
Computers, Materials & Continua                            CMC, vol.63, no.2, pp.873-890, 2020 

CMC. doi:10.32604/cmc.2020.07478                                                           www.techscience.com/journal/cmc 

 
 

A Novel Quantum-Behaved Particle Swarm Optimization 
Algorithm 

 
Tao Wu1, Lei Xie1, Xi Chen2, Amir Homayoon Ashrafzadeh3 and Shu Zhang4, * 

 
 
Abstract: The efficient management of ambulance routing for emergency requests is vital 
to save lives when a disaster occurs. Quantum-behaved Particle Swarm Optimization 
(QPSO) algorithm is a kind of metaheuristic algorithms applied to deal with the problem of 
scheduling. This paper analyzed the motion pattern of particles in a square potential well, 
given the position equation of the particles by solving the Schrödinger equation and 
proposed the Binary Correlation QPSO Algorithm Based on Square Potential Well (BC-
QSPSO). In this novel algorithm, the intrinsic cognitive link between particles’ experience 
information and group sharing information was created by using normal Copula function. 
After that, the control parameters chosen strategy gives through experiments. Finally, the 
simulation results of the test functions show that the improved algorithms outperform the 
original QPSO algorithm and due to the error gradient information will not be over utilized 
in square potential well, the particles are easy to jump out of the local optimum, the BC-
QSPSO is more suitable to solve the functions with correlative variables. 
 
Keywords: Ambulance routing problem, quantum-behaved particle swarm optimization, 
square potential well, convergence. 

1 Introduction 
Ambulance routing problem (ARP) is one of the most important Emergency Medical 
Services (EMS) as it plays a vital role in saving injures’s lives and reducing the rate of 
mortality when a disaster occurs [Hu, Qing, Yu et al. (2008)]. The sensitivity of decision 
making in the EMS firstly attracted the attention of operations research experts who 
studied numerous class of problems arising in the management of EMS systems. The 
ARP, called emergency logistic [Aakil, Zhang, Li et al. (2015)], is about managing and 
scheduling the flow of ambulances to save people affected by disasters [Tlili, Harzi and 
Krichen (2017)]. Various metaheuristic algorithms are applied to deal with the problem 
of scheduling, which is an NP-hard problem [Masdari, Salehi, Jalali et al. (2017)]. 
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Particle Swarm Optimization (PSO) algorithm is a recent implementation of these 
techniques [Wu, Chen and Yan (2014)]. The essential idea of PSO is to emulate birds’ 
preying behaviors. Compared with other swarm intelligence algorithms, PSO algorithm 
proposed by Kennedy et al. [Kennedy and Eberhart (1995)] sustains the global search 
strategy, avoids the complex evolutionary operations and enhances the convergence 
capability, thus it has become a research hot spot in various research fields. Besides, 
successful applications of PSO found in pattern recognition, data mining and wireless 
sensor networks. However, problems remain to solved in PSO algorithm, one of which 
presented and proven by Bergh [Bergh (2002)] is that PSO is not guaranteed to converge 
to the globally optimized solution with probability 1. Although plenty of works [Zhang, 
Tang, Hua et al. (2015); Wang, Ju, Yu et al. (2018)] have been done in recent years to 
modify and improve PSO, the state-of-the-art shows that the improvements in PSO 
promised by these works are limited. 
Aiming at PSO’s convergence bottleneck, through the comparison between the human 
learning process and particles’ behavior in quantum spaces, Sun [Sun (2009)] proposed 
the Quantum-Behaved PSO algorithm (QPSO), which leverages the aggregation tendency 
of the collective intelligence of the population. In this model, individuals described as 
particles in quantum space, which continuously iterate according to characteristics seen in 
human society, such as self-organization and collaboration. Theoretical proof has shown 
that QPSO is a globally converged algorithm. Therefore, QPSO has drawn broad 
attention in various applications fields and algorithm modification [Mikki and Kishk 
(2006); Li, Wang, Song et al.  (2012); Wu, Chen and Yan (2015)]. 
However, experiments on various test functions solved using QPSO have revealed its 
shortcomings such as the inevitable premature and weak global optimization ability as do 
other global optimization algorithms. In order to further improve the performance of the 
QPSO algorithm, we propose a novel algorithm by existing research results, which is the 
Binary Correlation QPSO Algorithm Based on Square Potential Well, referred to as BC-
QSPSO. Because of the error gradient information will not be over utilized in a square 
potential well and the particles are easy to jump out of the local optimum, the BC-QSPSO 
model outperforms the traditional QPSO algorithm regarding optimization of functions 
with correlative variables. 

2 Binary correlation QPSO algorithm 
2.1 The standard QPSO algorithm 
In PSO optimization algorithm, the solution space abstracted as the birds foraging space, 
where each bird is abstracted as a massless and size-free particle flying at a certain speed. 
Each particle has a fitness value determined by the function to be optimized. According 
to the fitness value a random search is carried out by each particle. In every round of 
iteration, each particle updates itself by tracking two optimums: The first one is the 
optimal solution found by each particle itself, commonly referred to as the personal 
optimum pbest; the other is the optimal solution found by the entire population, 
commonly referred to as the global optimum gbest. For simplicity, in this article, Pi =(pi1, 
pi2, …, piD) and G=(pg1, pg2, …, pgD) are used to describe personal optimum and global 
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optimum of particle i in the D-dimensional search space, respectively. Particle i’s 
personal best position pbest is determined by Eq. (1): 
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The index g of global best position G = (pg1, pg2, …, pgD) is determined by Eq. (2): 
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Bergh et al. [Bergh and Engelbrecht (2002)] have demonstrated that standard PSO is not 
guaranteed to converge on the global optimal solution with probability 1, which is a major 
shortcoming of the traditional PSO. In order to achieve global convergence, from previous 
studies of the particles’ convergence behaviors, Quantum-behaved PSO (QPSO) algorithm 
was proposed based on the δ potential well by assuming PSO system as a quantum space.  
According to the analysis of particles’ orbits in the PSO algorithm done by Clerc et al. 
[Clerc and Kennedy (2002)], a δ potential well can be established at the local attraction 
point pi=(pi1, pi2, …, piD) to impact particles in the population, whose coordinate is: 
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In this equation, r1 and r2 are random numbers independently distributed within an 
interval [0, 1], called random factors; c1 is the individual cognitive acceleration 
coefficient whereas c2 is the global cognitive acceleration coefficient.  
Eq. (3) can be simplified as: 
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In our assumption, particles are flying in the quantum space, thus particles’ states can be 
described using wave function Ψ(X,t). In the point of view of the theory of dynamics, the 
convergence process of a particle can be described as follows: A particle is continuously 
approaching the local attractor pi with decreasing speed, and eventually overlaps with pi. 
The steady-state of a particle in the δ potential well can be expressed using the 
Schrödinger equation. 
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By solving the above equation, the probability distribution function (PDF) in every 
dimension can be obtained for each particle. 
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Moreover, the position-updating equation of every particle in each generation in QPSO 
can be deduced as: 
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where ui,j(t)~U(0,1), Li,j(t) is the length of the potential well. Li,j(t) can be evaluated using 
the following equation: 
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where, C(t) is the average of all personal best positions, known as the gravity position of 
the population, and is evaluated as follows: 
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Therefore, a particle’s position evolution equation in (6) is finally defined as follows: 
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In the above equation,   is referred to as contraction-expansion coefficient, which is the 
only parameter in this algorithm except for the population size and iteration count. In the 
iteration process convergence performance is controlled by fine-tuning α. The value of α 
can be fixed or decreased linearly. 

2.2 Binary correlation QPSO algorithm 
The coordinate formula of the potential well center which is denoted as pi=(pi1, pi2, …, piD) 
can be divided into two portions: 
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information among particle population; 
Under the combined effect of two portions above, QPSO algorithm expects to find the 
optimal solution and adjust the position of pi constantly in the solution space according to 
the sharing information and the experiences of particle themselves.  
The point of pi takes advantage of the particles personal optimum pbest and the global 
optimum gbest mainly depends on the acceleration factor c1, c2 and random factors r1, r2.  
The coefficients c1, c2 represent the statistic weights of particles acceleration, reflecting 
the information exchange in the particle swarm. Setting the large c1 will cause the 
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particles to wander in the local area because of the undue reliance on their own 
experience, but the large c2 will cause particles premature and converge to local optima. 
As the important parameters of the standard PSO algorithm, there are a lot of related 
studies about how to value the acceleration factors c1 and c2. These policies obtained 
some improvement of the PSO algorithm. However, they ignored the impacts of the 
random factors r1 and r2 on algorithm performances. The independence assumption 
between r1 and r2 in the pi formula makes the algorithm cannot distinguish the utilization 
of pbest and gbest. At present, there are few studies about the effects of parameters r1 
and r2 on the algorithm. However, it is necessary to analyze the random factors in order 
to study further the impacts of utilization of particles’ own experiences and community 
sharing information on the performance of the QPSO algorithm respectively.   
To analyze the connection between r1 and r2 in QPSO, reference suggested the 
conception of the binary correlation factors and proposed the Binary correlation QPSO 
algorithm, referred as BC-QPSO algorithm. The BC-QPSO algorithm constructed the 
relations between r1 and r2 using the bivariate normal Copula function: Φρ(Φ-1(r1),Φ-
1(r2), the Fréchet-Hoeffding lower bound: W(u,v)=max(u+v-1,0), the Fréchet-Hoeffding 
upper bound: M(u,v)=min(u,v) and the product Copula: Π(u,v)=uv. The particle’s 
position evolution equation of BC-QPSO is finally defined as follows: 
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where, H is the Joint distribution function of the binary correlation, factors r1, r2; C are 
the binary normal Copula function; ρ is the specified correlation coefficient, which is an 
indicator of the relevant strength and could reflect linear correlation properties between 
variables r1 and r2; Φρ is the two-dimensional standard normal distribution function of 
the correlation coefficient ρ. Moreover, Φ-1 is an inverse function of the one-dimensional 
standard normal distribution function. 

3 Binary correlation QPSO algorithm based on square potential well 
3.1 Model establishment of the BC-QSPSO algorithm 
The BC-QPSO proposed by Wu et al. [Wu, Yan and Chen (2015)] enhanced the 
optimization performance to some extent. The standard QPSO algorithm is based on the δ 
potential well model. The δ potential well can be interpreted as the extreme case of the 
square potential well, thus in principle, problems relevant to the δ potential well can all be 
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solved by getting the extremes of the solutions by means square potential well method. The 
finite symmetric square potential well model can also be used in the BC-QPSO algorithm.  
The energy distribution of one-dimensional finite symmetric square potential well is 
as follows: 
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where, W is the width of the potential well and V0 is the depth. Any particle whose 
energy less than x=w/2 is constrained inside the energy wall. Although the 
implementation of square potential well is easier compared with that of the d potential 
well, it requires much harsher solving conditions for Schrödinger. The analytical solution 
of the square potential well can be obtained. However, in the context of square potential 
well, multiple energy levels can be stimulated with regard to the relationship between the 
potential well width and depth. For brevity, we only consider the bound state (ground 
state) with minimum energy when establishing BC-QSPSO model.  
Suppose that a particle with mass m and energy E moves along the X axis, the square 
potential well center (i.e., pi) solved using Eq. (3) is depicted as p and the position of the 
particle is depicted as X, given that Y=X-p, then after the coordinate transformation the 
potential function is depicted as follows: 

( )




>
≤

=
2

W
0

2
W

,
,0

xV
x

xV  (15) 

And the Schrödinger equation of every particle outside the potential well ( / 2Y W , 
the classic forbidden zone) is as follows: 
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where, 
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then, Eq. (16) can be interpreted as follows: 
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Taking into consideration of the boundary condition of the ground-state wave function at 
|y|, the value of ( )Y  can be expressed as follows: 
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The integral constant B is yet to be determined. 
Given that / 2Y W  (inside the potential well, i.e., the classically forbidden zone), the 
Schrödinger equation of the square potential well is as follows: 
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where, 

0
2 ( ) /k m E V    

Since particles are in the ground state, thus the wave function of the particle is as follows:  
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The integral constant A is yet to be determined. 
Energy values can be determined according to the continuity of the wave function   and 
its reciprocal '  or (ln )'  at 2/WY ±= , thus: 
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We can deduce that, 
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The results gained from the continuity at / 2Y W   is identical with Eq. (22). Let 
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Thus, Eq. (22) changes to:  
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From equations above, we can conclude as follows: 
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Eq. (25) is the transcendental algebra equations that x and h must satisfy which can be 
solved using numerical calculation. We denote the probability density of a particle’s 
appearance as follows to simplify and unify the expression. 
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, , ,a b    are undetermined constants. According to quantum dynamics theory,   . To 
simplify calculation, we designate  1,a b   , thus Eq. (26) can be written as follows: 
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According to the above analysis, we gained the probability function of the particles 
surrounds p as the center in the one-dimensional symmetric square potential well with 
finite depth. However, in real-world applications, further study on particles precise 
positions in the solution space is required. 
Theorem: In the BC-QSPSO model, a particle’s movement inside one-dimensional 
finite-depth symmetric square potential well with p as the center is determined using the 
following function: 

( )uWpX 1cos−±=                                                                                                         (28) 

where W is the width of the one-dimensional finite-depth symmetric square potential well, 
u is a random number uniformly distributed in (0,1). 
Proof: The wave function can collapse to the classic state using the Monte Carlo method. 
Given that u is a random number uniformly distributed in (0,1), i.e., 
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W
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we can get the following equation using the reverse transformation: 

1cos ( )Y W u  (31) 
Since Y X p  , the random equation used to measure a particle’s position is as follows: 

( )uWpX 1cos−±=  (32) 
where, u is a random number uniformly distributed in (0,1), and W is the width of the 
one-dimensional finite-depth symmetric square potential well.  
End of proof. 
Definition: The algorithm that describes particles’ movement principle inside the one-
dimensional finite-depth symmetric square potential well is called Binary Correlation 
QPSO based on the square potential well model, BC-QSPSO in short. 
Let Z=C-X where C is the average best position. In order to accelerate the convergence of 
QPSO, we adopt the approach proposed by Reference that controls potential well width 
with probability. In BC-QSPSO, let 
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According to the normalization condition: 
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We conclude that 0.4291a   in the Eq. (27). 
The Eq. (33) is also solved as: 
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where 1  . Take Z C X   into Eq. (35), we get: 

XC
k

W −⋅=
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Taking into consideration the variation of time, the evolution equation of a particle inside 
a one-dimensional finite-depth symmetric square potential well in the BC-QSPSO model 
is as follows: 
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For particle I, the attractor p in Eq. (38) can be expressed as pi=(pi,1,pi,2,…pi,N). For every 
dimension, a pi,j centric one-dimensional finite-depth symmetric square potential well can be 
established, thus the evolution equation for the j-th dimension of the i-th particle is as follows: 
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Therefore, the complete evolution equation for a particle in the D-dimensional space 
using BC-QSPSO is as follows.

 ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )( )









ΦΦΦ==

≤≤
+

+
+

=

−±=+

−−

−

2
1

1
1

2121

,
,,22,,11

,,22
,

,,22,,11

,,11
,

,,
1

,,3,,

,,,

1,

1,0~,cos1

rrrrCrrH

DjtG
trctrc

trc
tP

trctrc
trc

tp

UtututXtCptX

ji
jiji

ji
ji

jiji

ji
ji

jijijijijiji

ρρ

α

                        (40) 

3.2 Algorithm execution process 
Based on the designs and definitions discussed above, the execution process of the BC-
QSPSO algorithm is as follows:  
Step 1: Setting Parameters. The parameters needed to be setup includes the individual 
cognitive acceleration coefficient c1, the global cognitive acceleration coefficient c2, the 
contraction-expansion factor α3, the swarm population size N and the maximum number 
of iterations iterMax or the error precision of fitness.  
Step 2: Initialization of the population. For S1, initialize the position for every particle in 
the solution space, that is, randomly generating Xi,j(0)

 
for every particle and let be the 

personal best position Pi,j(0)=Xi,j(0), where i∈{1,…, NS1}, j∈{1,…,D}; For S2, initialize 
the position for every particle in the solution space, that is, randomly generating Xi,j(0) for 
every particle and let be the personal best position Pi,j(0)=Xi,j(0), where i∈{Ns1+1,…, N}, 
j∈{1,…,D}; 
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Step 3: Calculating the fitness values for all particles in S1 and S2. Suppose that the 
optimization problem to be solved is a minimization one, and then assign the position 
corresponding to smallest fitness value to the global best position of sub-groups respectively, 
i.e., gbest1={Xi |min(f(Xi)), i∈{1,…, NS1}, gbest2={Xi |min(f(Xi)), i∈{1,…, NS2}.  
Step 4: Calculating the average best positions of the entire population C(t) according to the 
Eq. (10) and evaluate the parameters Li,j(t) of the master and slave sub-groups respectively.  
Step 5: Updating the position for particle i(1≤i≤N), that is calculating new positions for 
all particles using the Eq. (17).  
Step 6: Recalculating the particle i’s current position Xi(t) according to the objective 
function (t for iterations). 
Step 7: Updating the personal best positions using Eq. (1) for the master and slave sub-
group respectively. If f(Xi(t))<f(Pi(t-1)), then let be Pi(t)=Xi(t); otherwise , Pi(t)= Pi(t-1); 
Step 8：If i∈S1 and the fitness value of Pi(t) is better than the fitness value of the global 
best position of the whole swarm Pg(t-1), i.e., f(Pi(t))< f(Pg(t-1)), then Pi(t) is saved as the 
global best position of master group S1, which is denoted as Pgs1(t); otherwise, 
Pgs1(t)=Pg(t-1). If i∈S2 and the fitness value of Pi(t) is better than the fitness value of 
Pg(t-1), i.e., f(Pi(t))<f(Pg(t-1)), then Pi(t) is saved as the global best position of the slave 
group S2 , which is denoted as Pgs2(t); otherwise, Pgs2(t)=Pg(t-1). 
Step 9: Comparing the fitness value of Pgs1(t) and Pgs2(t), if f(Pgs2(t))<f(Pgs1(t)) then 
assign Pgs2(t) to be the global best position Pg(t), i.e., Pg(t)=Pgs2(t); Otherwise , Pgs1(t) is 
assigned to Pg(t), i.e., Pg(t)=Pgs1(t). 
Step 10: Termination determination. If the maximum times of iterations iterMax or the 
error precision of fitness value are achieved, then stop the searching process and putout the 
results. Otherwise, let t=t+1 and repeat Step 3 to Step 10. 

4 Experiment designs and results analysis 
4.1 Experiment designs 
Performance and efficiency of intelligent algorithms tend to be affected by the 
experiment parameter settings [Eberhart and Shi (1998)]. How to determine parameters to 
achieve optimal performance is in itself a very complex optimization problem. In order to 
obtain reasonable experiment results, the benchmark functions, including Sphere function, 
Rosenbrock function, Rastrigin function, Griewank function, Ackley function and 
Schaffer function, are adopted to choose the value of control parameters and test 
algorithms for performance comparison.  
1) Benchmark functions 
The benchmark functions with various characteristics are a major tool for performance 
evaluation for evolutionary algorithms. Unimodal and multimodal problems are 
commonly seen in engineering projects; thus, unimodal and multimodal functions are 
used as testing functions in this paper. Expressions, the search range of variables, 
initialization range and optimal solution and optimal values are given in Tabs. 1 and 2. 
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Table 1: Unimodal functions 

Benchmark 
Function Equation Searching Range 

Sphere 2
1

1

( )
D

i
i

f X x


   [-100, 100]D 

Rosenbrock 
2 2 2

2 1
( ) [100( ) ( 1) ]

i i i
f X x x x   

 
[-10, 10]D 

Benchmark 
Function Initial Range Optimal and Fitness 

Value 

Sphere [-100, 50]D  f1(0, 0, …, 0)=0 

Rosenbrock [-10, 10]D f2(1, 1, …, 1)=0 

Table 2: Multimodal function 
Benchmark 

Function Equation Searching Range 

Rastrigin 2
3

1

( ) ( 10 cos(2 ) 10)
D

i i
i

f X x x


    [-5.12, 5.12]D  

Griewank 
2

4
11

( ) cos( ) 1
4000

D D
i i

ii

x x
f X

i

     [-600, 600]D  

Ackley 
2

5
1

1

1
( ) 20 exp( 0.2 )

1
exp( cos(2 )) 20

D

i
i

D

i
i

f X x
D

x e
D







  

  





 
[-32.78, 32.78]D 

Expanded 
Shaffer 



6 1 2 1 1

2 2 2

2 2 2

( ) ( , ) ( , ) ( , )

(sin ) 0.5
( , ) 0.5 ,

(1.0 0.001( ))

D D D
f X g x x g x x g x x

x y
g x y

x y

   

 
 

 

 

[-100, 100]D 

Benchmark 
Function Initial Range Optimal and Fitness 

Value 

Rastrigin [-5.12, 2]D f3(0, 0, …, 0)=0 

Griewank [-600, 200]D f4(0, 0, …, 0)=0 

Ackley [-82.786, 16]D f5(0, 0, …, 0)=0 

Expanded 
Shaffer [-100, 50]D  f6(0, 0, …, 0)=0 
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2) Control parameters choosen strategy 
α3 is the only controllable parameter in BC-QSPSO algorithm except for the population 
size, the correlation coefficient and iteration times. The convergence performance of the 
algorithm is controlled by α3 during the iterations so that to guarantee the balance 
between global search and the local search to achieve better optimization performance. 
The value assignment strategy for α1 in BC-QDPSO follows that used in standard QPSO. 
Given that the convergence is guaranteed, this section specifies the performance of the 
BC-QSPSO algorithm using different value assignment strategies by solving four 
different standard test functions (f1-f4). The dimensions of test functions are configured 
as 10 and 20 while the corresponding iteration times is configured as 1000 as the 
maximum value. Besides, the population size is 30 when the dimension is 10 while the 
size is 50 when the dimension is 20. The correlation coefficient ρ of the binary 
correlation factor is configured as -1, 0, and 1 respectively. The above configurations are 
respectively applied in every test function for 30 test runs, each with 30 iterations, and 
the average values are studied.  
In this paper, parameter α3 in BC-QSPSO decreases linearly with the increase of 
iterations, i.e., as follows:  

( ) ( ) bIterMaxtIterMaxba +−×−= /3α  (41) 

where, a>b, a is the initial value of the parameter, and b is the final value of the 
parameter. InterMax is the total iterations, t is the current iteration.  
Tab. 3 depicts the average optimized values of BC-QSPSO for 10 and 20 dimensions 
when ρ=1, ρ=0 and ρ=-1, given that the control parameter decreases linearly. Thirty tests 
are run for different parameter strategy.  

Table 3: The optimization results of BC-QSPSO with different control parameters 

BC-QSPSO 
 

f2 f3 

(10/30) (20/50) (10/30) (20/50) 

1 
 

[1.4,0.1] 125.5476 536.9745 7.9694 14.5262 

[1.2,0.3] 5.0476 17.4405 7.0296 17.2299 

[1.0,0.5] 7.9723 17.2969 6.2554 18.7799 

0 
 

[1.4,0.1] 3.9143 50.9379 6.0033 17.3977 

[1.2,0.3] 62.0233 141.3957 7.1873 18.0368 

[1.0,0.5] 21.1276 262.2016 7.9968 18.9367 

1  
 

[1.4,0.1] 4.8296 15.3909 6.9709 16.9303 

[1.2,0.3] 6.1434 17.0273 7.9597 16.9144 

[1.0,0.5] 91.365 23.3962 6.9859 17.9362 
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BC-QSPSO 
 

f4 f5 

(10/30) (20/50) (10/30) (20/50) 

1 
 

[1.4,0.1] 1.0387 0.7563 4.7339E-4 2.7855E-4 

[1.2,0.3] 0 0 2.7417E-8 6.9996E-5 

[1.0,0.5] 0 0.8654 1.4114E-11 1.9866E-9 

0 
 

[1.4,0.1] 0.4805 0.6722 9.0068E-5 0.0577 

[1.2,0.3] 0.5329 0.6361 0.0056 0.2379 

[1.0,0.5] 0.5332 0.7563 0.3604 1.0822 

1  
 

[1.4,0.1] 0.6498 0.8654 2.0428E-14 1.1844E-6 

[1.2,0.3] 0.5329 0.7563 2.8393E-10 8.8699E-5 

[1.0,0.5] 0.5329 0.7563 3.1358E-4 0.0234 

For BC-QSPSO: When ρ=1, Rosenbrock function, among other ten dimensional 
functions, obtained the optimal solution when the control parameter α3 linearly decreased 
between [1.2, 0.3]. Other functions obtained their optimal values whenα3 linearly 
decreased between [1.0, 0.5]. For 20 dimensional test functions, the control strategy that 
α3 linearly decreased between [1.0, 0.5] also offered good optimization results. Given ρ=0, 
the linear decrement of α3 between [1.4, 0.1] is obvious advantages where every test 
function acquired the optimal value except for Griewank function. Given ρ=-1, the linear 
decrement of α3 between [1.4, 0.1] offered good impact over most test functions. The 
only exception is Griewank, whose optimal solution was obtained when α3 linearly 
decreased between [1.2, 0.3], among all ten dimensional functions. Rastrigin and 
Griewank also acquired optimal solutions when α3 linearly decreased between [1.2, 0.3]. 
In general, the optimization performance of BC-QSPSO benifites from bigger decrement 
range of α3, thus we adopt the policy that α3 linearly decreases between [1.4, 0.1].  
Upon the above analysis, we conclude as follows: Better optimization performance is 
achieved for BC-QSPSO when the linear decrement controlling method is adopted for α3. 
Bigger decrement range enables better optimization performance. The decrement range 
between [1.4, 0.1] for α3 results are in good optimization performance for most test functions.  

4.2 Experiments results 
The parameter α decreases linearly from 1.0 to 0.5 and α3 decreases linearly from 1.4 to 
0.1 in every algorithm to be tested. The dimension of the benchmark functions is set to be 
20 and the maximum iterations are set to be 1000; The size of the population is set as 50, 
Every benchmark function is tested times independently, and the average value of each 
test function is evaluated at the end of 30 iterations. 
The mean fitness value of each iteration using QPSO, BC-QDPSO [Wu, Yan and Chen 
(2015)] and BC-QSPSO solving benchmark functions is as shown in Tab. 4. 
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Table 4: The results of optimization algorithms (D=20, N=50) 

Algorithms f1  f2 f3 

=0
 

BC-QDPSO 0 19.4254 19.6241 

BC-QSPSO 6.6408E-150 6.31E-17 18.2106 

=1
 

BC-QDPSO 0 15.2942 16.9480 

BC-QSPSO 2.0011E-309 2.71 E-007 17.0493 

=-1
 

BC-QDPSO 0 3.9866 16.9143 

BC-QSPSO 6.7054E-210 4.49E-19 16.9356 

QPSO 0 6.86E-2 20.9982 

Algorithms f4 f5 f6 

=0
 

BC-QDPSO 1.2972 1.7774E-4 2.7554E-6 

BC-QSPSO 0.6209 4.6E-3 1.0860E-4 

=1
 

BC-QDPSO 0.8654 6.2172E-15 5.3644E-5 

BC-QSPSO 0.7563 7.8663E-5 2.1641E-4 

=-1
 

BC-QDPSO 0.7061 5.3165E-8 2.6695E-7 

BC-QSPSO 0.6721 9.2707E-4 6.3021E-6 

QPSO 0.6721 6.2175E-15 3.6771E-4 

 
 (a) f1 (b)  f2 
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 (c) f3 (d) f4  

 
  (e) f5  (f) f6 

 
Figure 1: Convergence curves of test functions (D=20, N=50) 

Fig. 1 illustrates the convergence curves of test functions using QPSO, BC-QDPSO and 
BC-QSPSO algorithms. From Tab. 4 and Fig. 1, We can learn that correlation-aware 
QPSO achieves better optimization performance compared with traditional QPSO 
algorithms by appropriately selecting correlation factor ρ. f1, the Sphere function, is a 
unimodal function. The gradient information of Sphere function always points to the 
global optimal solution. The function surface is smooth as well where variables do not 
share mutual impacts, thus the optimization process is quite simple. Sphere function fits 
well in testing the optimization accuracy of various algorithms. When processing the 
unimodal Sphere function, all the δ potential well based QPSO algorithms managed to 
find the optimal solution 0.  
The square potential well based BC-QSPSO provides an obvious advantage when dealing 
with f2 function, i.e., the Rosenbrock function. Rastrigin function reserves a big amount of 
local optimal values, thus becoming one hard to be optimized globally. BC-QDPSO and 
BC-QSPSO offered similar optimization results. It is also as difficult to obtain the 
optimal solution for Griewank function as for Rosenbrock function, since the Griewank 
function is a non-linear violent multimodal function whose variables share strong mutual 
interactions. However, it is getting easier to find the optimal solution along with the 
increment of dimensions, where BC-QSPSO offers better performance. Ackley is a 
simple non-linear multimodal function due to the regular distributions around local 
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optimal values. For Expanded Shaffer function, the optimal value is coaxially surrounded 
by local optimal values. As a result, dealing with the above two functions. BC-QDPSO 
offered better performance than BC-QSPSO. 
From the above analysis, we can see that the δ potential well based BC-QDPSO 
algorithm is most advantageous in solving simple unimodal functions and simple 
multimodal functions with regularly distributed local optimal values, due to that, for these 
two BC-QPSO algorithms, the probability of the appearance of a particle in the 
classically forbidden zone is as follows.  

BC QSPSO BC QDPSO
P P   (42) 

That is to say, the probability of the appearance of a particle in the classically forbidden 
zone in δ potential well model is higher than that in the square potential well model. 
Therefore, BC-QDPSO exhibits stronger mutability which that enables better optimization 
for unimodal functions. On the other hand, functions with the correlation between 
variables gain better optimization performance using the BC-QSPSO algorithm due to the 
even distribution of gravity around the potential well center that attracts particles. In such 
evenly distributed gravity, incorrect gradient information is not overly used in processing 
functions with variable correlations, which helps particles escape from local optimization 
thus better performance is provided. 

5 Conclusion 
This paper proposes the BC-QSPSO algorithm, i.e., the Binary Correlation QPSO based 
on Square Potential Well model. This approach simulated the motion of particles in the 
square well model and using binary normal Copula function describes the correlation 
between self-experience information and swarm-shared information of a particle in this 
potential well center. Using the correlation description, the BC-QSPSO algorithm can be 
deduced from the analysis of particles movement principle in the symmetric square 
potential well with finite depth. Various experiments and analysis are conducted in this 
paper to test parameter value assignment strategies, among which the linear decrement 
strategy is preferred. Experiments are also conducted between BC-QSPSO, BC-QDPSO 
and the standard QPSO algorithms for performance analysis. The analysis has revealed 
that the δ potential well based algorithms provide better optimization results for unimodal 
functions while the square potential well based BC-QSPSO algorithm offers better 
performance for functions where variables are somehow correlated.  
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