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Abstract: Hashing technology has the advantages of reducing data storage and improving 
the efficiency of the learning system, making it more and more widely used in image 
retrieval. Multi-view data describes image information more comprehensively than 
traditional methods using a single-view. How to use hashing to combine multi-view data 
for image retrieval is still a challenge. In this paper, a multi-view fusion hashing method 
based on RKCCA (Random Kernel Canonical Correlation Analysis) is proposed. In order 
to describe image content more accurately, we use deep learning dense convolutional 
network feature DenseNet to construct multi-view by combining GIST feature or 
BoW_SIFT (Bag-of-Words model+SIFT feature) feature. This algorithm uses RKCCA 
method to fuse multi-view features to construct association features and apply them to 
image retrieval. The algorithm generates binary hash code with minimal distortion error by 
designing quantization regularization terms. A large number of experiments on benchmark 
datasets show that this method is superior to other multi-view hashing methods. 
 
Keywords: Hashing, multi-view data, random kernel canonical correlation analysis, 
feature fusion, deep learning. 

1 Introduction 
With the rise of various social networks and the growth of image and video data in the 
network, a powerful image retrieval database is gradually formed. In view of these 
massive pictures, how to effectively retrieve the pictures which users need from the huge 
image database has become a research challenge in the field of information retrieval. We 
look forward to using machine learning methods [Ma, Qin, Xiang et al. (2019); Tan, Qin, 
Xiang et al. (2019)] in this field, and have recently made some efforts in image retrieval 
[Li, Qin, Xiang et al. (2018); Qin, Li, Xiang et al. (2019)]. Hashing technology has been 
widely used in large-scale image retrieval due to its significant advantages in computing 
and storage. Hashing maps raw data (such as images and text) to low-dimensional 
Hamming space, and uses the similarity-preserved binary code for similarity retrieval. 
Multi-view data carries more comprehensive and rich information than single-view data, 
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so it is more efficient to image retrieval by using multi-view data combined with the 
hashing method. 
Hashing can be divided into two categories: data-independent and data-related. Locality 
sensitive hashing (LSH) [Gionis, Indyk and Motwani (1999)] is one of the well-known 
hashing methods and it is data-independent. LSH generates hash functions by random 
projection and embeds similar data into similar binary code. However, LSH needs long 
hash code to achieve good performance. So some data-related hashing methods have been 
proposed with shorter hash code and better comparability. For example, spectral hashing 
(SH) [Weiss, Torralba and Fergus (2009)] introduces unsupervised graph hashing, anchor 
graph hashing (AGH) [Liu, Wang, Kumar et al. (2011)] uses anchor graphs to solve SH, 
iterative quantization (ITQ) [Gong, Lazebnik, Gordo et al. (2013)] uses orthogonal rotation 
based on PCA. The rotation matrix optimizes the initial projection matrix, and discrete 
graph hashing (DGH) [Liu, Mu, Kumar et al. (2014)] uses discrete optimization to solve 
SH and so on. However, these hashing methods can only learn binary code from 
single-view data, and cannot be directly used for data described by multi-view. 
In computer vision applications, the data objects involved usually have multiple features 
[Shen, Liu, Tsang et al. (2018); Shen, Shen, Sun et al. (2018)]. For example, each image 
can be described by different features in image retrieval, such as SIFT feature, GIST 
feature, HOG feature and so on. This data is called multi-view data, each view 
corresponds to a feature, reflecting the different characteristics of the data, we need to 
adapt to the selection of view features [Liu, Wang, Zhang et al. (2014)]. Compared with 
single-view data, multi-view data is more abundant and comprehensive, which makes 
multi-view learning receive more and more attention. Some literatures [Xiang, Shen, Qin 
et al. (2019); Shen, Shen, Sun et al. (2018)] show that multi-view features usually have 
better performance than single-view feature in image retrieval. Therefore, we expect to 
use multi-view features to learn more compact hash code for image retrieval. 
Multi-view hashing generates compact binary code from multi-view data. Some 
representative hashing algorithms such as composite hashing with multiple information 
sources (CHMIS) [Zhang, Wang, Li et al. (2011)], multi-view spectral hashing 
(SU-MVSH) [Kim, Kang and Choi (2012)], multi-view aligned hashing (MAH) [Liu, Yu, 
Shao et al. (2015)] and so on. However, these methods may have limitations. They give 
up binary constraints and continuous thresholding features to obtain hash code, but the 
algorithm may be affected by distortion errors. Studies Liu et al. [Liu, Mu, Kumar et al. 
(2014)] have shown that simple schemes can cause large quantization errors and lead to 
low quality hash code. Secondly, their training time complexity is high, and it is difficult 
to carry out large-scale computation in the case of large data sets. Therefore, how to 
effectively combine multi-view data with hashing method in large-scale image retrieval is 
still a challenging research topic. 
Based on the above considerations, in this paper, we propose a multi-view hashing 
method based on Random Kernel Canonical Correlation Analysis (RKCCA). This 
algorithm aims to learn compact hash code by integrating multi-view. We summarize the 
main contributions of this work as follows: 
(1) This algorithm extracts the DenseNet feature of the deep learning dense 

convolutional network. The advantages of the DenseNet feature can be used to 
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describe the image information more accurately and combine it with the GIST feature 
or the BoW_SIFT (Bag-of-Words model+SIFT feature) feature to construct a 
multi-view to get deeper image information. 

(2) This algorithm uses RKCCA method to find the feature with the greatest correlation 
among multi-view, and fuses these features to get the association feature with higher 
layers picture information, and then uses the association feature as the input of the 
hashing method to describe the image information. 

(3) The algorithm designs the regularization term in the quantization stage, minimizes 
the quantization error in the iterative optimization, ensures that the algorithm reaches 
the convergence state, and finds the best binary code. 

We did a lot of experimentation with large benchmark data sets. The experimental results 
show that the proposed method is superior to the most advanced multi-view hashing method. 
The rest of the paper is organized as follows: Section 2 describes the related work, 
Section 3 presents the proposed method, Section 4 presents the experimental evaluation, 
and the final conclusion is given in Section 5. 

2 Related work 
2.1 DenseNet feature of dense convolutional network 
With the introduction of deep learning, some achievements Wang et al. [Wang, Qin, 
Xiang et al. (2019)] have been made in convolutional neural networks. Image retrieval 
technology based on deep learning mainly applies in the feature extraction module of 
image retrieval, and uses a convolutional neural network to extract image features. Since 
the development of the convolutional neural network, many excellent results have been 
achieved. Convolution layer and pooling layer in convolution neural network can extract 
translation invariance of input features and identify similar features in different spatial 
locations, which makes convolution neural network widely used in computer vision. In 
convolution neural networks, convolution kernels are used to extract features. These 
initialized convolution kernels are constantly updated in the process of back propagation 
and iteration, making them infinitely close to the real solution. The essence of this 
method is to initialize a set of eigenvectors that conform to a certain distribution, and then 
update the set of eigenvectors infinitely in reverse propagation for feature extraction. 
DenseNet is a convolutional neural network with dense connections. It was proposed to win 
at the Computer Vision and Pattern Recognition Conference in 2017. DenseNet has better 
performance than other neural networks, such as residual neural network (ResNet), 
convolutional neural network (CNN) and so on. In DenseNet network, the input of each 
layer of the network is the union of the output of all the previous layers, and the feature 
maps learned by this layer of the network will also be used as the input of all the later layers. 
There is a direct link between any two layers of the network to realize the reuse of features. 
Compared with traditional neural networks, deep learning convolutional neural networks 
have more training layers and higher complexity, which can extract higher level image 
information. Therefore, we use a convolution neural network to extract image features. In 
this paper, we use DenseNet121 network model to train DenseNet feature extraction from 
benchmark data set as one of the view data to describe image information and use 
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DenseNet feature to construct multi-view combining BoW_SIFT feature or GIST feature. 

3 Feature fusion multi-view hashing based on random kernel canonical 
correlation analysis 

Firstly, we give several view features of dataset objects. {𝑋𝑋(𝑚𝑚) = [𝑋𝑋1
(𝑚𝑚), … ,𝑋𝑋𝑁𝑁

(𝑚𝑚)]𝑇𝑇 ∈
𝑅𝑅𝑁𝑁×𝑑𝑑𝑚𝑚}𝑚𝑚𝑀𝑀 = 1, where 𝑑𝑑𝑚𝑚 is the dimension of the mth view and M is the number of 
views and N is the number of dataset objects. Hash code matrix is expressed as 𝐵𝐵 =
[𝑏𝑏1, … , 𝑏𝑏𝑁𝑁]𝑇𝑇 ∈ {−1,1}𝑁𝑁×𝑟𝑟 , where 𝑏𝑏𝑖𝑖 ∈ {−1,1}𝑟𝑟×1  is the hash code corresponding to 
each database object. r is the length of the hash code. Tab. 1. describes the important 
symbols used in this article. 

Table 1: Important notations used in this paper 

Notation Description 
X(m) Data matrix of the mth view 
L(m) Graph Laplacian matrix of the mth view 
θm Weight of the mth view 
dm The dimensionality of the mth view 
B Hash code matrix 
Y Continuous low-dimensional embedding 
R Orthogonal transformation matrix in the quantization stage 
Z The similarity matrix 
M The number of views 
N The number of datasets object 
r The length of the hash code 

3.1 Reservation of similarity 
The key step of image retrieval is to compare and measure the similarity between images. 
In this paper, image data is mapped by Laplacian mapping. Laplacian feature mapping 
will map the data on the manifold to low-dimensional space, while retaining the 
similarity between the original data as much as possible. First, we define the similarity of 
objective preservation function. 
𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏𝑖𝑖

∑ 𝑆𝑆𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖,𝑖𝑖=1 �𝑏𝑏𝑖𝑖 − 𝑏𝑏𝑖𝑖�2

2                                                 (1) 

A total of N samples, where 𝑆𝑆𝑖𝑖𝑖𝑖  tables the similarity of the original space samples. 
Assuming that the new mapping space has k dimensions and 𝑏𝑏𝑖𝑖 has k dimensions, since the 
minimization of all dimensions in the new space equals the minimization of one dimension, 
the similarity preservation function equation can deduce the following equations: 
𝑚𝑚𝑚𝑚𝑚𝑚
𝐵𝐵  𝑇𝑇𝑇𝑇(𝐵𝐵𝑇𝑇𝐿𝐿(𝑚𝑚)𝐵𝐵) 

𝑠𝑠. 𝑡𝑡.  𝐵𝐵 ∈ {−1, +1}𝑁𝑁×𝑟𝑟,𝐵𝐵𝑇𝑇𝐵𝐵 = 𝑁𝑁𝐼𝐼𝑟𝑟                                         (2) 
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The above equation can represent all samples of a certain dimension in a new space. 
Neighborhood graph is constructed after similarity preservation objective function is 
determined. Traditional neighborhood graph construction methods such as KNN method, 
because of its high time complexity 𝑂𝑂(𝑁𝑁2) and poor computational efficiency, we choose 
litekmeans method to construct anchor graph instead of the neighbor graph (the nearest 
neighbor graph between the anchor point and each data sample point is used to approximate 
the nearest neighbor graph between the data sample point and sample point). Taking the 
mth view as an example, the features of this view are clustered to obtain k(𝑘𝑘 ≪ 𝑁𝑁) 
clustering centers, each of which is called an anchor point {𝜇𝜇𝑖𝑖

(𝑚𝑚)}𝑖𝑖=1𝑘𝑘 . The similarity matrix 
𝑍𝑍(𝑚𝑚) ∈ 𝑅𝑅𝑁𝑁×𝑘𝑘 between training data and anchor points is defined as follows: 

𝑍𝑍𝑖𝑖𝑖𝑖
(𝑚𝑚) = �

𝑒𝑒𝑒𝑒𝑒𝑒 (𝐷𝐷2(𝑒𝑒𝑖𝑖
(𝑚𝑚),𝜇𝜇𝑗𝑗

(𝑚𝑚)) 𝜎𝜎� )

∑ 𝑒𝑒𝑒𝑒𝑒𝑒 (𝐷𝐷2(𝑒𝑒𝑖𝑖
(𝑚𝑚),𝜇𝜇𝑗𝑗

(𝑚𝑚)) 𝜎𝜎� )𝑗𝑗∈[𝑖𝑖]
 ,       ∀ 𝑗𝑗 ∈ [𝑚𝑚]

    0,                                                  𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑇𝑇𝑒𝑒𝑚𝑚𝑠𝑠𝑒𝑒
                           (3) 

where [i] represents the exponent of 𝑠𝑠(𝑠𝑠 ≪ 𝑘𝑘) closest to the 𝑥𝑥𝑖𝑖
(𝑚𝑚)  anchor, 

𝐷𝐷2 �𝑥𝑥𝑖𝑖
(𝑚𝑚),𝜇𝜇𝑖𝑖

(𝑚𝑚)�  is Euclidean the distance between 𝑥𝑥𝑖𝑖
(𝑚𝑚) and 𝜇𝜇𝑖𝑖

(𝑚𝑚) , 𝜎𝜎  is usually 
predefined with parameters. Each row in 𝑍𝑍(𝑖𝑖) contains only non-zero terms that sum to 1. 
We summarize all M views features with the following objective functions: 
𝑚𝑚𝑚𝑚𝑚𝑚
𝐵𝐵，𝛩𝛩 � 𝜃𝜃𝑚𝑚

𝑀𝑀

𝑚𝑚=1

𝑇𝑇𝑇𝑇(𝐵𝐵𝑇𝑇𝐿𝐿(𝑚𝑚)𝐵𝐵) 

𝑠𝑠. 𝑡𝑡.  𝐵𝐵 ∈ {−1,1}𝑁𝑁×𝑟𝑟,𝐵𝐵𝑇𝑇𝐵𝐵 = 𝑁𝑁𝐼𝐼𝑟𝑟 , 
and ∑ 𝜃𝜃𝑚𝑚𝑀𝑀

𝑚𝑚=1 = 1,𝜃𝜃𝑚𝑚 ≥ 0,𝑚𝑚 = 1, … ,𝑀𝑀                                    (4) 
where 𝛩𝛩 = [𝜃𝜃1, … ,𝜃𝜃𝑀𝑀]𝑇𝑇 , 𝜃𝜃𝑚𝑚is a variable weighing the proportion of view features. By 
fusing multi-view features by weighting, considering the similarity structure and 
quantization loss of binary code, we have the following objective function. 
  𝑚𝑚𝑚𝑚𝑚𝑚
𝑌𝑌  𝑇𝑇𝑇𝑇(𝑌𝑌𝑇𝑇𝐿𝐿𝑌𝑌) + 𝜆𝜆‖𝑌𝑌𝑅𝑅 − 𝐵𝐵‖𝐹𝐹2  

𝑠𝑠. 𝑡𝑡.𝑌𝑌𝑇𝑇𝑌𝑌 = 𝐼𝐼𝑟𝑟                                                          (5) 
where 𝜆𝜆  is the regularization parameter, 𝐿𝐿  is the Laplace matrix, and 𝑌𝑌𝑅𝑅  is the 
continuously rotating low-dimensional embed. The rotation of the matrix can reduce the 
quantization error. We can get the binary code of the eigenvectors under the optimal 
rotation matrix by looking for the rotation matrix with the smallest quantization error. 

3.2 Canonical correlation analysis 
Canonical correlation analysis (CCA) [Hotelling (1936)] is a method to correlate the 
linear relationship between two multidimensional random variables. Assumed 
characteristic data 𝑋𝑋 ∈ 𝑅𝑅𝑑𝑑𝑚𝑚𝑚𝑚, 𝑌𝑌 ∈ 𝑅𝑅𝑑𝑑𝑚𝑚𝑚𝑚, Where X is a sample matrix of N×𝑑𝑑𝑚𝑚𝑒𝑒, Y is a 
sample matrix of N×𝑑𝑑𝑚𝑚𝑚𝑚, while 𝑑𝑑𝑚𝑚𝑒𝑒 and 𝑑𝑑𝑚𝑚𝑚𝑚 are the characteristic dimensions of X 
and Y respectively. We projected X and Y respectively. The corresponding projection 
vectors were a and b. The corresponding projection data became U=𝑎𝑎𝑇𝑇X and V=𝑏𝑏𝑇𝑇Y. 
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The definitions of X and Y correlation coefficients are as follows: 

𝜌𝜌(𝑋𝑋,𝑌𝑌) =
𝑐𝑐𝑜𝑜𝑐𝑐(𝑋𝑋,𝑌𝑌)
√𝐷𝐷𝑋𝑋√𝐷𝐷𝑌𝑌

                                                                                                                     (6) 

According to the purpose of CCA canonical correlation analysis and Eq. (6), our 
optimization goal is to maximize 𝜌𝜌(𝑈𝑈,𝑉𝑉) and obtain the corresponding projection 
vectors a and b, namely 
𝑎𝑎𝑇𝑇𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥
𝑎𝑎, 𝑏𝑏

𝑐𝑐𝑜𝑜𝑐𝑐(𝑈𝑈,𝑉𝑉)

�𝐷𝐷(𝑈𝑈)�𝐷𝐷(𝑉𝑉)
                                                                                                                 (7) 

Before projection, we standardized the original data, make 𝑆𝑆𝑋𝑋𝑋𝑋 = 𝑉𝑉𝑎𝑎𝑇𝑇(𝑋𝑋) , 𝑆𝑆𝑌𝑌𝑌𝑌 =
𝑉𝑉𝑎𝑎𝑇𝑇(𝑌𝑌) , 𝑆𝑆𝑋𝑋𝑌𝑌 = 𝑐𝑐𝑜𝑜𝑐𝑐(𝑋𝑋,𝑌𝑌) ,𝑆𝑆𝑌𝑌𝑋𝑋 = 𝑐𝑐𝑜𝑜𝑐𝑐(𝑌𝑌,𝑋𝑋) ,and 𝑉𝑉𝑎𝑎𝑇𝑇(𝑋𝑋)  and 𝑉𝑉𝑎𝑎𝑇𝑇(𝑌𝑌)  represent the 
covariance matrix of X and Y respectively, and 𝑐𝑐𝑜𝑜𝑐𝑐(𝑋𝑋,𝑌𝑌) represents the covariance 
matrix between them. Through these formulas and the derivation of the projection data U 
and V in the projection direction of X and Y, we use 𝑉𝑉𝑎𝑎𝑇𝑇(𝑈𝑈) = 𝑎𝑎𝑇𝑇𝑆𝑆𝑋𝑋𝑋𝑋𝑎𝑎, 𝑉𝑉𝑎𝑎𝑇𝑇(𝑉𝑉) =
𝑏𝑏𝑇𝑇𝑆𝑆𝑌𝑌𝑌𝑌𝑏𝑏, 𝑐𝑐𝑜𝑜𝑐𝑐(𝑈𝑈,𝑉𝑉) = 𝑎𝑎𝑇𝑇𝑆𝑆𝑋𝑋𝑌𝑌𝑏𝑏 to transform the optimization objective into: 
𝑎𝑎𝑇𝑇𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥

   𝑎𝑎, 𝑏𝑏
𝑎𝑎𝑇𝑇𝑆𝑆𝑋𝑋𝑌𝑌𝑏𝑏

�𝑎𝑎𝑇𝑇𝑆𝑆𝑋𝑋𝑋𝑋𝑎𝑎�𝑏𝑏𝑇𝑇𝑆𝑆𝑌𝑌𝑌𝑌𝑏𝑏
                                                                                                         (8) 

We use two coefficients to scale the size of a and b, and when the numerator and 
denominator change by the same multiple, the optimization target result remains 
unchanged. We adopted an optimization method similar to SVM, fixed the denominator, 
added restrictions, and optimized the numerator. The specific optimization objectives 
were converted into: 
𝑎𝑎𝑇𝑇𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥
𝑎𝑎, 𝑏𝑏 𝑎𝑎𝑇𝑇𝑆𝑆𝑋𝑋𝑌𝑌𝑏𝑏               

𝑠𝑠. 𝑡𝑡.  𝑎𝑎𝑇𝑇𝑆𝑆𝑋𝑋𝑋𝑋𝑎𝑎 = 1,𝑏𝑏𝑇𝑇𝑆𝑆𝑌𝑌𝑌𝑌𝑏𝑏 = 1                                             (9) 
By using the Lagrange function, the optimization objective is converted into maximize 
the following equation: 

𝐿𝐿 = 𝑎𝑎𝑇𝑇𝑆𝑆𝑋𝑋𝑌𝑌𝑏𝑏 −
𝜆𝜆
2

(𝑎𝑎𝑇𝑇𝑆𝑆𝑋𝑋𝑋𝑋𝑎𝑎 − 1) − 𝜃𝜃
2

(𝑏𝑏𝑇𝑇𝑆𝑆𝑌𝑌𝑌𝑌𝑏𝑏 − 1)                            (10) 

By solving Eq. (10), a and b can be found by eigenvectors corresponding to the 
maximum eigenvalue of the generalized eigenvalue problem. 
𝑆𝑆𝑋𝑋𝑋𝑋−1𝑆𝑆𝑋𝑋𝑌𝑌𝑆𝑆𝑌𝑌𝑌𝑌−1𝑆𝑆𝑌𝑌𝑋𝑋𝑎𝑎 = 𝜆𝜆2𝑎𝑎                                                 (11) 
By the same method, we can find the eigenvector corresponding to the maximum 
eigenvalue which is the linear coefficient b of Y. 

3.3 Feature fusion based on random kernel canonical correlation analysis  
Feature fusion based on canonical correlation analysis is aimed at different views of data. By 
calculating the maximum correlation of two views, they are integrated into a subspace. But 
the traditional canonical correlation analysis can only explore the linear relationship between 
two groups of random variables. In practice, the relationship between data variables is often 
non-linear, and it is very difficult to calculate on large-scale data. So we use the random 
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kernel canonical correlation analysis (RKCCA) [Lopez-Paz, Sra, Smola et al. (2014)] method 
to deal with the problem of feature fusion of non-linear data. The combination of the 
randomized method and the linear algorithm is helpful to reveal the features of non-linear 
patterns in data. For regression or classification problems, random features show little or no 
performance loss, while greatly saving computational requirements. 
According to the non-linear random features, we can randomly extract the parameter 
𝑊𝑊𝑖𝑖 ∈ 𝑅𝑅𝑑𝑑  from the data-independent distribution 𝑝𝑝(𝑒𝑒) , and construct an 
M-dimensional random features map 𝑧𝑧(𝑋𝑋) for the input data 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛×𝑑𝑑 which obeys 
the following structure. 
𝑒𝑒1, . . . ,𝑒𝑒𝑚𝑚 ∼ 𝑝𝑝(𝑒𝑒), 
𝑧𝑧𝑖𝑖: =  [𝑐𝑐𝑜𝑜𝑠𝑠(𝑒𝑒𝑖𝑖𝑇𝑇𝑥𝑥1  + 𝑏𝑏𝑖𝑖), . . . , 𝑐𝑐𝑜𝑜𝑠𝑠(𝑒𝑒𝑖𝑖𝑇𝑇𝑥𝑥𝑛𝑛   + 𝑏𝑏𝑖𝑖)]   ∈ 𝑅𝑅𝑛𝑛 , 
𝑧𝑧(𝑋𝑋): =  [𝑧𝑧1 ··· 𝑧𝑧𝑚𝑚] ∈ 𝑅𝑅𝑛𝑛×𝑚𝑚                                             (12) 
Bochner’s theorem helps to join shift-invariant kernels and random nonlinear features. 
Let 𝑘𝑘(𝑥𝑥,𝑦𝑦) be a real value and normalize, and become a shift-invariant kernel on 
𝑅𝑅𝑑𝑑 × 𝑅𝑅𝑑𝑑. then, 

𝑘𝑘(𝑥𝑥,𝑦𝑦)  =   � 𝑝𝑝(𝑒𝑒)𝑒𝑒−𝑖𝑖𝑤𝑤𝑇𝑇 (𝑒𝑒−𝑚𝑚)𝑑𝑑𝑒𝑒
 

𝑅𝑅𝑑𝑑
 

≈�
1 
𝑚𝑚
𝑒𝑒−𝑖𝑖𝑤𝑤𝑖𝑖

𝑇𝑇𝑒𝑒𝑒𝑒𝑖𝑖𝑤𝑤𝒊𝒊
𝑇𝑇𝑚𝑚

𝑚𝑚

𝑖𝑖=1
 

= �
1 
𝑚𝑚 

𝑚𝑚

𝑖𝑖=1
𝑐𝑐𝑜𝑜𝑠𝑠(𝑒𝑒𝑖𝑖𝑇𝑇𝑥𝑥 + 𝑏𝑏𝑖𝑖) 𝑐𝑐𝑜𝑜𝑠𝑠(𝑒𝑒𝑖𝑖𝑇𝑇𝑦𝑦 + 𝑏𝑏𝑖𝑖)     

= 〈 1 
√𝑚𝑚

𝑧𝑧(𝑥𝑥), 1 
√𝑚𝑚

𝑧𝑧(𝑦𝑦)〉,                                                  (13) 

where 𝑝𝑝(𝑒𝑒) is set to k’s inverse Fourier transform, 𝑏𝑏𝑖𝑖 ∼ 𝑢𝑢(0,2𝜋𝜋). Let 𝐾𝐾 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 be 
the kernel matrix of data 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛×𝑑𝑑 , i.e., 𝐾𝐾𝑖𝑖𝑖𝑖 = 𝑘𝑘(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖). When m random Fourier 
features are used to approximate the kernel k, we can approximate the kernel matrix 𝐾𝐾 ≈
𝐾𝐾�, where 

𝐾𝐾� ≔ 1 
𝑚𝑚
𝑧𝑧(𝑋𝑋)𝑧𝑧(𝑋𝑋)𝑇𝑇 = 1 

𝑚𝑚
∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑖𝑖𝑇𝑇𝑚𝑚
𝑖𝑖=1 = ∑ 𝐾𝐾�(𝑖𝑖)𝑚𝑚

𝑖𝑖=1                                (14) 

We fuse the obtained kernel matrix with the linear canonical correlation method on the 
similarity matrix obtained by the feature. This fusion method can be understood as the 
linear canonical correlation analysis performed on a pair of random non-linear 
maps.𝑧𝑧 𝑒𝑒:𝑅𝑅𝑛𝑛×𝑒𝑒 → 𝑅𝑅𝑛𝑛×𝑑𝑑𝑚𝑚𝑚𝑚, 𝑧𝑧 𝑒𝑒:𝑅𝑅𝑛𝑛×𝑞𝑞 → 𝑅𝑅𝑛𝑛×𝑑𝑑𝑚𝑚𝑚𝑚 of the data 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛×𝑒𝑒 and 𝑌𝑌 ∈ 𝑅𝑅𝑛𝑛×𝑞𝑞. 
Schematically, 
𝑅𝑅𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅(𝑋𝑋,𝑌𝑌): = 𝑅𝑅𝑅𝑅𝑅𝑅(𝑧𝑧 𝑒𝑒(𝑋𝑋), 𝑧𝑧 𝑚𝑚(𝑌𝑌)) ≈ 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅(𝑋𝑋,𝑌𝑌)                        (15) 
Consistent with the above-mentioned canonical correlation analysis, we find projection 
vectors a and b according to the given view features, extract the canonical correlation 
features U and V between multi-view data, and assign weight fusion to these correlation 
features as the association features of multi-view after projection. And the correlation 
feature is a more recognizable feature vector than any input feature vector. In this way, the 
correlation feature vectors learnt from multiple views can better represent the features, and 
the recognition rate can be higher when applied to image retrieval. 
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3.4 Quantitative hashing method 
According to the objective matrix of Eq. (5), we use gradient descent optimization and 
Stiefel manifold optimization with curvilinear search to find the local optimal solution to 
ensure convergence of iteration. Y is a continuous low-dimensional embedding obtained by 
singular value decomposition after feature fusion. As an input to solve the hash code value, 
we express 𝐺𝐺 = 𝛻𝛻𝐹𝐹(𝑌𝑌) as a gradient relative to Y. The calculation equation is as follows. 
𝐺𝐺 = 2�(1 + 𝜆𝜆)𝐼𝐼 − 𝑍𝑍𝛵𝛵 ∧−1 𝑍𝑍�𝑌𝑌 − 2𝐵𝐵𝑅𝑅𝑇𝑇                                   (16) 
where 𝑍𝑍 = �𝑍𝑍(1), … ,𝑍𝑍(𝑚𝑚)�, 𝛬𝛬 = 𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎(𝛬𝛬(1), … ,𝛬𝛬(𝑚𝑚)). 
We use Y to solve the hash code. In the iterative process, the optimal rotation R is 
obtained in the newly mapped hypercube space, so that the continuous rotation 
low-dimensional embedding is close to the hash code B, so that the quantization error is 
minimized. We solve instead the problem  
𝑚𝑚𝑚𝑚𝑚𝑚
𝐵𝐵,𝑅𝑅‖𝑌𝑌𝑅𝑅 − 𝐵𝐵‖𝐹𝐹2  

𝑠𝑠. 𝑡𝑡.  𝐵𝐵 ∈ {−1, +1}𝑁𝑁×𝑟𝑟,𝑅𝑅𝑇𝑇𝑅𝑅 = 𝐼𝐼𝑟𝑟                                          (17) 
The random matrix is decomposed by singular value decomposition (SVD) and the 
corresponding orthogonal matrix is obtained as the initial value of R. 
(1) Given fixed R to Solve B: The problem of solving B can be expressed as 

𝐵𝐵 = 𝑠𝑠𝑚𝑚𝑎𝑎𝑚𝑚(𝑌𝑌𝑅𝑅)                                                    (18) 
where sign(·) is the sign function. 

(2) Given fixed B to Solve R: The singular value decomposition (SVD) of 𝐵𝐵𝑇𝑇𝑌𝑌 is 
defined as 𝐵𝐵𝑇𝑇𝑌𝑌 = 𝑃𝑃∑𝑄𝑄𝑇𝑇 = ∑ 𝜎𝜎𝑘𝑘𝑝𝑝𝑘𝑘𝑞𝑞𝑘𝑘𝑇𝑇𝑟𝑟

𝑘𝑘=1 , where r is the rank of 𝐵𝐵𝑇𝑇𝑌𝑌, 𝜎𝜎1, . . . ,𝜎𝜎𝑟𝑟 
are the positive singular, 𝑃𝑃 = [𝑃𝑃1, … ,𝑃𝑃𝑟𝑟] and 𝑄𝑄 = [𝑞𝑞1, … , 𝑞𝑞𝑟𝑟] are left and right 
singular vectors respectively. The solution of R is (𝑃𝑃𝑄𝑄)𝑇𝑇, and 50 iterations are 
performed alternately until the optimal rotation continuous low-dimensional 
embedding is found. 

Algorithm 1: Feature Fusion Multi-view Hash Based on Random Kernel Canonical 
Correlation Analysis 

Input: training set �𝑋𝑋(𝑚𝑚) ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑𝑚𝑚�𝑚𝑚=1
𝑀𝑀 ; binary code length 𝑇𝑇; parameter 𝜆𝜆. 

Output: binary code 𝐵𝐵. 
1: Obtain an anchor graph and a similarity matrix 𝑍𝑍 for the view features 

respectively; 
2: The 𝑍𝑍 of views is fused by RKCCA; 
3: Weighting the fused association features； 
4: Initialize 𝑌𝑌 by doing SVD on the weighted association features; 
5: Random initialization R is{−r, r}N×r for SVD (Singular Value 

Decomposition);  
6: Random initialization 𝐵𝐵 is{−1,1}𝑁𝑁×𝑟𝑟; 
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7: Update 𝑅𝑅 to 𝑅𝑅 = (𝑃𝑃𝑄𝑄)𝑇𝑇; 
8: Repeat 
9: Update𝑌𝑌using curvilinear search; 
10: Update B using Eq. (18); 
11: Calculate the singular value decomposition of 𝑌𝑌, 𝐵𝐵𝑇𝑇𝑌𝑌 = 𝑃𝑃∑𝑄𝑄𝑇𝑇; 
12: Update 𝑅𝑅 with 𝑅𝑅 = (𝑃𝑃𝑄𝑄)𝑇𝑇; 
13: Until convergence 

4 Experiments 
4.1 Datasets 
In this section, we test and evaluate the performance of the algorithm. We use widely 
used benchmark data sets, namely Caltech-256, Caltech-101. We select two view features 
for data set to construct multi-view data. 
The Caltech-256 dataset consists of 29780 images, including 256 categories, each of 
which contains about 80 to 800 images. We randomly selected 1,000 pictures as the test 
set and the remaining 28,780 pictures as the training set. 
The Caltech-101 dataset consists of 9144 images, including 102 categories (one of which 
is the background) with 40 to 800 images per category. We randomly selected 3019 
pictures as the test set and 6125 pictures as the training set. 
We extract 512-dimensional GIST feature, 500-dimensional BoW_SIFT (Bag-of-Words 
model+SIFT feature) feature and 1024-dimensional DenseNet feature for each image of 
the above two datasets, and randomly select two feature combinations each time as 
multi-view data for experimental testing. 

4.2 Average accuracy experiments 
In terms of the validity verification of this algorithm, we compared it with the existing 
discrete multi-graph hashing method DMGH [Xiang, Shen, Qin et al. (2019)], and carried 
out experimental tests by comparing the data features of different views. The accuracy and 
recall of this algorithm are tested on large datasets Caltech-256 and Caltech-101.The range 
of parameter λ in similarity reserved function as[10−8, 10−6, … , 100, 102], and test by 
cross-validation on the training set by selecting different weights on the similarity matrix.  
In this paper, the mean average precision (mAP) and precision-recall curve (P-R curve) 
are used to test the retrieval performance of the algorithm on the benchmark dataset. the 
mAP is the mean of the average precision (AP) of all training samples. 
We use BoW_SIFT feature, GIST feature and DenseNet feature extracted from datasets 
to cross-combine for the test in different feature fusion methods. Data features: (1) 
Single-view feature: BoW_SIFT feature or GIST feature or DenseNet feature; (2) 
BoW_SIFT feature and GIST feature to build multi-view; (3) BoW_SIFT feature or GIST 
feature combines DenseNet feature to build multi-view. The results of the mAP test for 



                                       CMC, vol.63, no.2, pp.675-689, 2020 684 

different hash code length on dataset Caltech-256 and Caltech-101 are shown in Tabs. 2-3, 
respectively.  
 
Table 2: mAP comparison with respect to a different number of bits and different 
features on Caltech-256 dataset 

 
Feature 

16 32 64 128 
DMGH OURS DMGH OURS DMGH OURS DMGH OURS 

BoW_SIFT +GIST 0.0566 0.0518 0.0596 0.0577 0.0608 0.0611 0.0650 0.0671 
GIST+DenseNet 0.2623 0.5404 0.4363 0.7022 0.5904 0.7940 0.7421 0.8480 

BoW_SIFT+DenseNet 0.2391 0.5305 0.4328 0.7113 0.5758 0.7954 0.7316 0.8389 

Bold data means better results than the comparison method, and the best results for 
different bits are red bold. 
Compared with the DMGH algorithm proposed in the literature [Xiang, Shen, Qin et al. 
(2019)], which combines BoW_SIFT feature with GIST feature in multi-view data for 
image retrieval, we select multi-view data of BoW_SIFT feature and DenseNet feature 
combination, multi-view data of GIST features and DenseNet feature combination to 
perform image retrieval with our method, the mAP results shown in the examples in Tabs. 2, 
3. As can be seen from the above results: (1) Using DenseNet feature of deep learning 
dense convolution neural network combined with other features (such as BoW_SIFT 
feature and GIST feature) to construct multi-view and apply it to multi-view hashing 
method can improve the results of mAP. (2) On the whole, the mAP results of the DenseNet 
feature combined with this method are better than the DMGH method used for comparison. 
The precision–recall curves of different hash code lengths (16 bit, 32 bit, 64 bit, 128 bit) on 
the datasets Caltech-256 and Caltech-101 are shown in Figs. 1 and 2, respectively. From the 
results of Figs. 1 and 2. we can also see that the precision-recall curve of this algorithm is 
higher than that of DMGH. These results confirm that the proposed algorithm is superior to 
discrete multi-view hashing method based on large-scale image retrieval (DMGH) 
proposed by literature [Xiang, Shen, Qin et al. (2019)]. 

Table 3: mAP comparison with respect to a different number of bits and different 
features on Caltech-101 dataset 

 
Feature 

16 32 64 128 

DMGH OURS DMGH OURS DMGH OURS DMGH OURS 

BoW_SIFT +GIST 0.2131 0.1843 0.2065 0.2030 0.2200 0.2033 0.2228 0.1963 

GIST+DenseNet 0.5296 0.7081 0.7845 0.8413 0.8535 0.8940 0.8554 0.8362 

BoW_SIFT+DenseNet 0.6380 0.7342 0.8434 0.8768 0.9043 0.9097 0.8632 0.8406 

Bold data means better results than the comparison method, and the best results for 
different bits are red bold. 
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(a)                                   (b) 

 
(c)                                   (d) 

Figure 1: Precision recall curves on Caltech-256 dataset with respect to a different number of 
bits. (a) 16 bit, (b) 32bit, (c) 64 bit and (d) 128 bit 

4.3 Convergence analysis 
In this section, we analyze the convergence performance of our method. We take 
Caltech-256 as an example, Fig. 3. shows the convergence curve of our method under 16 
bit hash code length. From Fig. 3. we can see that our method can converge quickly. 

 
  (a)                                   (b) 
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  (c)                                   (d) 

Figure 2: Precision recall curves on Caltech-101 dataset with respect to different number 
of bits. (a) 16 bit, (b) 32bit, (c) 64 bit and (d) 128 bit 

 
Figure 3: Convergence analysis of our method on the Caltech-256 dataset 

4.4 Comparison with our methods using single-view 
In this section, we will analyze the performance of single-view data and multi-view data 
in image retrieval using our method. We experimented on the benchmark dataset 
Caltech-256. The view data were BoW_SIFT feature and DenseNet feature respectively. 
We experimented on the two features in a single-view and multi-view respectively. The 
results of the mAP experiment are shown in Fig. 4. From the results of Fig. 4, we can see 
that the retrieval performance of the multi-view data combined with our method is better 
than that of the single-view data method. Our method can explore the complementarity 
between multi-view data to improve the performance of image retrieval. 
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Figure 4: Performance comparison of this algorithm on Caltech-256 dataset in 
multi-view and single-view 

5 Conclusion 
This paper studies the efficient application of learning compact binary hash codes in 
image retrieval from multi-view data. We propose a multi-view hashing method based on 
feature fusion of RKCCA (Random Kernel Canonical Correlation Analysis), which 
effectively integrates multiple views according to feature fusion. This algorithm extracts 
features of deep learning dense convolution network and constructs multi-view features 
combining with other different features to describe image data better. This algorithm 
constructs anchor graphs for each view to obtain similarity matrix, and then finds the 
most relevant features among multiple views through RKCCA and fuses them to get the 
correlation features, which are used as input of hashing method. In this algorithm, a 
regularization term is designed to reduce the distortion error in the hash quantization 
stage. Through a large number of experiments on large benchmark datasets, it is proved 
that this method is superior to the existing multi-view hashing method. 
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