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Abstract: Fast identifying the amount of information that can be gained by measuring a 

network via shortest-paths is one of the fundamental problem for networks exploration and 

monitoring. However, the existing methods are time-consuming for even moderate-scale 

networks. In this paper, we present a method for fast shortest-path cover identification in 

both exact and approximate scenarios based on the relationship between the identification 

and the shortest distance queries. The effectiveness of the proposed method is validated 

through synthetic and real-world networks. The experimental results show that our method 

is 105 times faster than the existing methods and can solve the shortest-path cover 

identification in a few seconds for large-scale networks with millions of nodes and edges. 
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1 Introduction 

Network topology is a crucial prerequisite for understanding network performance and 

network security situation. In order to study complex networks such as the Internet, the World 

Wide Web or social networks, one has to explore or monitor them [Guillaume and Latapy 

(2005)]. Most of the complex networks rely on partial views obtained by using various 

intricate exploration method. Traceroute-like measuring is one of the main approaches and 

has been adopted by many topology discovery systems [McRobb, Claffy and Monk (1999); 

Spring, Mahajan and Wetherall (2004)]. For obtaining a view of the topology, traceroute-like 

approach merges routes from a given set of sources to destinations. To identify the amount 

of information by traceroute-like measuring, in this paper, we consider the problem of 

shortest-path cover identification (SPCI) which determines the proportion of edges that can 

be discovered via shortest-paths from given source nodes to all the other nodes. SPCI is a 

reasonable model for traceroute-like measuring [Ouédraogo and Magnien (2011)], 

meanwhile, SPCI is a precondition for optimal deploying monitor sources [Han and Xu 
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(2008); Zou, Qiao, Zhou et al. (2009)]; Boothe, Dvorák, Farley et al. (2007)]. 

The researchers have paid plenty of attention to SPCI. In theory, Blondel et al. [Blondel, 

Guillaume, Hendrickx et al. (2007)] quantitatively estimate the average SPCI from a single 

source in Erdös-Rényi networks. Boothe et al. [Boothe, Dvorák, Farley et al. (2007)] define 

two related deploying optimization problems based on SPCI and show the NP-complete 

hardness of the two problems on general networks. Dall’Asta et al. [Dall’Asta, Alvarez-

Hamelin, Barrat et al. (2006)] point out that the probability of node and link detection is 

related to the betweenness centrality of the element and the density of sources and 

destinations. In practice, Guillaume et al. [Guillaume and Latapy (2005)] focus on the 

differences of SPCI under various source settings in Erdös-Rényi networks, and they show 

that the ratio amount varies and is difficult to estimate. Pignolet et al. [Pignolet, Schmid 

and Tredan (2017)] introduce an asymmetric model and give approximate algorithms for 

cactus and outer planar networks. Barford et al. [Barford, Bestavros, Byers et al. (2004)] 

quantify the marginal utility of SPCI, and they find that the marginal utility of adding 

sources quickly drops and low marginal utility which does not imply the overall coverage 

is high. Zou et al. [Zou, Qiao, Zhou et al. (2009)] and Han et al. [Han and Xu (2008)]  

develop heuristic methods to solve one of the deploying optimization problems. As a 

fundamental operation on networks, SPCI needs to be computed fast [Blondel, Guillaume, 

Hendrickx et al. (2007)], most of the previous works consider SPCI to be a known 

precondition, but it is still a challenge for large complex networks. 

Fast SPCI is a non-trivial task in large complex networks [Sommer (2014)]. SPCI is related 

to all the shortest-paths between any two nodes in a network [Boothe, Dvorák, Farley et al. 

(2007)]. Most of the state-of-the-art algorithms for a single-source shortest-path or all-pairs 

shortest-path [Cormen, Leiserson, Rivest et al. (2001); Madkour, Aref, Rehman et al. 

(2017)] are aimed at outputting only one of the shortest-paths between any two nodes. 

However, it costs us impractically exponential time to pick out all the shortest-paths by 

using these algorithms directly, e.g., the time complexity of generating all the shortest-

paths by Breadth First Search (BFS) is Ο(2|𝑉|). 

To address this issue, this paper presents a method for fast SPCI in large complex networks. 

We prove that SPCI can be solved by shortest-path distance queries (SPDQ). After making 

the connection between SPCI and SPDQ, we propose a method for fast SPCI in both exact 

and approximate scenarios, and we get more than 105 times speed up than BFS. 

Furthermore, we develop two sampling strategies for further speed up SPCI. Combining 

SPDQ and network sampling, we can solve SPCI in a few seconds for networks with 

hundreds of millions of nodes with a small accuracy loss. Our method can not only be used 

to quickly evaluate the performance of the deployment schemes that is crucial for network 

monitoring, but also be used as a fundamental step in solving deploying optimization 

problems. In summary, our contributions are as follows: 

• We show that SPCI can be solved by SPDQ instead of computing all the actual 

shortest-paths, and this conversion avoid the exponential time complexity. 

• We propose a semi-approximate SPDQ method for SPCI in order to trade-off between 

exact SPDQ and approximate SPDQ, and the semi-approximate method speeds up the 

exact SPDQ with a small accuracy loss. 
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• Several network-sampling strategies are designed to further speed up SPCI. We show 

that SPCI can be estimated by using only a small portion of edges in a network. 

Network sampling strategies are independent with SPDQ methods, and therefore they 

can be combined together. 

• We implement extensive experimental evaluation on both synthetic and real-world 

networks to verify the effectiveness of the proposed methods. 

The paper is organized as follows: In Section 2, we define the SPCI problem, and show the 

connection between SPCI and SPDQ. This is followed in Section 3 with two speed up 

strategies including a semi-approximate SPDQ method and network sampling. Continuing 

in Section 4, we perform experiments on both synthetic and real-world networks and 

evaluate the effectiveness of our method. Finally, we conclude this paper in Section 5. 

2 Methodology 

2.1 Definition of the SPCI problem 

In this section, we formally state the SPCI problem from [Boothe, Dvorák, Farley et al. 

(2007)]. Tab. 1 lists the notations that are frequently used in this paper. We model a 

network by a simple graph G(V, E), where V  is a set of nodes representing network sites 

and E is a set of edges representing links. For any two nodes u, v ∈ V , let SP(u, v) be the 

set of all shortest-paths between u, v. For path p ∈ SP(u, v), we denote ES(p) as the edge 

set of  p. Let R be the covering model that control which parts of edges can be discovered 

in SP(u, v) and CR(u, v) be the covered edges under covering model R. We denote CR(u) 

as the edges covered by node u, that is, CR(u)=∪v ∈ V\{u}CR(u, v). And we denote CR(U) as 

the edges covered by node set U, that is, CR(U)=∪u ∈ UCR(u). The two shortest-path cover 

identification problem are defined as follows: 

• NSPCI. The node SPCI (NSPCI) is identifying CR(U) for a given U ⊆ V. 

• ESPCI. The edge shortest-path cover identification (ESPCI) is determining whether 

e ∈ CR(U) or not for given e ∈ E and U ⊆ V. 

It is clearly that NSPCI can be solved through ESPCI. 

We consider two different covering model R: 

• Union R=∪, C∪(u, v)=∪p∈SP(u, v)ES(p). 

• Intersection R=∩, C∩(u, v)=∩p∈SP(u, v)ES(p). 

The two covering models above characterize the best and worst case of covered edges that 

can be learned from u, v [Boothe, Dvorák, Farley et al. (2007)]. It is clearly that C∩(u, v) ⊆
C∪(u, v) and C∩(U) ⊆ C∪(U) hold. 

In this paper, we only consider simple networks, which are undirected and unweighted, but 

the proposed methods can be easily extended to directed and weighted networks. 
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Table 1: Frequently used notations 

Notation Description 

G(V, E) A graph with nodes V and edges E 

dG(u, v) Shortest-path distance between u, v in G 

dĜ(u, v) Approximate shortest-path distance between u, v in G 

N(v) Neighbors of node v 

SP(u, v) All the shortest-paths between u, v 

ES(p) Edge set constituting path p 

R Covering model 

CR(U) Covered edge set from sources U to all other nodes 

rR(U) Coverage rate of U, i.e., |CR(U)|/|E| 

2.2 Solving ESPCI by SPDQ 

As is pointed out above, the time complexity of computing SPCI through the existing 

methods such as BFS is high, thus it is impractical for large-scale complex networks. Here 

we give the connection between ESPCI and SPDQ and show that ESPCI can be solved by 

SPDQ. SPDQ focuses on the distance between two nodes u, v in G(V, E) rather than the 

actual shortest-paths. For example in Fig. 1, instead of concerning the specific shortest-

paths between w and u, we only focus on the shortest-path distance dG(w, u). 

 

(a)  dG(w, u)=dG(w, v)                (b)  dG(w, u)≠dG(w, v) 

Figure 1: Solving SPCI based on SPDQ 

In the following, we come up with necessary and sufficient conditions for the two 

covering models. 

Theorem 1. For any edge e=(u, v) , e ∉ C∪(w)  and e ∉ C∩(w)  hold when 

dG(w, u)=dG(w, v), otherwise e ∈ C∪(w) holds. 

Proof. If dG(w, u)=dG(w, v) holds, ∀ p ∈ SP(w, u), e ∉ ES(p), otherwise there is at least 

one shortest-path from w  to u  through v , leading to dG(w, v) < 𝑑 . In a similar way, 
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∀ p' ∈ SP(w, u), e ∉ ES(p' ). Therefore, e ∉ C∪(w) and e ∉ C∩(w) hold by the definitions 

of the two routing models, as is shown in Fig. 1(a). If dG(w, u)≠dG(w, v) holds, we might 

suppose dG(w, u)=d+1 and dG(w, v)=d, then there is a shortest-path from w to u with e as 

the last edge, so e ∈ C∪(w) holds.  

Theorem 2. Let N(v) denotes the neighbors of v. If  dG(w, u) = d and dG(w, v)=d+1 are 

satisfied for e=(u, v),then e ∈ C∩(w) holds when ∀ x ∈ N(v)\{u}, dG(w, x)≠d, otherwise 

e ∉ C∩(w) holds. 

Proof. dG(w, u)=d and dG(w, v)=d+1, and ∀ x ∈ N(v)\{u}, dG(w, u)≠d leads to the fact that 

∀ p ∈ SP(w, v), e  is the last edge of p , therefore e ∈ C∩(w) . If ∃ x ∈ N(v)\{u} satisfies 

dG(w, x)=d, there is at least one path p' ∈ SP(w, v) whose last edge is (x, v), so e ∉ C∩(w) 

holds, as is shown in Fig. 1(b).  

Let ∆w(u, v) denote the distance gap from w to u and v, i.e., ∆w(u, v)=dG(w, u)-dG(w, v). 

Combining Theorem 1 and Theorem 2, we can conclude that both C∪(w) and C∩(w) can 

be determined by ∆w. More precisely, as is shown in Fig. 2, we classify the neighbors of v 

into three sets by the distance gap from w. The three sets are Nw
+1(v), Nw

0 (v) and Nw
-1(v), e.g., 

Nw
+1(v)  denotes the subset of N(v)  with ∀ u ∈ Nw

+1(v) , dG(w, u)=dG(w, v)+1  holding. 

Starting from the three neighbor sets, we give that: 

• edges between v and Nw
+1(v) or Nw

-1(v) are in C∪(w). 

• edges between v and Nw
0 (v) are not in C∪(w) or C∩(w). 

• edges between v and Nw
-1(v) is in  C∩(w) iff |N

w

-1
(v)|=1. 

 

Figure 2: Three neighbor sets according to distances gap 

We call a subgraph GT(VT, ET) as a detachable tree if it is a tree and it has at most one node bT 

connect to the other subgraph G-GT. According to Theorem 1 and Theorem 2, we can deduce: 

Corollary 1. Edges in a detachable tree of G can be covered by any nodes in V. 

Proof. Based on the definition, ∀ uT ∈ VT and ∀ w ∈ V  there is only one shortest-path 

between w and uT. So ∀ eT=(uT , vT)  ∈ ET and ∀ xT ∈ N(vT)\{uT} where $vT ≠ bT, dG(w, 

uT)≠dG(w, vT)≠dG(w, xT) holds. According to Theorem 1 and Theorem 2, e ∉ C∪(w) and 

e ∉ C∩(w) hold.  

Corollary 1 will simplify SPCI by converting an original network G to a smaller scale one 
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G’ by removing all the detachable trees from G. This can be done by recursively deleting 

the 1-degree node. The simplified results are shown in Section 4.1. 

Combining Theorem 1, Theorem 2 and Corollary 1, we have shown a solution for ESPCI 

based on SPDQ.  

SPDQ is a faster alternative to the single-source shortest-path and all-pairs shortest-path 

algorithms. This can be achieved by preprocessing the network and creating an auxiliary data 

structure to answer queries [Sommer (2014)]. Generally, a so-called preprocessing algorithm 

computes certain information for the next phase. After this preprocessing step, we can ask 

shortest-path distance, which should be answered as fast as possible. Many studies have 

focused on SPDQ, and they can be divided into two categories: exact methods [Akiba, Iwata 

and Yoshida (2013)] and approximate methods [Zhao, Sala, Wilson et al. (2010); 

Papadopoulos, Krioukov, Boguñá et al. (2010)]. A large portion of the exact methods are 

based on 2-hop cover [Abraham, Delling, Glodberg et al. (2012); Cheng and Yu (2009) ; 

Cohen, Halperin, Kaplan et al. (2003); Jin, Ruan, Xiang et al. (2012); Chen, Chen, Liu et al. 

(2018)] or tree decompositions [Akiba, Sommer and Kawarabayashi (2012)], and the main 

approach of the approximate methods is landmark-based [Chen, Sommer, Teng et al. (2013); 

Potamias, Bonchi, Castillo et al. (2009); Gubichev, Bedathur, Seufert et al. (2010); Qiao, 

Cheng, Chang et al. (2012); Tretyakov, Armas-Cervantes and García-Bañuelos et al. (2011)]. 

See [Sommer (2014); Madkour, Aref, Rehman et al. (2017)] for the review of recent progress 

on SPDQ. 

All the SPDQ algorithms can be adopted for the SPCI problem. As we only need dG(u, v) 

or dĜ(u, v) according to Theorem 1, Theorem 2, therefore, both the exact methods and the 

approximate methods can be used to solve SPCI. 

3 Algorithm 

As a fundamental operation, SPCI should be computed fast and accurately, e.g., it is 

necessary to compute NSPCI from each node in V for the monitor deploying optimization 

problems [Han and Xu (2008); Boothe, Dvorák, Farley et al. (2007)]. In this section, we 

aim at fast SPCI. We present methods for solving SPCI based on SPDQ, and we propose 

the semi-approximate SPDQ algorithm as a trade-off between exact SPDQ and 

approximate SPDQ. Furthermore, we develop network-sampling strategies to estimate the 

coverage rate. 

3.1 SPCI algorithms based on SPDQ 

Using Theorem 1, Theorem 2 and Corollary 1, we can solve SPCI. The algorithms for 

ESPCI and NSPCI based on SPDQ are described as Algorithm 1, Algorithm 2 and 

Algorithm 3. 

As mentioned above, all the SPDQ algorithms can be applied, but there are different time 

and space complexity between SPCI solutions by different SPDQ. Comparing all the SPDQ 

algorithms are out of the scope of this paper, here we focus on two representative SPDQ 

algorithms-PLL (Pruned Landmark Labeling) [Akiba, Iwata and Yoshida (2013)] for the 

exact method and LT (Landmarks and Triangulation) [Goldberg and Harrelson (2005)] for 

the approximate method.  
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Algorithm 1: ESPCI from w to e=(u, v) when R=∪ 

Input: network G, node w, edge e=(u, v). 

Output: whether e ∈ C∪(w) or not. 

1 if SPDQ(w, u, G)=SPDQ(w, v, G) then 

2     return e ∉ C∪(w) 

3 else 

4     return e ∈ C∪(w) 

5 end if 

Algorithm 2: ESPCI from w to e=(u, v) when R=∩ 

Input: network G, node w, edge e=(u, v). 

Output: whether e ∈ C∩(w) or not. 

1 if SPDQ(w, u, G)=SPDQ(w, v, G) then 

2     return e ∉ C∩(w) 

3 else 

4 if SPDQ(w, u, G)+1=SPDQ(w, v, G) then 

5     u, v ← 𝑣, 𝑢 

6 end if 

7     if  ∀ x ∈ N(v)\{u}, SPDQ(w, x, G)≠SPDQ(w, v, G) then 

8 return e ∈ C∪(w) 

9 else 

10 return e ∉ C∪(w) 

11 end if 

12 end if 

Algorithm 3: NSPCI from w 

Input: network G, node w. 

Output: CR(w). 

1 CR(w) ← ∅ 

2 compute SSSPD(w)={SPDQ(w, u, G) | u ∈ V} 

3 for u ∈ V do 

4 compute Nw
+1(v), Nw

0 (v) and Nw
-1(v) by SSSPD(w) 

5 add the corresponding edges into CR(w) by Theorem 1 and 2 

6 end for 

7 return CR(w)  
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PLL conducts a BFS from each node and adds the distance information to the labels of 

visited nodes. By BFS pruning and bit-parallel operations, it takes PLL microseconds to 

answer a distance query for networks with millions of nodes.  

LT uses a set of landmarks L⊆V and triangle inequality to estimate shortest-path distances. 

Each landmark l ∈ L computes and stores distances to all the other nodes. For any distance 

query between w  and v , the distance result is estimated as SPDQ(w, v, G) = 
minl∈L{dG(w, l)+dG(l, v)}. Furthermore, instead of minimizing over all landmarks (in time 

Ο(|L|)), in many schemes, nodes designate a nearest landmark for triangulation. Let  lw(lv) be 

a landmark that is the closest one to w  ( v ), then the distance result is 

SPDQ(w, v, G)=min{dG(w, lw)+dG(lw, v), dG(w, lv)+dG(lv, v)}. The query time complexity 

of nearest landmark scheme is Ο(1). The quality of LT is highly depending on the landmark 

selection. Instead of random selection, several heuristics have been proposed to improve 

coverage [Sommer (2014)]. In this paper, we adopt nearest landmark scheme and max degree 

selection strategy, and then compute distance from landmarks to all nodes by PLL. 

3.2 Semi-approximate SPDQ 

ESPCI depends on accurately estimating shortest-path distances from w to e=(u, v), as is 

shown in Fig. 1. PLL gives exact distances for both w → u and w → v. On the contrary, LT 

gives approximate distances for both w → u and w → v. Although LT is faster than PLL, it 

is inaccurate. The semi-approximate SPDQ gives the exact distance for one side, e.g., 

w → u, and the approximate distance for the other side, e.g., w → v. Therefore, the semi-

approximate SPDQ is faster than PLL and more accurate than LT. 

The basic starting point of the semi-approximate SPDQ is the shortest paths correlation 

between w → u and w → v, that is, if l belongs to one of the shortest paths between w, u, it 

is highly probable that l also belongs to one of the shortest paths between w, v.  

We improve the distance query progress from PLL to get the semi-approximate SPDQ 

algorithm. In PLL, for each node u ∈ V, there is a candidate node set CA(u) ⊆ V and a 

label set L(u)={(s, dG(s, u)) | s ∈ CA(u)} . PLL answers the dG(w, u)  as 

min{ dG(s, w)+dG(s, u) | (s, dG(s, u)) ∈ L(w), (s, dG(s, u)) ∈ L(u)} . We first construct a 

cache node set CN(w, u)={s | s ∈ CA(w) ∩ CA(u)}  with at most K  nodes as well as 

querying dG(w, u)  by PLL, then we directly estimate distance between w, v  as 

dĜ(w, v)=min{ dG(s, w)+dG(s, u) | s ∈ CN(w, u), (s,dG(s, v)) ∈ L(v)} . The semi-

approximate SPDQ algorithm is described as Algorithm 4. 

Typically, K is much smaller than the average size of label sets. Therefore, the semi-

approximate SPDQ algorithm is faster than PLL on ESPCI. For Algorithm 1, the query 

time complexity is Ο(L(w)+L(u)+K+L(v))  by the semi-approximate SPDQ against 

Ο(2L(w)+L(u)+L(v))  by PLL. In Algorithm 2, we can achieve more acceleration by 

estimating distances from v to N(v)\{u} when dG(w, v)>dG(w, u) holds. See Section 4.3 for 

performance comparisons. 

The semi-approximate SPDQ algorithm is not suitable for NSPCI. In NSPCI, we can 

precompute all the exact distances from the given node w , then check all edges by 

Algorithm 1, Algorithm 2. Therefore, it is unnecessary to estimate the distance as 

Algorithm 4.  
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Algorithm 4: Semi-Approximate SPDQ from w to e=(u, v) 

Input: network G, node w, edge e=(u, v), label sets L(w), L(u), K. 

Output: dG(w, u), dĜ(w, v). 

1 CN ← ∅, dG(w, u) ← ∞, dĜ(w, v) ← ∞ 

2 for (s, dG(s, u)) ∈ L(w), (s, dG(s, u)) ∈ L(u) do 

3 if dG(s, w)+dG(s, u) < dG(w, u) then 

4     dG(w, u)=d
G

(s, w)+dG(s, u) 

5     CN ← ∅ 

6 end if 

7 if dG(s, w)+dG(s, u)=dG(w, u) and |CN| < K then 

8     CN ← CN ∪{s} 

9 end if 

10 end for 

11 for s ∈ CN, (s, dG(s, v)) ∈ L(v) do 

12 if dG(s, w)+dG(s, v) < dĜ(w, v) then 

13     dĜ(w, v)=dG(s, w)+dG(s, v) 

14 end if 

15 end for 

16 return dG(w, u), dĜ(w, v)  

 

Although the semi-approximate SPDQ algorithm is not suitable for NSPCI, it is compatible 

with edges sampling (see Section 3.4 for details).   

It is worth mention that the semi-approximate SPDQ algorithm can be applied in all SPDQ 

algorithms based on 2-hop cover. All the 2-hop cover algorithms have a label set L(u) for 

node u, and that is all the semi-approximate SPDQ algorithm needed, we just pick PLL as 

a typical example in this paper. 

3.3 Time complexity analysis 

PLL takes Ο(W|E|log|V |+W2|V|log
2
|V|) time to preprocess with Ο(W|V|log|V |) space, and 

answers distance query in Ο(Wlog|V |)  time [Akiba, Iwata and Yoshida (2013)], where W 

is the tree-width [Robertson and Seymour (1986)] of G. 

The time complexity and space complexity of the semi-approximate SPDQ are the same 

as PLL. The difference between the semi-approximate SPDQ and PLL is that the former 

one has a relatively small constant factor for ESPCI. 

LT takes Ο(W|E|log|V |+W2|V|log
2
|V|+W|L||V |log|V |)  time to preprocess with 

Ο(W|V|log|V |+|L||V |) space, and answers distance query in Ο(1) time. 

To offset the pretreatment time, we usually require multiple queries for ESPCI, which is 

consistent with the actual situation.  
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The query time complexity of PLL and LT for NSPCI and ESPCI when |U|=1 are shown 

in Tab. 2. For ESPCI when R=∩, we need to check all the neighbors of one end node 

from edge e=(u, v) (see  Algorithm 2) in the worst case, and it takes Ο(MWlog|V |) for 

PLL and Ο(M) for LT, where M is the max degree of G. In most of the real-world 

networks, W is small and only a fraction of nodes is degree closing to M, which makes 

ESPCI and NSPCI fast in practical. 

Table 2: Query time complexity for ESPCI and NSPCI 

  PLL algorithm LT algorithm 

ESPCI 
R=∪ Ο(Wlog|V |) Ο(1) 

R=∩ Ο(MWlog|V |) Ο(M) 

NSPCI 
R=∪ Ο(W|V|log|V |+|E|) Ο(|E|) 

R=∩ Ο(W|V|log|V |+M|E|) Ο(M|E|) 

3.4 Network sampling for NSPCI 

In most scenarios, only the coverage rate of NSPCI is concerned instead of the actual covered 

edges. We denote rR(U)  as the coverage rate of U , that is rR(U)=|CR(U)|/|E| . It costs 

Ο(W|U||V|log|V |+|U||E|)  time to compute NSPCI for each node in U , which is impractical 

for large networks with millions of nodes. Here we estimate rR(U) by network sampling. 

Formally, the network sampling for NSPCI is to sample only a small portion of edges from 

E to unbiased estimate the coverage rate. For estimating rR(U), we first sample a edges list 

Es, then we solve the ESPCI for each node w ∈ U by  Algorithm 1 or Algorithm 2 against 

Es, and then, we merge the results to get rR(U). The algorithm for one-node NSPCI rR(U) 

estimation is described as Algorithm 5. 

Algorithm 5: NSPCI coverage rate estimation from w 

 

 

Input: network G, node w. 

Output: estimated value of rR(w). 

1 Es← sampled edges list from E 

2 n ← 0 

3 for e ∈ Es do 

4 if e ∈ CR(w) then 

5 n++  

6     end if 

7 end for 

8 return n/|E
s
| 
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Two sampling strategies can be applied to unbiased estimate the coverage rate, i.e., the N-

sampling and the B-sampling. The N-sampling uniformly samples N edges from E without 

replacement, and the B-sampling uniformly samples B edges from E with replacement.  

It can be proved that Algorithm 5 using any of the two sampling strategies is an unbiased 

estimation [Frieze and Karoński (2015)]. The standard deviation is 

√rR(1-rR)(|E|-N) N(|E|-1)⁄  for N-sampling and √rR(1-rR) B⁄  for B-sampling. 

Furthermore, the N-sampling can be approximated by Bernoulli sampling, that is, sampling 

each edge with probability p=N/|E| [Kolaczyk (2009)]. 

3.5 Extensions 

Weighted networks: To treat weighted graphs, the only necessary change is to perform 

pruned Dijkstra’s algorithm or Bellman-Ford algorithm instead of pruned BFSs in PLL 

[Akiba, Iwata and Yoshida (2013)]. Dong et al. [Dong, Lakhotia, Zeng et al. (2018)] and 

Qiu et al. [Qiu, Zhu, Yuan et al. (2018)] have already extended PLL for large-scale 

weighted graphs. 

Directed networks: To treat directed graphs, we first redefine dG(u, v) as the distance from 

u to v. Then, we store two labels Lout and Lin for each vertex for out- and in- direction. We 

can answer the distance from u to v by Lout(u) and Lin(v). To compute these labels, from 

each vertex, we conduct pruned BFSs twice: once in the forward direction and once in the 

reverse direction [Akiba, Iwata and Yoshida (2013)]. 

Because the semi-approximate SPDQ and LT are both depend on PLL, they can be easily 

extended to weighted and directed networks as well. 

4 Experimental evaluation 

Experimental evaluation is presented on both synthetic and real-world networks. In our 

research, we generate and operate networks by NetworkX [Hagberg, Swart and Schult 

(2008)], and we implement PLL, LT and the semi-approximate SPDQ by C++ based on 

[Akiba, Iwata and Yoshida (2013)]. Our experiments are executed on a 64-bit windows 

server with Intel Xeon E5-2667 v4 CPU, 256GB memory and 25MB cache. 

4.1 Datasets 

The datasets we used are listed in Tab. 3. We conduct experiments on two random networks 

ER [Erdös and Rényi (1960)], BA [Barabási and Albert (1999)] and three real-world 

networks [Leskovec and Krevl (2015)]. 

ER. In ER model G(|V|, p), a network is constructed by connecting nodes randomly from 

an initial empty network of |V| nodes. Each edge is included in the network with probability 

p independent from every other edge. 

BA. In BA model G(|V|, m), a network begins with an initial empty network of m nodes. 

New nodes are added to the network one at a time. Each new node is connected to m 

existing nodes with a probability that is proportional to the number of links that the existing 

nodes already have.  

Enron. The Federal Energy Regulatory Commission originally makes Enron email network 



                                                                      CMC, vol.63, no.2, pp.705-724, 2020 716 

public during its investigation. This data covers all the email communication within a dataset 

of around half a million emails. Nodes of the network are email addresses, and if there were 

at least one email between two nodes u, v, edge (u, v) is added [Klimt and Yang (2004)].  

BerkStan. The web network is collected in 2002. Nodes represent pages from berkely.edu 

and stanford.edu domains and edges represent hyperlinks between them [Leskovec, Lang,  

Dasgupta et al. (2009)]. 

Skitter-AS. It is an internet router network from Skitter project running daily in 2005. The 

data is collected by traceroutes from several scattered sources to million destinations 

[McRobb, Claffy and Monk (1999)]. 

Table 3: Experimental datasets 

Dataset Network |V| |E| M W 

ER Random 1K - - - 

BA Random 1K - - - 

Enron Social 37K 184K 1.4K <2.0K 

BerkStan Web 685K 6.6M 84K <2.1K 

Skitter-AS Computer 1.7M 11M 35K <22K 

 

Without specification, we set |V| =1000, p =0.005 and m =5 for ER and BA, and we 

independently generate 500 networks under the given parameters for averaging in this section.  

We only consider the largest connected component GC(VC, EC) of networks. The reduction 

from GC(VC, EC) to GCT(VCT, ECT) (by removing all the detachable trees by Corollary 1) 

are shown in Fig. 3. The reduce rate is defined as |VCT|/|VC|.  

 

Figure 3: Reduced rate of the five networks by Corollary 1 

We can see from Fig. 3 that the network simplification by Corollary 1 can reduce ~30% 

nodes and edges at most from real-world networks. The simplification does not always 
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work, e.g., for BA networks. m=5 indicates that each node in BA is 5-degree at least, so 

Corollary 1 can remove none of them. 

4.2 Performance 

The performance of PLL, LT and the semi-approximate SPDQ on the 3 real-world datasets 

for |U|=1 is shown in Tabs. 4-6, where PT denotes preprocessing time, and QT average 

query time, and DNF means it does not finish in one day. We evaluate the results by 103 

random queries for NSPCI, 106 random queries for ESPCI, and setting K=8, |L|=500. We 

compare the three algorithms with the baseline method implemented in C/igraph library 

[Csardi and Nepusz (2006)], which constructs all the shortest paths between two nodes 

based on BFS. 

All the three algorithms based on SPDQ are significant faster BFS, e.g., PLL accelerates 

BFS more than 105 times.  

Tab. 4 shows the preprocessing time for the three real-world datasets. We can conclude that 

the preprocessing time of all the three algorithms are acceptable for large networks. The 

preprocessing time of the semi-approximate algorithm is the same as PLL, but the 

preprocessing time of LT is more than PLL, as shown in Tab. 4. The reason of the 

preprocessing time overhead is that LT uses PLL as a precondition for distance queries from 

landmarks to all the other nodes. The distance query time of PLL is generally microseconds, 

and the preprocessing time overhead of LT limited in hours for networks with millions of 

nodes. Although BFS has no preprocessing stage, it has long querying time.  

Table 4: Preprocessing time for the 3 real-world datasets 

Dataset PLL/Semi-Approx. LT BFS 

Enron 0.2 s 

17 s 

379 s 

2.7 s 

73 s 

891 s 

0 s 

BerkStan 0 s 

Skitter-AS 0 s 

Table 5: ESPCI Performance for the 3 real-world datasets 

Dataset 
PLL Semi-Approx. LT 

BFS 
R=∪ R=∩ R=∪ R=∩ R=∪ R=∩ 

Enron 0.6 us 1.2 us 0.4 us 0.8 us 0.01 us 0.09 us 122 ms 

BerkStan 0.7 us 1.4 us 0.5 us 1.0 us 0.03 us 0.08 us 204 s 

Skitter-AS 1.8 us 3.7 us 1.1 us 2.2 us 0.05 us 0.12 us 92 s 

Table 6: NSPCI Performance for the 3 real-world datasets 

Dataset 
PLL LT BFS 

R=∪ R=∩ R=∪ R=∩  

Enron 7.7 ms 10.3 ms 2.3 ms 6.1 ms 2939 s 

BerkStan 376.4 ms 460.7 ms 85.5 ms 224.4 ms DNF 

Skitter-AS 2.0 s 2.3 s 0.38 s 0.94 s DNF 
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Comparing with PLL, the semi-approximate SPDQ improves the ESPCI speed more than 

30% with only a small loss of accuracy (see Section 4.3). LT is much faster than PLL in 

query time, which gets 1.7x-38x and 13x-50x speed up respectively in NSPCI and ESPCI. 

As the semi-approximate SPDQ is not suitable for NSPCI (see Section 3.2), we only 

compare PLL and LT with BFS in Tab. 6. 

4.3 Accuracy of semi-approximate and approximate SPDQ 

In this section, we show the accuracy of the semi-approximate algorithm and LT under 

difference parameters, then we summary the application scenarios of the three SPDQ 

algorithms.  

To quantify the accuracy, we consider CR(U) as a binary classification problem, that is, if 

e ∈ CR(U) is satisfied we treat e as a positive sample, otherwise a negative sample. The 

ground truth is retrieved by PLL. We use F1-measure to measure the semi-approximate 

SPDQ and LT performance for edge covered from a given node set, where the F1-measure 

is evaluated by 1000 random nodes. 

For the semi-approximate SPDQ, the F1-measure over different size of the cache node set 

(K) on random networks is shown in Fig. 4. The F1-measure increases with K as the 

estimation of the shortest-path distance is more likely to be correct when K is large. The 

F1-measure is larger than 90% when K=8 for both ER and BA networks, so we choose 

K=8 for the real-world datasets. The F1-measure is beyond 99.4%, 99.9% and 92.3% on 

Enron, BerkStan and Skitter-AS respectively. Thus, the semi-approximate algorithm can 

speed up PLL more than 30% with the accuracy loss less than 10%. 

 

(a) ER(1000, 0.005)                                 (b)  BA(1000, 5) 

Figure 4: F1-measure of the semi-approximate algorithm on random networks 

For LT, the F1-measure over different landmark number |L| on random networks is shown in 

Fig. 5. The x-axis in Fig. 5 is the accuracy of distance estimation controlled by |L|, and it is 

calculated as the percentage of correct shortest-path distance in 104 random pairs of nodes. 

From Fig. 5, we can see that the mean of F1-measure increases while the standard deviation 

(error bar in Fig. 5) of F1-measure decreases as the accuracy of distance estimation. Thus, 

a properly |L| should be chosen for estimating CR(w) with high quality. 
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(a) ER(1000, 0.005)                                       (b)  BA(1000, 5) 

Figure 5: F1-measure of LT for random networks in different |L| 

 

Figure 6: F1-measure of LT for random networks in different |U| 

    
(a) Enron                                        (b) BerkStan 
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(c) Skitter-AS 

Figure 7: F1-measure of LT for real-world networks in different |U| 

We also evaluate the F1-measure under different |U|, and the results are shown in Figs. 6 

and 7. We fix |L|=140 for ER and |L|=20 for BA which achieves ~75% accuracy of distance 

estimation. For the 3 real-world networks, we fix |L|=200. R=∪ obtains larger F1-measure 

margin than R=∩, especially when |L| is small. We get a higher F1-measure mean and a 

lower F1-measure standard deviation from larger |U| for all networks. The F1-measure is 

decided by every node in U that e belongs to CR(U) or not, if there exists at least one node 

w in U satisfying e ∈ CR(w), then e ∈ CR(U). This fact leads to higher accuracy and recall 

with a higher F1-measure. 

From Figs. 6 and 7, we get a better F1-measure by increasing |U| when |L| is fixed for a 

given network. On the other hand, we can approximately estimate CR(U) with high quality 

by a relatively small |L| if |U| is large. 

Therefore, LT is valid for SPCI. The quality of estimating CR(U) by LT is related to |L| and 

|U|. For unbiased estimation, a high accuracy of distance query is required for the small 

|U|, but this restrictive condition can be relaxed when |U| is large.  

In summary, the application scenarios of the three SPDQ algorithms, i.e., PLL, the semi-

approximate SPDQ and LT, are different. When the accuracy is crucial, PLL should be 

applied, and when the speed of identification is required, LT should be picked. However, 

the semi-approximate SPDQ can be used as an alternative to improve the speed of PLL 

with a small accuracy loss. 

4.4 Network sampling 

We compare the two sampling strategies in this section.  We compute rR(w) by PLL on all 

the datasets, and the mean coverage rate is 20%-66% for R=∪ and 5%-22% for R=∩. Here 

we choose BerkStan with r∪(w)=50% and Skitter-AS with r∩(w)=20% for evaluation. The 

results are shown in Tab. 6. The Mean and standard deviation are evaluated by 103 times. 

If the sample size is to be determined such that the standard deviation of estimated rR(w) 

should not exceed a given value, e.g., 1%, we can deduct the expected sample size. For 

example, √rR(1-rR) B⁄ <1% leads to B>2500 for B-sampling. As is shown in Tab. 6, we 

can estimate rR(w) with less than ten thousand edges, which means we can handle NSPCI 
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for networks with hundreds of millions of nodes and edges within a few seconds. 

Table 7: Performance of two network-sampling strategies 

Strategy Parameter 
BerkStan Skitter-AS 

Mean (%) Std. (%) Mean (%) Std. (%) 

B-sampling 

25 51.08 10.29 20.36 7.09 

2500 49.97 0.90 19.96 0.82 

250000 49.97 0.093 20.00 0.073 

N-sampling 

25 49.52 10.10 19.48 8.38 

2500 49.93 0.89 20.00 0.79 

250000 50.00 0.098 20.00 0.084 

5 Conclusion 

In this paper, we present a method for SPCI in large complex networks. By converting 

NSPCI, ESPCI into SPDQ, we solve them by three algorithms, i.e., PLL, the semi-

approximate SPDQ and LT. The semi-approximate SPDQ is proposed as a faster 

alternative of PLL with a small accuracy loss. Moreover, we develop two sampling 

strategies for further acceleration, and we show the effectiveness of the proposed method 

through synthetic and real-world networks. Our method can handle large complex 

networks with hundreds of millions of nodes, which can be used as a fundamental module 

for related problems. 
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