generated will 
increase dramatically. However, the current defect prediction methods cannot fully reflect 
the data feature and the detection effect is not ideal enough, we propose a novel defect 
prediction model named ITNB based on improved transfer Naive Bayesian algorithm in 
this paper. We first remove the edge data in the test set when calculating the similarity 
between the test set and the training set. Then, based on the feature dimension weight and 
the data gravity, we construct the calculation formula of the training data weight. Finally, 
we calculate the prior probability and conditional probability of training data based on the 
weight information, so as to construct the weighted bayesian classifier for software defect 
prediction. We use six datasets from large open source projects, namely Bugzilla, 
Columba, Mozilla, JDT, Platform and PostgreSQL. The experimental results show that 
our ITNB model can achieve better results than the TNB model in terms of accurary, 
precision and pd for within-project and cross-project defect prediction. 
In future work, we will evaluate our models in more open source and commercial 
projects. In addition, we will use parameter optimization techniques to adjust the 
parameter settings of our model. 
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