
Computers, Materials & Continua CMC, vol.63, no.2, pp.891-910, 2020

CMC. doi:10.32604/cmc.2020.08096 www.techscience.com/journal/cmc

Within-Project and Cross-Project Software Defect Prediction
Based on Improved Transfer Naive Bayes Algorithm

Kun Zhu1, Nana Zhang1, Shi Ying1, * and Xu Wang2

Abstract: With the continuous expansion of software scale, software update and
maintenance have become more and more important. However, frequent software code
updates will make the software more likely to introduce new defects. So how to predict the
defects quickly and accurately on the software change has become an important problem
for software developers. Current defect prediction methods often cannot reflect the feature
information of the defect comprehensively, and the detection effect is not ideal enough.
Therefore, we propose a novel defect prediction model named ITNB (Improved Transfer
Naive Bayes) based on improved transfer Naive Bayesian algorithm in this paper, which
mainly considers the following two aspects: (1) Considering that the edge data of the test
set may affect the similarity calculation and final prediction result, we remove the edge data
of the test set when calculating the data similarity between the training set and the test set;
(2) Considering that each feature dimension has different effects on defect prediction, we
construct the calculation formula of training data weight based on feature dimension weight
and data gravity, and then calculate the prior probability and the conditional probability of
training data from the weight information, so as to construct the weighted bayesian
classifier for software defect prediction. To evaluate the performance of the ITNB model,
we use six datasets from large open source projects, namely Bugzilla, Columba, Mozilla,
JDT, Platform and PostgreSQL. We compare the ITNB model with the transfer Naive
Bayesian (TNB) model. The experimental results show that our ITNB model can achieve
better results than the TNB model in terms of accurary, precision and pd for within-project
and cross-project defect prediction.

Keywords: Cross-project defect prediction, transfer Naive Bayesian algorithm, edge
data, similarity calculation, feature dimension weight.

1 Introduction
As the software scale and its complexity increase, the number of defects generated will
increase dramatically. Based on the software defect problem in the current software
development field, some researchers have proposed software defect prediction technology,

1 School of Computer Science, Wuhan University, Wuhan, 430072, China.
2 Department of Computer Science, Vrije University Amsterdam, Amsterdam, 1081HV, The Netherlands.
* Corresponding Author: Shi Ying. Email: yingshl@whu.edu.cn.
Received: 26 July 2019; Accepted: 10 September 2019.

892 CMC, vol.63, no.2, pp.891-910, 2020

which is to mine and extract historical information and code information in the process of
software project development, and analyze the strongly related information, and then
establish a specific prediction model by mathematical statistics, machine learning and other
methods to predict the software defects [Malhotra and Khanna (2017)].
Software defect prediction has the following research significance: (1) Reasonable
allocation of test resource. Defect prediction technology can help testers to locate the
position and number of software modules in advance, so as to allocate test resources
reasonably, improve test efficiency and save cost [Li, Zhang, Wu et al. (2012)]. (2)
Discover software defects in time and improve the quality of software products. (3) Help
the new project to establish a reasonable cross-project prediction model through other
project information.
Most of the current defect prediction methods are for the within-project defect prediction.
Some defect data in the same project are used as the training set to build the prediction
model, and the remaining small number of data are used as test set to test the performance
of the prediction model. However, it is often a new project that needs to be predicted in the
actual development. Due to relatively few historical information of the newly established
project, the training data that can be extracted is too small to conduct accurate defect
prediction. Therefore, we can use historical defect data from other projects to construct a
reasonable defect prediction model for the new project by learning the idea of transfer
learning, that is, cross-project defect prediction [Xu, Liu, Luo et al. (2018)]. Since
application scenarios, development environment, developers and development languages
between two different projects are not necessarily the same, the features of the dataset
between the source project and the target project tend to be quite different [Herbold,
Trautsch and Grabowski (2017)], so how to transfer effective feature from the source
project to construct the prediction model of the target project will be a challenge.
Due to the similarity of data sets on the within-project defect prediction, it is relatively
simple to extract relevant features, and can achieve better prediction result. However, in
terms of cross-project defect prediction, because of the large difference between two
different projects, it is particularly important to extract the common features between
source project and target project [Zhang, Keivanloo and Zou (2017)]. The current transfer
Naive bayesian model mainly extracts features from common feature spaces between
different projects, and transfers effective information to reduce data differences, but
sometimes discarded data may be useful data, resulting in relatively poor prediction
effect [Ma, Luo, Zeng et al. (2012)].
In order to solve the problem that the transfer Naive bayesian model cannot fully reflect
the data feature and the detection effect is not ideal enough, we propose a novel defect
prediction model named ITNB (Improved Transfer Naive Bayes) based on improved
transfer Naive Bayesian algorithm in this paper.
The main contributions of this paper are as follows:
(1) we propose a novel defect prediction model named ITNB based on improved transfer
Naive Bayesian algorithm in this paper. The model removes the edge data in the test set
when calculating the data similarity between the training set and the test set, and
constructs the calculation formula of training data weight based on feature dimension
weight and data gravity.

Within-Project and Cross-Project Software Defect Prediction 893

(2) We conduct a large number of within-project and cross-project software defect
prediction experiments on six datasets from large open source projects, and compare the
ITNB model with the transfer Naive Bayesian (TNB) model. The experimental results
show that our ITNB model can achieve better results than the TNB model in terms of
accurary, precision and pd.
The rest of this paper is organized as follows. Section 2 describes the background and
related work. Section 3 details the proposed ITNB model. Section 4 shows the
experimental setup, including data sets and evaluation metrics. Section 5 evaluates the
performance of our ITNB model. Section 6 describes the threats to our work. We
conclude this paper and describe future work in Section 7.

2 Background & related work
2.1 Within-project defect prediction
At present, some researchers mainly use the machine learning algorithm to construct the
defect prediction model on the within-project defect prediction. In addition, how to
optimize the data structure and extract effective feature are also the focus of current
research. Some important research works will be summarized below.
Elish et al. [Elish and Elish (2008)] use support vector machine (SVM) to conduct defect
prediction and compare its predictive performance with eight statistical and machine
learning models on four NASA data sets. Lu et al. [Lu, Kocaguneli and Cukic (2014)]
leverage active learning to predict defect, and they also use feature compression techniques
to make feature reduction on defect data. Li et al. [Li, Zhang, Wu et al. (2012)] propose a
novel semi-supervised learning method-ACoForest, which can sample the prediction
modules that are most helpful for learning. Rodriguez et al. [Rodriguez, Herraiz, Harrison
et al. (2014)] compare different methods for different data preprocessing problems, such as
sampling method, cost sensitive method, integration method and hybrid method. The final
experimental results show that the above different methods can effectively improve the
accuracy of defect prediction after performing the class imbalance. Seiffert et al. [Seiffert,
Khoshgoftaar, Van Hulse et al. (2014)] analyze 11 different algorithms and 7 different data
sampling techniques, and find that class imbalance and data noise would have the negative
impact on prediction performance.

2.2 Cross-project defect prediction
For cross-project software defect prediction, since application scenarios, development
environment, developers and development languages between two different projects are
not necessarily the same, the features of the dataset between the source project and the
target project tend to be quite different, so how to transfer effective feature from the
source project to construct the prediction model of the target project will be a challenge.
Briand et al. [Briand, Melo and Wust (2002)] first propose the earliest cross-project
defect prediction, which uses logistic regression and MARS (Multivariate Adaptive
Regression Splines) to construct the defect prediction model for the Xpose project, and
conducts perform prediction for the Jwrite project. They find that the performance of
cross-project defect prediction is lower than that of within-project defect prediction, and
the main reason for this result is the feature difference between different projects.

894 CMC, vol.63, no.2, pp.891-910, 2020

Ma et al. [Ma, Luo, Zeng et al. (2012)] propose a transfer Naive Bayesian (TNB) model,
which sets weight for instance in the source project, and effectively improves the
accuracy of defect prediction. But the TNB model only uses the maximum and minimum
values of the feature to construct the feature weight, and cannot fully reflect the features
of the data.
Watanabe et al. [Watanabe, Kaiya and Kaijiri (2008)] propose a defect prediction method
based on different metric elements, which corrects metric element values of the target
project and the source project, and they find that both the accuracy and the recall are
significantly improved. Jureczko et al. [Jureczko and Madeyski (2010)] use k-means and
kohonen neural network to analyze multiple related projects. The experimental results
show that predicting a project using multiple similar projects can achieve better
prediction effect. Cheng et al. [Cheng, Wu and Yuan (2016)] calculate the difference
between the source project and the target project, and then convert it into weight
information, so as to establish the defect prediction model. Chen et al. [Chen, Fang,
Shang et al. (2015)] argue that the distribution disparity between cross-company data and
within-company data often makes it difficult to establish high-quality cross-project defect
prediction model. They narrow the gap by reducing the negative samples for the cross-
company data, thereby improving the performance of cross-project defect prediction.
Abaei et al. [Abaei, Rezaei and Selamat (2013)] propose the self-organizing mapping
(SOM) prediction model with the threshold, which can help testers to mark modules
without the need of experts.

3 Methodolody
We propose the ITNB model based on improved transfer Naive Bayesian algorithm. The
model removes the edge data in the test set when calculating the data similarity between
the training set and the test set, and constructs the calculation formula of training data
weight based on feature dimension weight and data gravity.
For within-project defect prediction, we group the data into the training set and the test set
according to the time sequence. For cross-project defect prediction, we use the data sets
constructed by different projects as the training set and test set respectively for experiments.
The workflow of the ITNB model is shown in Fig. 1. The model consists of the following
four steps: (a) Feature extraction; (b) Data preprocessing; (c) Improved transfer Naive
Bayesian model construction; (d) Within-project and cross-project defect prediction.

3.1 Feature extraction
Because the quantity and quality of features will directly affect the final prediction effect,
we must first extract effective features from the software history repository.

Within-Project and Cross-Project Software Defect Prediction 895

Figure 1: Framework of the ITNB model

We first extract various quantifiable change features from the software history repository
(i.e., the change of known label), which can distinguish whether the change is defective
or not. In this paper, we use 11 basic defect change features proposed by Kamei et al.
[Kamei, Shihab, Adams et al. (2012)], these features can be classified into the following
four dimensions: diffusion, size, purpose and experience, as shown in Tab. 1.

Table 1: Descriptions of 11 basic change features

Dimension Name Description

Diffusion

NS The number of modified subsystems
ND The number of modified directories
NF The number of modified files

Entropy Distribution of modified code across each file

Size
LA Lines of code added
LD Lines of code deleted
LT Lines of code in a file before the change

Purpose FIX Whether or not the change is a defect fix

Experience
EXP Developer experience

REXP Developer experience on a subsystem
SEXP Developer experience on a subsystem

3.2 Data preprocessing
The data preprocessing in this paper includes two parts: class imbalance processing and
data standardization.

3.2.1 Class imbalance processing
Class imbalance is a common problem in software defect data sets. The distribution of
software defect in the project is roughly in line with the pareto principle, that is, 20% of
the program modules contain about 80% of the defects. For the defect prediction data set,
the number of defective modules (a few class) is less than that of the non-defective
modules (majority class). If there is the serious class imbalance problem in the software

896 CMC, vol.63, no.2, pp.891-910, 2020

defect data set, the prediction effect of the model is relatively poor.
In this paper, we adopt the SMOTE (Synthetic Minority Oversampling Technique)
method [Chawla, Bowyer, Hall et al. (2002)] to conduct the class imbalance processing.
This method is an improved scheme based on random oversampling algorithm. Because
random oversampling adopts the strategy of simply copying samples to increase the
number of a few class samples, the model is easy to overfit, and the SMOTE algorithm
can avoid the problem of overfitting to a certain extent. The basic idea of SMOTE
algorithm is to analyze a few class samples and manually synthesize new samples based
on a few class samples, and add them to the dataset at the same time. In summary, the
SMOTE algorithm synthesizes new samples for a few class based on interpolation.
This step is critical for software defect prediction, because it helps the trained classifier
does not bias towards non-defective modules (majority class), thereby improving the
performance of software defect prediction.

3.2.2 Data standardization
Since the distribution of the 11 basic defect change feature values extracted is of large
difference, even not in the same order of magnitude, if the original measure value is used
for analysis, the function of the higher value in the comprehensive analysis will be
highlighted, and the function of the lower value is relatively weakened.
Therefore, in order to ensure the reliability of the results, we adopt the min-max
standardization method [Nam, Pan and Kim (2013)], which can make the values of
each metric in the same dimension and can be consistent with feature values of the
original distribution.
The calculation equation for the min-max normalization method is as shown in Eq. (1):

)()(

)(~j

i ss
sss jj

jj

i

minmax

min

−

−
= (1)

where max(sj) and min(sj) are the maximum and minimum values in the vector sj,
respectively.

3.3 Improved transfer naive Bayesian model construction
After data preprocessing, we will construct a weighted Bayesian model for these
numerical features. We first remove the edge data in the test set when calculating the
similarity between the test set and the training set. Then, based on the feature dimension
weight and the data gravity, we construct the calculation formula of the training data
weight. Finally, we calculate the prior probability and conditional probability of training
data based on the weight information, so as to construct the weighted Bayesian classifier
for software defect prediction.

3.3.1 Similarity calculation
Because the features between the training set and the test set may be different, especially
development languages, development process and developers among different projects
are different, and the feature differences are even greater. Therefore, we first need to

Within-Project and Cross-Project Software Defect Prediction 897

calculate the similarity between the training set features and the test set features.
Before calculating the feature difference between the training set and the test set, we find
that the proportion of edge data is often less by analyzing the data distribution of each
feature, and the maximum and minimum vectors constructed by a small amount of data
will affect the prediction effect, so we first need to remove these edge data.
The values of each feature in the test set need to be rounded approximately, and divided
into [0,10] intervals, namely [0,1], (1,2], ..., (9,10]. Then we calculate the percentage of
each feature in each interval, and we remove the intervals where the percentage is less
than 5%. We construct the maximum vector and minimum vector by taking the maximum
value and minimum value of each feature in the test set with edge data removed.
After obtaining the maximum and minimum vectors, we assume that the features of each
dimension have the same effect on the classifier. For each training instance, we can
obtain the similarity of the training set and the test set by calculating the position of each
feature between the maximum value vector and the minimum value vector.
In this paper, we define each instance as Ai={ai1,ai2,...,aik}, aij is the jth feature of Ai, and k is
the number of features. For each instance Ai in the training set, we calculate the number of
similar features, the equation is as shown in Eq. (2) [Ma, Luo, Zeng et al. (2012)]:

∑
=

=
k

j
ijafS

1
i)((2)

where




=
0
1

)(af ij
casesother

when j maxamin jij ≤≤
, aij is the jth feature of instance Ai.

Then we can calculate whether each feature value in each instance Ai is between the
maximum vector and the minimum vector of each feature defined in the test set according
to the above formula. If the feature value of the instance is between the maximum vector
and the minimum vector, the similarity of the instance is increased by 1, otherwise the
similarity is unchanged. In this way, we can calculate the similarity value of each
instance in the training set.
The pseudo code of the similarity calculation algorithm between training set and test set
is as shown in the algorithm 1.
Through the pseudo code of the algorithm 1, we can summarize the steps of similarity
calculation as follows: (1) Remove a small amount of edge data in the test set; (2)
Calculate the maximum vector and the minimum vector of each feature in the test set; (3)
Calculate the similarity of each instance data in the training set by comparing the
maximum vector and the minimum vector.

898 CMC, vol.63, no.2, pp.891-910, 2020

Algorithm 1 Similarity calculation algorithm between training set and test set
Input:

training set: Tr={tr1, tr2,..., trn}; test set: T={t1, t2, ..., tm}; the number of features
in the training set and test set: k
Output:

D: the set of instance similarity in the training set: S[i]
1: len1←the length of training set Tr;
2: len2←the length of test set T;
3: Define the two-dimensional array arr1[len2][k] in the test set;
4: Define the two-dimensional array arr2[len2][k] of interval values into which the

feature values in the test set are converted;
5: Define the array arrMax[k] of the largest vector in the test set;
6: Define the array arrMin[k] of the smallest vector in the test set;
7: Define the similarity array S[len1] for each instance in the training set;
8: # Calculate the interval value of the feature in the test set
9: for i←0 to len2-1 do
10: for j←0 to k-1 do
11: arr1[i][j]←the jth feature value in the test set;
12: arr2[i][j]←the interval value into which the jth feature value in the test set

is converted;
13: end for
14: end for
15: # Remove edge data in array arr2[i][j]
16: if the percentage of the arr2[i][j] interval <5% then
17: Remove arr2[i][j] interval;
18: else
19: Save arr2[i][j] interval;
20: end if
21: # Calculate the maximum vector and minimum vector of each feature in the test set
22: for i ←0 to len2-1 do
23: for j←0 to k-1 do
24: if arr1[i][j]>arrMax[j] then
25: arrMax[j]← arr1[i][j];
26: end if
27: if arr1[i][j]<arrMin[j] then

Within-Project and Cross-Project Software Defect Prediction 899

28: arrMin[j]←arr1[i][j];
29: end if
30: end for
31: end for
32: # Calculate the similarity of each instance data in the training set

33: for i←0 to len1-1 do
34: for j← 0 to k-1 do
35: if arr[i][j] >=arrMin[j] && arr[i][j] <=arrMax[j] then
36: S[i]=S[i]+1;
37: end if
38: end for
39: end for
40: return S[i]

3.3.2 Training data weight calculation
After calculating the similarity values of each instance in the training set, we convert
these similarity values into the weights of training data, which are mainly constructed by
feature dimension weight and data gravity.
Different from the traditional transfer Naive Bayesian model [Ma, Luo, Zeng et al. (2012)],
we consider the feature dimension weight in this paper. We leverage feature dimension
information to construct dimension-based weight. In the Section 3.1, we can distinguish the
feature values extracted by different methods into four dimensions according to their
features, each of which contains a part of the feature value information.
We obtain the dimension weight of the training instance by calculating the weights of four
dimensions of a training instance respectively. The specific method is as follows: First, we
calculate whether each feature value in the first dimension is between the maximum value
and minimum value of the corresponding feature in the test instance. If it is between the
maximum value and the minimum value, the similarity of the feature is 1, otherwise 0.
Then, when obtaining the similarity of each feature value in one dimension, we calculate
the weighted average value of these feature and take it as the weight value of these features
in the dimension. Finally, we repeat the above method to obtain the weighted average
values of other dimensions, so as to get the weight value of each dimension. The dimension
weight equation of one training instance is as shown in Eq. (3):

n
wwww inii

di
+++

=
...21 (3)

where i is the number of one instance, n is the number of dimensions, which is 4 in this
paper, and win is the weight of one dimension.
In order to effectively transfer the information in the test set, we leverage the idea of data
gravity to construct the data weight. Data gravity refers to the idea of universal gravitation
used in data analysis to simulate the gravity between data [Peng, Yang, Chen et al. (2009)].

900 CMC, vol.63, no.2, pp.891-910, 2020

The weight between the training data and the test data is like the gravitation F in the
universal gravitation. We assume that the quality of one feature in the instance is M, then
the quality of the test data is kmM, and the quality of the training data between the
maximum vector and the minimum vector is MSi. Therefore, the weight wi of the training
instance Ai is inversely proportional to r2=(k-Si+1)2, and is proportional to kSimM2 [Ma,
Luo, Zeng et al. (2012)]. Combined with the information of the above dimension weights,
we further conclude that it is proportional to wdiSi. Therefore, the weighting equation of
one training instance Ai is defined as shown in Eq. (4):

)1()1(
22

2

2
21

+−+−
∝==

Sik

Siw

Sik

MmSik
r
mmw di

i
i (4)

where Si is the similarity value of each instance Ai, and k is the number of feature.
From the above formula, we can know that the more similar the feature data of the
training instance Ai is to the test set, the greater the weight of the instance Ai will be.
When the value of the similarity Si is equal to the number k of features, all the features
are located between the maximum vector and the minimum vector. At this time, the k-
Si+1 is equal to 1, and the feature weight will be the largest and only affected by the
weight value of the dimension.
Then we need to calculate the prior probability based on the weighted data. The
individual probability on the right side of the original bayesian prior probability equation
is estimated based on the weighted data. In order to reflect the class distribution of the
test data, we need to modify the original bayesian equation. If the training data is more
similar to the test data, we need to give the training data a higher weight, and assign
higher weight to the class of the training data. According to Frank et al. [Frank, Hall and
Pfahringer (2002)], we rewrite the equation of prior probability as shown in Eq. (5):

∑
∑

=

=

+

+
= n

i yi

n

i ii

nw

yyw
yP

1

1
1),(

)(
λ

 (5)

where wi is the weight of the training instance, yi is the class value of the training instance
Ai, n is the total number of training instances, ny is the total number of classes, and the
function λ (yi, y) is an index function, when yi=y, λ (yi,y)=1, otherwise λ (yi,y)=0.
The equation for the conditional probability is rewritten as shown in Eq. (6):

∑
∑

=

=

+

+
= n

i jii

n

i ijiji
j

nyyw

yyaaw
ya

1

1

),(

1),(),(
)|(P

λ

λλ
 (6)

where aij is the jth feature value in the ith training instance, aj is the jth feature value, and
nj is the number of different values of the jth feature.

3.3.3 Weighted bayesian classifier construction
We define Tr={(x1,y1),(x2,y2),...,(xn,yn)} as the source project data set, where xi represents
the ith instance, yi is the feature of the instance xi, and n is the number of the data, yi ∈

Within-Project and Cross-Project Software Defect Prediction 901

(true,false). We define the test data set as T={t1,t2,...,tm}, where m is the number of
instances in the test dataset. Based on the prior probability P(y) and the conditional
probability P(aj | y) in the above section, we can define the following bayesian classifier
to classify the instance t in the test dataset [Ma, Luo, Zeng et al. (2012)]:

∑ ∏
∏

∈ =

=

∈∈
==

Yy

k

j j

k

j j

YyYy yaPyP

yaPyP
maxargtyPmaxargty

1

1

)|()(

)|()(
)|()((7)

where t={a1,a2,...,ak}, aj is the jth feature of the test data instance t, k is the number of
features, P(y | u) represents the posterior probability, and P(y) represents the priori
probability, P(aj | y) represents the conditional probability.

3.4 Within-project and cross-project defect prediction
When constructing the defect prediction model, we need to verify the validity of the
model. We conduct the within-project defect prediction and the cross-project defect
prediction to verify our ITNB model, respectively.
For within-project defect prediction, we consider that many new technologies and
development methods will affect the new code submitted after the update, and even
introduce new defects in software development. Therefore, we first sort the data according
to time sequence, and then divide the data of two years into a group, and select the data of
the previous year as the training set and the data of the next year as the test set. This not
only guarantees the integrity of a project development cycle, but also guarantees that the
amount of data for two years in the training set is sufficient enough, so as to make the result
of the within-project defect prediction more accurate.
For cross-project defect prediction, we combine six data sets in pairs as training set and
test set respectively, and use our ITNB model to conduct defect prediction on any pair of
combinations. This can not only make the amount of data sufficient in the training set and
the test set, but also ensure the diversity of instances.
The pseudo code for our ITNB is shown in the algorithm 2:

4 Experimental setup
In this section, we will introduce the experimental setup, including data sets, evaluation
metrics. We conduct the experiments on a 3.6 GHz i7-4790 CPU machine with 8 GB RAM.

4.1 Data sets
In this paper, we use six datasets from large open source projects, namely Bugzilla, Columba,
Mozilla, JDT, Platform and PostgreSQL, which are large, well-known and long-term projects
covering a wide range of fields and scales [Kamei, Shihab, Adams et al. (2012)].

902 CMC, vol.63, no.2, pp.891-910, 2020

Algorithm 2 ITNB
Input:

training set: Tr = {tr1, tr2,..., trn}; test set: T = {t1, t2, ..., tm}
Output:

result set: R
1: for one training instance tri∈Tr do
2: Calculate the data similarity of the instance Ai by the Eq. (2);
3: end for
4: for one training instance tri∈Tr do
5: Calculate the dimension weight of the instance Ai by the Eq. (3);
6: Calculate the data weight of the instance Ai by the Eq. (4);
7: end for
8: Construct a weighted bayesian model by the data weight of the training instance Ai,

Eqs. (5) and (6);
9: for one test instance ti∈T do
10: Conduct within-project defect prediction and cross-project defect prediction by Eq.

(7);
11: Store the defect prediction result in R;
12: end for
13: return R

Tab. 2 lists the statistics for six datasets from these projects. As can be seen from Tab. 2,
the first column and the second column are the project name and the time period for
collecting changes, respectively. The third to sixth columns are the total number of
changes, the percentage of defect-inducing changes, the average LOC for each change,
and the number of files modified on average per change. The total number of changes in
these six data sets are from 4,455 to 98,275, which are very helpful for us to conduct
empirical research. All datasets in this paper are unbalanced, and the percentage of
defect-inducing changes ranges from 5% to 36%. Therefore, both the training set and the
test set need to perform class imbalance processing first.
To make our results more reliable, we use 10 times 10-fold cross-validation to evaluate
the performance of the ITNB model, so each dataset is randomly divided into 10 folds,
where 9 folds are used as the training dataset and the remaining 1 fold is used as the test
dataset. To further reduce experimental error, we perform 10 times cross-validation and
record the average performance.

Table 2: Statistics of the datasets

Within-Project and Cross-Project Software Defect Prediction 903

Project Period Total % of Avg LOC #Modified Files
 Changes Defects Per Change Per Change

Bugzilla 08/1998-12/2006 4620 36% 37.5 2.3
Platform 05/2001-12/2007 64250 14% 72.2 4.3
Mozilla 01/2000-12/2006 98275 5% 106.5 5.3

JDT 05/2001-12/2007 35386 14% 71.4 4.3
Columba 11/2002-07/2006 4455 31% 149.4 6.2

PostgreSQL 07/1996-05/2010 20431 25% 101.3 4.5

4.2 Evaluation metrics
In order to evaluate the experimental results of the ITNB model, we use five metrics such
as accurary, precision, recall, F1, and pf, which are widely used to evaluate the
performance of software defect prediction [Menzies, Milton, Turhan et al. (2010);
Monden, Hayashi, Shinoda et al. (2013); Zhong, Khoshgoftaar and Seliya (2004); Yang,
Zhou, Liu et al. (2016); Zimmermann, Premraj and Zeller (2007)]. They can all be
calculated from the confusion matrix of classification results. The confusion matrix is
shown in Tab. 3. The calculation equation for these five metrics are as follows:

Table 3: Confusion matrix of classification results

Confusion
matrix

Predicted
Positive(P) Negative(N)

Actual
True(T) TP FN
Flase(F) FP TN

accurary: In the defect prediction, the proportion of the correct result predicted by the
predictor to the total program module, as shown in Eq. (8):

TNFPFNTP
TNTPaccurary

+++
+

= (8)

precision: The proportion of defective modules in the defective module predicted by the
predictor, as shown in Eq. (9):

FPTP
TPprecision
+

= (9)

recall: In all defective modules, the proportion of defective modules predicted by the
predictor, as shown in Eq. (10):

FNTP
TPrecall
+

= (10)

F1: The harmonic mean of precision and recall, as shown in Eq. (11):

recallprecision
recallprecisionF

+
××

=
21 (11)

904 CMC, vol.63, no.2, pp.891-910, 2020

pf: In all non-defective modules, the proportion of defective modules predicted by the
predictor. The smaller the pf value, the better the model prediction effect, as shown in
Eq. (12):

FPTN
FPpf
+

= (12)

5 Experimental results
In this section, we will introduce our experimental results. We evaluate and discuss the
performance of our ITNB model by setting up the following three research questions (RQ).
RQ1: For within-project and cross-project defect prediction, can class imbalance
processing improve the performance of the ITNB model?
For the class imbalance problem in the within-project and cross-project defect prediction,
we use the SMOTE method to conduct class imbalance processing, as shown in Figs. 2
and 3. The evaluation metric values in the comparison figure is the average of the
experimental results in the six data sets.

Figure 2: Comparison figure before and after class imbalance processing for within-
project defect prediction

Within-Project and Cross-Project Software Defect Prediction 905

Figure 3: Comparison figure before and after class imbalance processing for cross-
project defect prediction

From Figs. 2 and 3, we can find that the experimental effect on the data sets with class
imbalance processing is significantly better in terms of accuracy, precision and F1 for
within-project defect prediction and cross-project defect prediction. Only on the recall of
within-project defect prediction, the effect on the data sets without class imbalance
processing is better. This is because the similarity of the data sets for within-project is
high, so it is better on the recall without class imbalance processing. However, due to the
large difference between data sets, the effect is better on the recall with class imbalance
processing for cross-project defect prediction.
Through the QR1, we can find that because the defection class is significantly less than
the non-defection class, the final experimental results often cannot reflect the true
prediction result of a few class. Therefore, it is very necessary for us to conduct class
imbalance processing before defect prediction.
RQ2: Is the performance of our ITNB model better than the transfer naive Bayesian
(TNB) model for within-project defect prediction?
For within-project defect prediction, we first sort the data according to time sequence,
and then divide the data of two years into a group, and select the data of the previous year
as the training set and the data of the next year as the test set. This not only guarantees the
integrity of a project development cycle, but also guarantees that the amount of data for
two years in the training set is sufficient enough.
We use the ITNB model and the TNB model to conduct within-project defect prediction
based on the partitioned data. The experimental results are shown in Tab. 4.
From Tab. 4, we can find that the ITNB model is better than the TNB model on the
accuracy, precision and pf. However, consider that the accuracy and precision may be
more important in the defect prediction, so our ITNB model is very meaningful. We also
find that in these experiments with a small amount of data, the final results are often poor.

906 CMC, vol.63, no.2, pp.891-910, 2020

For example, the prediction interval of Bugzilla is 2000.01-2001.12 and the prediction
interval of Platform is 2007.01-2007.12, where the former has a small amount of data in
the training set and the latter has a small amount of data in the test set.

Table 4: Comparison table of the experiment results for within-project defect prediction
Data
sets

Time
interval

precision recall accurary pf F1
ITNB TNB ITNB TNB ITNB TNB ITNB TNB ITNB TNB

Bug 2000.01-2001.12 0.489 0.442 0.072 0.124 0.378 0.333 0.123 0.201 0.126 0.194
2002.01-2003.12 0.687 0.631 0.098 0.201 0.421 0.398 0.071 0.104 0.173 0.305
2004.01-2005.12 0.777 0.753 0.253 0.341 0.489 0.457 0.120 0.198 0.382 0.469
2006.01-2006.12 0.845 0.841 0.417 0.453 0.617 0.598 0.106 0.156 0.559 0.589

Col 2004.01-2005.12 0.911 0.900 0.434 0.487 0.633 0.623 0.064 0.089 0.588 0.632
2006.01-2006.12 0.925 0.912 0.586 0.611 0.743 0.719 0.060 0.109 0.717 0.732

JDT 2003.01-2004.12 0.920 0.921 0.582 0.578 0.744 0.698 0.060 0.167 0.713 0.710
2005.01-2006.12 0.913 0.894 0.635 0.619 0.772 0.749 0.069 0.098 0.749 0.732

2007.01-2007.12 0.915 0.887 0.646 0.639 0.784 0.778 0.066 0.145 0.757 0.743
Moz 2002.01-2003.12 0.913 0.902 0.811 0.849 0.862 0.849 0.083 0.102 0.859 0.860

2004.01-2005.12 0.930 0.891 0.825 0.883 0.878 0.883 0.066 0.089 0.874 0.869

2006.01-2006.12 0.910 0.901 0.753 0.812 0.837 0.812 0.077 0.092 0.824 0.813
Pla 2003.01-2004.12 0.923 0.921 0.588 0.598 0.749 0.698 0.058 0.113 0.718 0.725

2005.01-2006.12 0.926 0.897 0.646 0.663 0.776 0.753 0.064 0.103 0.761 0.762

2007.01-2007.12 0.302 0.321 0.191 0.201 0.876 0.795 0.048 0.093 0.234 0.247
Pos 1998.01-1999.12 0.937 0.895 0.527 0.601 0.700 0.649 0.051 0.078 0.675 0.719

2000.01-2001.12 0.951 0.921 0.511 0.532 0.693 0.632 0.039 0.067 0.664 0.674
2002.01-2003.12 0.955 0.945 0.583 0.641 0.737 0.702 0.040 0.059 0.724 0.764
2004.01-2005.12 0.930 0.887 0.602 0.652 0.745 0.667 0.061 0.108 0.731 0.752
2006.01-2007.12 0.935 0.921 0.600 0.598 0.752 0.694 0.054 0.106 0.731 0.725
2008.01-2009.12 0.925 0.931 0.671 0.643 0.792 0.734 0.064 0.113 0.778 0.761

2010.01-2010.05 0.930 0.927 0.554 0.559 0.745 0.721 0.046 0.087 0.695 0.697
Average 0.857 0.838 0.527 0.552 0.715 0.680 0.068 0.113 0.638 0.658

RQ3: Is the performance of our ITNB model better than the TNB model for cross-
project defect prediction?
For cross-project defect prediction, we combine six data sets in pairs as training set
andtest set respectively, and use the ITNB model and the TNB model to conduct defect
prediction on any pair of combinations. This can not only make the amount of data
sufficient in the training set and the test set, but also ensure the diversity of instances. The
experimental results are shown in Tab. 5.
From Tab. 5, we can find that our ITNB model is better than the TNB model on accuracy,
precision and pf. The TNB model is better than the ITNB model in terms of recall and F1.
Considering that the ITNB model removes edge data when calculating similarity, it is likely
to remove some useful data, so ITNB model is not able to find as many defects as possible
on recall. Although we remove some test set data for similarity calculation, the removal of
some useless information and the reassigned weight of each dimension make the weight of
each feature no longer the same, which improves the accuracy and precision of the final

Within-Project and Cross-Project Software Defect Prediction 907

prediction results.

Table 5: Comparison table of the experimental results for cross-project defect prediction results
Data
sets

Test
sets

precision recall accurary pf F1
ITNB TNB ITNB TNB ITNB TNB ITNB TNB ITNB TNB

Bug

Col 0.860 0.833 0.390 0.401 0.603 0.601 0.091 0.112 0.537 0.541
JDT 0.883 0.879 0.546 0.637 0.716 0.718 0.085 0.125 0.675 0.739
Moz 0.881 0.867 0.739 0.751 0.815 0.759 0.106 0.156 0.804 0.805
Pla 0.873 0.881 0.552 0.589 0.715 0.711 0.095 0.123 0.676 0.706
Pos 0.889 0.859 0.515 0.549 0.686 0.669 0.085 0.091 0.652 0.670

Col Bug 0.929 0.893 0.216 0.398 0.510 0.459 0.026 0.067 0.350 0.551

JDT 0.923 0.916 0.534 0.558 0.725 0.659 0.052 0.119 0.677 0.694

Moz 0.911 0.897 0.734 0.749 0.827 0.763 0.075 0.121 0.813 0.816

Pla 0.931 0.882 0.530 0.601 0.725 0.698 0.046 0.068 0.675 0.715

Pos 0.901 0.901 0.505 0.583 0.688 0.682 0.068 0.070 0.650 0.708
JDT Bug 0.922 0.887 0.390 0.491 0.606 0.574 0.052 0.099 0.548 0.632

Col 0.870 0.849 0.415 0.487 0.618 0.601 0.089 0.128 0.562 0.619

Moz 0.869 0.801 0.837 0.886 0.851 0.831 0.133 0.157 0.852 0.832
Pla 0.931 0.873 0.674 0.721 0.797 0.772 0.059 0.089 0.782 0.790

Pos 0.875 0.821 0.631 0.649 0.737 0.668 0.121 0.149 0.733 0.725
Moz Bug 0.958 0.923 0.470 0.512 0.663 0.641 0.032 0.095 0.631 0.659

Col 0.837 0.801 0.444 0.491 0.621 0.606 0.124 0.198 0.580 0.609

JDT 0.894 0.881 0.692 0.721 0.790 0.779 0.096 0.154 0.780 0.793
Pla 0.914 0.904 0.708 0.701 0.807 0.799 0.078 0.134 0.798 0.790

Pos 0.870 0.819 0.673 0.695 0.756 0.715 0.135 0.211 0.759 0.752
Pla Bug 0.939 0.907 0.484 0.501 0.665 0.667 0.050 0.094 0.638 0.645

Col 0.850 0.825 0.431 0.443 0.619 0.601 0.109 0.192 0.572 0.576

JDT 0.902 0.891 0.667 0.712 0.782 0.751 0.085 0.102 0.767 0.792
Moz 0.864 0.808 0.840 0.841 0.850 0.825 0.140 0.159 0.852 0.824

Pos 0.865 0.851 0.638 0.641 0.736 0.609 0.133 0.156 0.734 0.731
Pos Bug 0.943 0.928 0.379 0.401 0.606 0.582 0.036 0.079 0.036 0.560

Col 0.864 0.812 0.453 0.562 0.635 0.617 0.103 0.198 0.594 0.664

JDT 0.908 0.894 0.608 0.649 0.755 0.744 0.072 0.101 0.728 0.752

Moz 0.884 0.853 0.788 0.796 0.838 0.795 0.109 0.143 0.833 0.824

Pla 0.920 0.921 0.613 0.623 0.762 0.733 0.063 0.099 0.736 0.743
Average 0.896 0.869 0.570 0.611 0.717 0.688 0.085 0.126 0.667 0.709

6 Threats to validity
In this section, we discuss three kinds of validity threats that may affect our experimental
results, namely internal validity, external validity and construct validity.

6.1 Internal validity
Internal validity is related to uncontrolled aspects that may affect our experimental results,
such as errors in the experiment. We examined our experiment process carefully. However,

908 CMC, vol.63, no.2, pp.891-910, 2020

there may still be errors that we have not noticed.

6.2 External validity
External validity is related to the quality and universality of the datasets. In this paper, we
use six open source projects, which belong to different application fields, cover a long
time, and are written with different programming languages. We analyze six datasets, and
think that the number of change instances used in the paper is large enough and has a
certain universality. In the future, we also plan to further reduce this threat by analyzing
more change instances in other open source and commercial projects.

6.3 Construct validity
Construct validity involves the applicability of our evaluation methods. In this paper, we
use five evaluation metrics, namely accurate, precision, recall, F1, and pf. These metrics
have been used in previous studies [Menzies, Milton, Turhan et al. (2010); Monden,
Hayashi, Shinoda et al. (2013); Zhong, Khoshgoftaar and Seliya (2004); Yang, Zhou, Liu
et al. (2016); Zimmermann, Premraj and Zeller (2007)], so we believe that the construct
validity should be acceptable. The experimental design may also affect our experimental
results. Recent studies have pointed out that defect prediction models with different
parameter settings may produce different results. In order to reduce the threat to the
experimental design of parameter settings, we plan to use parameter optimization
techniques for more experiments.

7 Conclusions and future work
As the software scale and its complexity increase, the number of defects generated will
increase dramatically. However, the current defect prediction methods cannot fully reflect
the data feature and the detection effect is not ideal enough, we propose a novel defect
prediction model named ITNB based on improved transfer Naive Bayesian algorithm in
this paper. We first remove the edge data in the test set when calculating the similarity
between the test set and the training set. Then, based on the feature dimension weight and
the data gravity, we construct the calculation formula of the training data weight. Finally,
we calculate the prior probability and conditional probability of training data based on the
weight information, so as to construct the weighted bayesian classifier for software defect
prediction. We use six datasets from large open source projects, namely Bugzilla,
Columba, Mozilla, JDT, Platform and PostgreSQL. The experimental results show that
our ITNB model can achieve better results than the TNB model in terms of accurary,
precision and pd for within-project and cross-project defect prediction.
In future work, we will evaluate our models in more open source and commercial
projects. In addition, we will use parameter optimization techniques to adjust the
parameter settings of our model.

Acknowledgement: This work is supported in part by the National Science Foundation
of China (Nos. 61672392, 61373038), and in part by the National Key Research and
Development Program of China (No. 2016YFC1202204).

Within-Project and Cross-Project Software Defect Prediction 909

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Abaei, G.; Rezaei, Z.; Selamat, A. (2013): Fault prediction by utilizing self-organizing
map and threshold. IEEE International Conference on Control System, Computing and
Engineering, pp. 465-470.
Briand, L. C.; Melo, W. L.; Wust, J. (2002): Assessing the applicability of fault-
proneness models across object-oriented software projects. IEEE Transactions on
Software Engineering, vol. 28, no. 7, pp. 706-720.
Chawla, N. V.; Bowyer, K. W.; Hall, L. O.; Kegelmeyer, W. P. (2002): Smote:
synthetic minority over-sampling technique. Journal of Artificial Intelligence Research,
vol. 16, no. 1, pp. 321-357.
Chen, L.; Fang, B.; Shang, Z.; Tang, Y. (2015): Negative samples reduction in cross-
company software defects prediction. Information and Software Technology, vol. 62, no.
1, pp. 67-77.
Cheng, M.; Wu, G.; Yuan, M. (2016): Transfer learning for software defect prediction.
Acta Electronica Sinica, vol. 44, no. 1, pp. 115-122.
Elish, K. O.; Elish, M. O. (2008): Predicting defect-prone software modules using
support vector machines. Journal of Systems and Software, vol. 81, no. 5, pp. 649-660.
Frank, E.; Hall, M.; Pfahringer, B. (2002): Locally weighted naive bayes. Proceedings
of the Nineteenth Conference on Uncertainty in Artificial Intelligence, pp. 249-256.
Herbold, S.; Trautsch, A.; Grabowski, J. (2017): A comparative study to benchmark
cross-project defect prediction approaches. IEEE Transactions on Software Engineering,
vol. 44, no. 9, pp. 811-833.
Jureczko, M.; Madeyski, L. (2010): Towards identifying software project clusters with
regard to defect prediction. Proceedings of the Sixth International Conference on
Predictive Models in Software Engineering, pp. 1-10.
Kamei, Y.; Shihab, E.; Adams, B.; Hassan, A. E.; Mockus, A. et al. (2012): A
largescale empirical study of just-in-time quality assurance. IEEE Transactions on
Software Engineering, vol. 39, no. 6, pp. 757-773.
Li, M.; Zhang, H.; Wu, R.; Zhou, Z. (2012): Sample-based software defect prediction
with active and semi-supervised learning. Automated Software Engineering, vol. 19, no. 2,
pp. 201-230.
Lu, H.; Kocaguneli, E.; Cukic, B. (2014): Defect prediction between software versions
with active learning and dimensionality reduction. IEEE 25th International Symposium
on Software Reliability Engineering, pp. 312-322.
Ma, Y.; Luo, G.; Zeng, X.; Chen, A. (2012): Transfer learning for cross-company software
defect prediction. Information and Software Technology, vol. 54, no. 3, pp. 248-256.
Malhotra, R.; Khanna, M. (2017): An empirical study for software change prediction
using imbalanced data. Empirical Software Engineering, vol. 22, no. 6, pp. 2806-2851.
Menzies, T.; Milton, Z.; Turhan, B.; Cukic, B.; Jiang, Y. et al. (2010): Defect

910 CMC, vol.63, no.2, pp.891-910, 2020

prediction from static code features: current results, limitations, new approaches.
Automated Software Engineering, vol. 17, no. 4, pp. 375-407.
Monden, A.; Hayashi, T.; Shinoda, S.; Shirai, K.; Yoshida, J. et al. (2013): Assessing
the cost effectiveness of fault prediction in acceptance testing. IEEE Transactions on
Software Engineering, vol. 39, no. 10, pp. 1345-1357.
Nam, J.; Pan, S. J.; Kim, S. (2013): Transfer defect learning. 35th International
Conference on Software Engineering, pp. 382-391.
Peng, L.; Yang, B.; Chen, Y.; Abraham, A. (2009): Data gravitation based
classification. Information Sciences, vol. 179, no. 6, pp. 809-819.
Rodriguez, D.; Herraiz, I.; Harrison, R.; Dolado, J.; Riquelme, J. C. (2014):
Preliminary comparison of techniques for dealing with imbalance in software defect
prediction. Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering, pp. 1-10.
Seiffert, C.; Khoshgoftaar, T. M.; Van Hulse, J.; Folleco, A. (2014): An empirical
study of the classification performance of learners on imbalanced and noisy software
quality data. Information Sciences, vol. 259, no. 2, pp. 571-595.
Watanabe, S.; Kaiya, H.; Kaijiri, K. (2008): Adapting a fault prediction model to allow
inter languagereuse. Proceedings of the Fourth International Workshop on Predictor
Models in Software Engineering, pp. 19-24.
Xu, Z.; Liu, J.; Luo, X.; Zhang, T. (2018): Cross-version defect prediction via hybrid
active learning with kernel principal component analysis. IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering, pp. 209-220.
Yang, Y.; Zhou, Y.; Liu, J.; Zhao, Y.; Lu, H. et al. (2016): Effort-aware just-in-time
defect prediction: simple unsupervised models could be better than supervised models.
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pp. 157-168.
Zhang, F.; Keivanloo, I.; Zou, Y. (2017): Data transformation in cross-project defect
prediction. Empirical Software Engineering, vol. 22, no. 6, pp. 3186-3218.
Zhong, S.; Khoshgoftaar, T. M.; Seliya, N. (2004): Unsupervised learning for expert
based software quality estimation. IEEE International Symposium on High Assurance
Systems Engineering, pp. 149-155.
Zimmermann, T.; Premraj, R.; Zeller, A. (2007): Predicting defects for eclipse. Third
International Workshop on Predictor Models in Software Engineering, pp. 1-9.

	Kun Zhu0F , Nana Zhang1, Shi Ying1, * and Xu Wang2

