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Abstract: Deep Packet Inspection (DPI) at the core of many monitoring appliances, such as 
NIDS, NIPS, plays a major role. DPI is beneficial to content providers and censorship to 
monitor network traffic. However, the surge of network traffic has put tremendous pressure on 
the performance of DPI. In fact, the sensitive content being monitored is only a minority of 
network traffic, that is to say, most is undesired. A close look at the network traffic, we found 
that it contains many undesired high frequency content (UHC) that are not monitored. As 
everyone knows, the key to improve DPI performance is to skip as many useless characters as 
possible. Nevertheless, researchers generally study the algorithm of skipping useless characters 
through sensitive content, ignoring the high-frequency non-sensitive content. To fill this gap, 
in this literature, we design a model, named Fast AC Model with Skipping (FAMS), to quickly 
skip UHC while scanning traffic. The model consists of a standard AC automaton, where the 
input traffic is scanned byte-by-byte, and an additional sub-model, which includes a mapping 
set and UHC matching model. The mapping set is a bridge between the state node of AC and 
UHC matching model, while the latter is to select a matching function from hash and fingerprint 
functions. Our experiments show promising results that we achieve a throughput gain of 1.3-
2.6 times the original throughput and 1.1-1.3 times Barr’s double path method. 
 
Keywords: Deep packet inspection, pattern matching algorithm, AC. 

1 Introduction 
In recent years, content-based networks are developing rapidly, such as Software Defined 
(SDN), Content-Centric Networking (CCN) which bring a new round of development 
opportunities for content providers. Meanwhile, content providers and censorship are 
paying more attention to monitor the content of traffic. As for monitoring appliances, 
common ones include network intrusion detection system (NIDS), network intrusion 
prevention system (NIPS), spam filtering, network user behavior analysis system, and so 
on. No matter which one, Deep Packet Inspection (DPI) engine, a prerequisite component, 
inspects the payload of the packets to detect predefined signatures of malicious information 
[Afek, Bremler-Barr, Harchol et al. (2016)]. 
The key technology of DPI is the pattern matching algorithm, which is a mature technology 
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and has been researched for nearly 40 years. The most famous algorithms are Aho-Corasick 
algorithm (AC) [Aho and Corasick (1975)], Wu-Member algorithm (WM) [Wu and 
Manber (1994)] and Set Backward Oracle Matching (SBOM) [Allauzen, Crochemore and 
Raffinot (1999)]. AC is prefix searching using a trie tree, and it achieves a significant 
performance boost in short pattern set, while WM is suffix searching using two hash tables, 
which can skip well-established unmatched characters and perform better than AC in long 
pattern set. As to SBOM, which is also appropriate for long pattern set, it borrows the factor 
oracle structure and gets more throughput than WM in same situation. Most of the later 
algorithms are based on the evolution of these three algorithms [Nelms and Ahamad (2010); 
Liu, Liu and Tan (2015); Tan, Liu, Bu et al. (2011); Liu, Zhang, Yu et al. (2018); Chen and 
Wang (2015); Xing and Pao (2018); Yuan, Duan and Cong (2018); Wu, Zhang, Zhang et 
al. (2018)], especially under a multi-core architecture. 
Although these algorithms have made outstanding contributions to improve the performance 
of DPI, a significant gap remains in skipping extraneous characters. Generally speaking, 
content providers or censorship are only concerned with a small portion of the payload of the 
packets. This is verified by actually observing the pattern sets and traffic content of 
monitoring appliances, and specifically the heavy HTTP traffic. The heavy HTTP traffic 
clearly displayed a lot of undesired high-frequency content (UHC), including full repetition 
and partial repetition. The full repetition is the entire string appears many times, such as 
javascript and stylesheet (e.g., <html, <head>, </style>), while the partial repetition is the 
substring, such as shared HTML code. What’s more, a close look at the heavy traffic and we 
found that traffic from the same content provider is very similar, for example, the same html 
framework, similar files. On top of that, since the rapid development of content-based 
networks (e.g., CDN, SDN), similar content will be routed to the same monitoring appliance. 
Naturally, such networks provide a hotbed for attackers to evade. 
The literature begins by scoping the problem space, and proposes a new matching model. 
The model is Fast AC Model with Skipping (FAMS), which allows UHC to be skipped 
rather than scanned again. There are three modules in FAMS: standard AC automaton, 
mapping module and UHC matching module. Standard AC automaton is used to scan 
content byte-by-byte as normal. And the other two modules are applied to accelerate 
scanning UHC, which are skipped if encountered. The mapping module is a bridge between 
AC automaton and UHC matching module. A set of up to 255 bytes from ASCII code is 
used for mapping identifiers. After a character is scanned, automaton will first search the 
character from the mapping set. If matched, the matched character will point to the 
corresponding UHC matching module. Afterwards, UHC matching module returns the 
state to AC automaton after the jump. As to UHC matching module, the literature adopts 
two UHC matching functions, hash table and fingerprint. Both can achieve a quick search. 
In different traffic environments, the model will choose the best one from the two functions. 
Note that UHC matching subsets and mapping set are one-to-one correspondence. 
In terms of applicability, our model is versatile and flexible, and can be adjusted according 
to various scenarios. When the pattern set of UHC is scalable, UHC matching algorithms 
can be modified or replaced. In the scene of the normal pattern set with long length, the 
efficiency of AC is not optimal. In this case, an optimization algorithm such as path 
compression for AC can be used as an alternative. That said, as long as the model is fine-
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tuned, it can satisfy the specific requirements of different content providers and censorships. 

2 Related works 
Deep Packet Inspection (DPI) is a vital component of contemporary security and traffic 
analysis systems, and pattern matching algorithm is the heart of DPI. The essence of DPI 
performance is the efficiency of pattern matching algorithms. Conceptually, pattern 
matching algorithm contains two types: exact pattern matching and regular expression 
matching. On account of consuming a lot of resources for the latter with fewer practical 
applications, the literature focuses on the former. 
The classic exact pattern matching algorithms are AC, WM and SBOM, which are 
commonly used in signature-based instruction detection [Snort (2019)]. The AC algorithm 
constructs a Deterministic Finite Automaton (DFA), that records the pattern set as a Trie 
tree. The AC automata is defined as follows: 
M=(Q, 𝐿𝐿,𝑔𝑔, 𝑓𝑓, 𝑞𝑞𝑞𝑞,𝐹𝐹)              (1) 
In Eq. (1), Q is a finite state set (denote all nodes in the trie tree), L is a limited list of input 
characters (denote characters on all edges of the trie tree), g is GOTO table, f is fail table, 
𝑞𝑞𝑞𝑞 ∈ 𝑄𝑄 is initiate state (denote root node) and F is the final state set (denote output table). 
We shall give a brief overview of the original AC algorithm. The original AC algorithm 
includes three tables, the GOTO table, the FAIL table and the OUTPUT table. The GOTO 
table records the next state according to the current state and the next character. The FAIL 
table determines which state to return to when the next state obtained by the GOTO table 
is invalid. While the OUTPUT table saves the matched pattern in a state. 
The original AC algorithm performs well in short pattern set. In the AC automata, if there 
are m nodes, the graph contains (m-1) GOTO transition edges and (m-1) failure pointers. 
To process an input string with N characters, the original AC algorithm will make at most 
2N state transitions. The main factor affecting the processing speed is the storage structure 
of the state transition graph. If the GOTO table of a node are stored in a linked list, then 
the original AC algorithm needs to carry out a sequential search to get the next state, which 
leads to more memory accesses and lower efficiency. Therefore, in the case of sufficient 
memory, array storage is an ideal choice. The performance can be improved by expanding 
the graph. A 2-D transition rule table is designed to store the next state, the elements of the 
table is a pair of <current state, input character>. Since the next state is predetermined and 
AC automata only consumes once memory access to search the next state.  
The disadvantage of AC algorithm is that it takes up a lot of memory when the length of pattern 
is long, and the size of character set is large. In view of this case, WM has obvious advantages. 
Drawing on two hash tables, WM can quickly skip bad characters. While SBOM combines the 
advantages of both, it adopts a factor oracle structure to achieve search acceleration. Meanwhile, 
attacks against these algorithms are growing, Afek et al. [Afek, Bremler-Barr, Harchol et al. 
(2016)] proposed a threshold method to detect algorithm complex attacks and addressed it with 
multi-core architecture. Subsequently, Liu et al. [Liu, Shi, Zhang et al. (2018)] further improved 
the attack detection and demonstrated a two-step threshold detection method. 
For the sake of high-speed DPI engine, researchers devoted themselves to explore 
innovative algorithms in both hardware and software implementations. The greatest 
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throughput is hardware implementation [Meiners, Patel, Norige et al. (2010); Pao, Lin and 
Liu (2010); Chen and Wang (2013)], which relies on dedicated hardware, such as FPGA 
and CAM/TCAM. Nevertheless, it is expensive and not easy to update the program, so it 
is only suitable for ISP or large enterprises. On the contrary, software implementation Liu 
et al. [Liu, Zhang, Yu et al. (2018); Kumar, Dharmapurikar, Fang et al. (2006); Bremler-
Barr, David, Harchol et al. (2012)] is universal. Additionally, with respect to the 
aforementioned work, our strategy can be applied on top of these work. 
The aforementioned work is focused on the matching of desired content. As for UHC, 
Bremler-Barr et al. [Bremler-Barr, David, Harchol et al. (2015)] showed how repetitions 
in network traffic could be used to enhance DPI performance. A mechanism was proposed 
that changed the legacy AC algorithm, adding a dictionary of repeating data. The 
mechanism consisted of a slow path and a data path. The former recognized repetitions and 
created dictionary, while the latter traversed AC nodes at each step and determined how 
many characters to skip based on the dictionary. The solution achieved a throughput gain 
of 1.25-2.5 times the original throughput. 
A close look at Barr’s mechanism, although DPI performance had been improved, a 
significant gap remains in traversing each AC node. The dictionary is searched once for 
each node visited, which obviously increases the overhead of time. By comparing the size 
of character set between normal pattern set and UHC set, we find that the character set of 
UHC is smaller. In other words, it is not necessary to search dictionary for all nodes. 
Therefore, we design a small mapping set to construct a highway with AC node and 
dictionary. The mapping set is a character set. All the first characters of UHC set are 
extracted, and then a character set is composed after eliminating duplicate ones. 
Consequently, only partial AC node will execute the search of dictionary. On top of that, 
UHC strings are cut into k-grams in Barr’s mechanism, we suppose the length of UHC 
string is L, there are (L-k -1) k-grams in all. The negative impact is the rise in hash collision 
rate due to the increase of new UHC sets. To address the problem, we improved the cutting 
method. Since the goal is to match UHC, that is, all characters can be hit, so the k-grams 
with overlapping is not necessary and it is sufficient to remain �𝐿𝐿

𝑘𝑘
 � k-grams. In this way, 

the UHC set is greatly reduced and hash collision rate is also reduced. 

3 Fast AC model with skipping 
3.1 Model framework 
Fast AC Model with Skipping (FAMS) is an enhanced AC algorithm model. There are 
three modules in FAMS, a standard AC automaton, a mapping module and UHC matching 
module. The model framework is shown in Fig. 1. 

 
Figure 1: Model Framework 
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The mapping module is a quick search module, which is the key to improve DPI performance. 
In the module, a small mapping set is generated to connect AC nodes and UHC matching 
subsets. And the generation method is to select the first character of all string in UHC set, if 
a repetition exists, remains only one. When an AC node is accessed, quick search is 
performed to determine whether or not a secondary search of UHC set is required. 
The UHC matching module mainly processes UHC matching and saves update state. The 
UHC matching algorithm uses hash function or fingerprint function. This module creates 
multiple subsets corresponding to the mapping set, and all the subsets use the same UHC 
matching algorithm. The saved update state is the next state returned to AC automaton. 
Each UHC string has a saved update state. If the suffix of UHC string is the same as the 
prefix of AC automaton, the state in the deepest level in AC automaton is to be saved. The 
state searching is as follows: a UHC string 𝑃𝑃 = {𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛}, its inverted string 𝑄𝑄 =
{𝑞𝑞𝑖𝑖|𝑞𝑞𝑖𝑖 = 𝑝𝑝𝑛𝑛−𝑖𝑖, 0 ≤ 𝑖𝑖 ≤ 𝑛𝑛} is used as input. The AC automaton is traversed starting from 
root. When it is failed to match qi, this indicates that the currently traversed path is a longest 
suffix of an UHC string. And then the current state is recorded as update state of string P. 
The process of FAMS: inspected traffic traverses the trie of AC automaton. For the current 
node, searching the current character in mapping set, if not found, continue traversing next 
character, else further searching UHC set and return update state to AC automaton if success. 

3.2 UHC matching algorithm 
In Barr’s mechanism, the patterns of UHC set are k-grams with the same length. The 
patterns are stored as an open hash table and a Bloom filter is used to query. Nevertheless, 
the Bloom filter uses only a single hash function that degrades to a normal hash. In addition, 
the k-grams are all substrings of UHC, that is, if the length of a UHC string is L, then there 
is (L-k-1) k-grams. So many k-grams will undoubtedly increase the probability of hash 
collision. Owing to the mapping set introduced by FAMS, UHC set is divided into subsets 
by the first character, which can reduce conflicts. Further, we chop the number of k-grams 
to �𝐿𝐿

𝑘𝑘
 � by deleting k-grams with partial overlap. This operation greatly reduces the size of 

UHC set and hash collision, it is very beneficial to improve performance. When chopping 
L to k-grams, L may be divided by k with remainder, the remainder is merged into the last 
k-gram. As shown in Fig. 2, the UHC string “GoogleScholar” is divided by 4-gram and 
the subset “fGoog”, “leSh”, “holarg” is obtained. 

 
Figure 2: Generate k-gram subsets 

More specifically, given UHC string L with length l and some constant k, we wish to divide 
L into n substrings to get UHC subsets 𝐿𝐿�. 
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𝑛𝑛 = �𝑙𝑙
𝑘𝑘
� , 0 ≤ 𝑖𝑖 < 𝑛𝑛 − 1              (2) 

𝐿𝐿 = {𝑘𝑘𝑖𝑖|𝐿𝐿𝑖𝑖×𝑘𝑘+1,𝐿𝐿𝑖𝑖×𝑘𝑘+2, … , 𝐿𝐿𝑖𝑖×𝑘𝑘+𝑘𝑘}⋃𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚              (3) 
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = {𝐿𝐿(𝑛𝑛−1)×𝑘𝑘+1, … , 𝐿𝐿𝑙𝑙}              (4) 
𝐿𝐿𝐿𝐿𝐿𝐿 𝑘𝑘𝑛𝑛−1 = 𝑘𝑘𝑛𝑛−1 ⋃𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚              (5) 
𝐿𝐿� = {𝑘𝑘0,𝑘𝑘1, … ,𝑘𝑘𝑛𝑛−1}              (6) 
The literature adopts two UHC matching algorithms: hash table and fingerprint. The 
common feature of both is that the window size is the shortest length of UHC set. The 
substring in the window represents the entire pattern. Furthermore, the substring set with 
the minimum collision rate is used as the representative set. The selection algorithm of 
substrings is as described in Algorithm 1. 

Algorithm 1:  Selection of Substring 
INPUT 
 
 
OUTPUT 
 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 

UHC set 𝐾𝐾 = {𝑘𝑘1, 𝑘𝑘2, … , 𝑘𝑘𝑚𝑚}  with length k ,𝑃𝑃 =
{𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑛𝑛}  with length 𝐿𝐿 = {𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑛𝑛}, 𝑘𝑘 <
𝑙𝑙𝑖𝑖 < 2 × 𝑘𝑘 
New UHC set 𝐶𝐶̅ = {𝑐𝑐1� , 𝑐𝑐2� , … , 𝑐𝑐𝑚𝑚+𝑛𝑛�������}, hash table H =
{ℎ1, ℎ2, … , ℎ𝑚𝑚+𝑛𝑛} 
𝐶𝐶̅ ← ∅,𝐻𝐻 ← ∅, 𝑖𝑖 ← 1, 𝑗𝑗 ← 1; 
\\ compute unique ID(ℎ𝑖𝑖) for set K 
while 𝑖𝑖 ≤ 𝑚𝑚 do 

ℎ𝑖𝑖 ← 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑘𝑘𝑖𝑖) ; 
if ℎ𝑖𝑖 ∈ 𝐻𝐻 then 
     𝐶𝐶̅ =  𝐶𝐶̅ ⋃ 𝑘𝑘𝑖𝑖 ,𝐻𝐻 ← 𝐻𝐻⋃ℎ𝑖𝑖; 
else 

 𝐶𝐶̅ ← ∅,𝐻𝐻 ← ∅, 𝑖𝑖 ← 1; 
     Update function or hash space; 
end if 

end while 
\\ compute unique ID(ℎ𝑗𝑗) for set P 
𝑃𝑃𝑗𝑗𝑗𝑗 = {𝑝𝑝𝑗𝑗𝑗𝑗 , 𝑝𝑝𝑗𝑗𝑗𝑗+1, … ,𝑝𝑝𝑗𝑗𝑗𝑗+𝑘𝑘+1}; 
while 𝑗𝑗 ≤ 𝑛𝑛 do 

while z ≤ 𝑙𝑙𝑗𝑗 − 𝑘𝑘 + 1 do 
     ℎ𝑗𝑗 ← 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑃𝑃𝑗𝑗𝑗𝑗); 
     if ℎ𝑗𝑗 ∈ 𝐻𝐻 then 
           𝐶𝐶̅ ← 𝐶𝐶̅ ⋃𝑃𝑃𝑗𝑗𝑗𝑗 ,𝐻𝐻 ← 𝐻𝐻⋃ℎ𝑗𝑗; 
           break; 
     end if 
     𝑧𝑧 ← 𝑧𝑧 + 1; 
end while 

end while 

For example, in Fig. 3, suppose that DKJMEF and D6DFEK are in conflict, D6DFEK will 
be replaced by another random substring with different first character. The selection of 
substring requires several rounds (1 ≤ r ≤ k) of computation. Accordingly, the process 
takes a lot of time. However, it is less significant, as it belongs to the preliminary work 
before NIDS runs. 

file://compute
file://compute
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Figure 3: The selection of substring 

On the flip side, there are 𝑃𝑃𝑟𝑟 = 𝑃𝑃𝐿𝐿 − 𝑘𝑘 characters left after substring selection, which have 
to be processed by AC automaton. 0 ≤ 𝑃𝑃𝑟𝑟 < 𝑘𝑘 , it has little impact on the overall 
performance, so it is tolerable. 
With regards to matching function, hash table and fingerprint. Hash table is an open hash 
table, it only needs to select the corresponding hash number according to length k. 
Fingerprint is a polynomial function, the definition is emphasized below. 
Definition 1: 𝜑𝜑(𝑝𝑝) is the fingerprint of string p, if and only if 𝜑𝜑(𝑝𝑝) satisfies two conditions: 
(1) 𝜑𝜑  is the function of string p or its substring, if two strings or substrings of their 
fingerprints are identical, and then their fingerprints are identical. 

(2) For any two strings 𝑝𝑝1 ≠ 𝑝𝑝2,𝜌𝜌𝑟𝑟 �𝜑𝜑𝑓𝑓,𝜎𝜎(𝑝𝑝1) = 𝜑𝜑𝑓𝑓,𝜎𝜎(𝑝𝑝2)� ≪ 1 , that said, the probability 
that p1 and p2 have the same fingerprint is much less than 1. 
Definition 2: for the given string 𝑝𝑝 = 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑚𝑚,σ ∈ δ(𝑁𝑁4), a polynomial fingerprint 
function for p is 𝜑𝜑𝑓𝑓,𝜎𝜎(𝑝𝑝) = (∑ 𝑝𝑝𝑖𝑖𝑓𝑓𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝜎𝜎𝑚𝑚

𝑖𝑖=1 ), 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚,𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝜎𝜎 , where σ  is primer 
number, 𝐹𝐹𝜎𝜎 = {∀𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝜎𝜎|𝑓𝑓𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚(ℤ,𝜎𝜎)}. 
A polynomial fingerprint has two properties: 
(1) Fingerprint 𝜑𝜑(𝑝𝑝1, … ,𝑝𝑝𝑚𝑚,𝑝𝑝𝑚𝑚+1)  can be calculated according to 
𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑚𝑚,𝜑𝜑(𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑚𝑚) and 𝑝𝑝𝑚𝑚+1. 
(2) When 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚,𝜑𝜑(𝑝𝑝1+𝑖𝑖,𝑝𝑝2+𝑖𝑖, … ,𝑝𝑝𝑚𝑚)  can be calculated according to 
𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑚𝑚,𝜑𝜑(𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑚𝑚) and 𝜑𝜑(𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑖𝑖). 
In the actual operation of FAMS, the matching algorithm can be selected according to the 
conflict rate test result of different UHC sets. 

3.3 Working instance 
In order to clarity how FAMS works, we elaborate on the details through an instance. 
Assume that the normal pattern set is {E, BE, BD, BCD, JDBC}, the corresponding AC 
automaton is shown in Fig. 4 on the left. What’s more, we assume UHC set is {BTAGXUBC, 
BCDZLA30TKN, JAVASCRIPT, JASONTK101B}, which is divided into two separate 
subsets by the first character, {BTAGXUBC, BCDZLA30TKN} and {JAVASCRIPT, 
JASONTK101B}. The window sizes of the two subsets are 8 and 10, respectively. After the 
calculation by hash or fingerprint, we get two pattern subsets as UHC sets. In each UHC 
set, all patterns have the same length. The generation process of UHC sets is depicted in 
Fig. 5. Afterwards, we figure out mapping set {B, J}. 
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Figure 4: FAMS working diagram 

 
Figure 5: UHC subsets generation process 

As to update state in UHC matching records, a prefix of normal pattern is a suffix of an UHC 
string. In Fig. 5, the suffix BC of the second UHC string is a prefix of BCD in normal patterns. 
After finishing UHC matching set and mapping set, we move the perspective to standard 
AC automaton. The automaton scans from the initial state 𝑠𝑠0, when an input character is in 
mapping set, then searching the corresponding UHC subset according to mapping relation. 
If not found, automaton keeps scanning, else UHC matching module returns update state 
to the automaton. This moment, a judgment is needed to determine whether to jump state. 
Judgement condition: Assume current character is pi that is in mapping set, the window 
size of the corresponding UHC is k. The scanning at automaton continues to search the 
bytes 𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖+1,𝑝𝑝𝑖𝑖+𝑘𝑘−1 one by one, it is paused until reaching such a state with an input byte 
𝑝𝑝𝑖𝑖+𝑗𝑗 , whose depth is less than or equal to j. 
If the condition is satisfied, the current state jumps to the update state saved in UHC string 
𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖+1,𝑝𝑝𝑖𝑖+𝑘𝑘−1. 
Everything is ready now, we induce the input JDBCBTAGXUBCDH. The first character is 
matched mapping set, but not matched UHC subset. The scan continues until state 𝑠𝑠10. 
Then, BTAGXUBC is in UHC subset. Owing to the next character is B, and new current 
state is 𝑠𝑠11, whose depth is 5>1 (index of UHC is 1). Since the judgement condition is 
unsatisfied, the next character T is entered. By now, current state is 𝑠𝑠0, whose depth is 0<2 
(index of UHC is 2), condition establishment. Therefore, the update state 𝑠𝑠6 in UHC subset 
is new current state. FAMS skips the rest six characters AGXUBC and continues to scan 
DH. Finally, the pattern BCD is matched successfully. The scanning process is presented 
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in Tab. 1 and the characters with underline are skipped. 

Table 1: Scanning process for input JDBCBTAGXUBCDH 

𝑝𝑝𝑖𝑖 J D B C B T A G X U B C D H 
match      - - - - - - -   
state after 𝑝𝑝𝑖𝑖 𝑠𝑠3 𝑠𝑠7 𝑠𝑠9 𝑠𝑠10 𝑠𝑠11 𝑠𝑠0 - - - - - 𝑠𝑠6 𝑠𝑠8 𝑠𝑠0 
depth 1 2 3 4 5 0 - - - - - 2 3 0 
index of UHC - - - - 1 2 - - - - - - - - 

Next, Algorithm 2 gives the pseudo-code for FAMS scanning process. 
Algorithm 2:  FAMS SCAN 
INPUT 
OUTPUT 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 

𝑃𝑃 = (𝑝𝑝0, 𝑝𝑝1, … , 𝑝𝑝𝑛𝑛−1) 
current state  𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐  
s𝑐𝑐𝑐𝑐𝑐𝑐 ← 𝑠𝑠0, 𝑖𝑖 ← 0; 
while 𝑖𝑖 < 𝑛𝑛 do 

if 𝑝𝑝𝑖𝑖 ∈ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 then 
     𝑤𝑤 =  𝑊𝑊𝑊𝑊𝑊𝑊𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈 , 𝑗𝑗 ← 0 
     𝑓𝑓 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑖𝑖+1, … , 𝑝𝑝𝑖𝑖+𝑤𝑤−1) 
     if 𝑓𝑓 ∈ 𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈  then 

       while 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 .𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ > 𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 < 𝑛𝑛 do 
           𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 ← 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑝𝑝𝑖𝑖); 

                𝑖𝑖 ← 𝑖𝑖 + 1, 𝑗𝑗 ← 𝑗𝑗 + 1; 
           End while 
           i ← i + (w − j); 
          𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 ← 𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈 . 𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢; 
     else 
          𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 ← 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑝𝑝𝑖𝑖); 
          𝑖𝑖 ← 𝑖𝑖 + 1; 

end if 
end if  

end while 

4 Experimental results 
In our experiment environment, physical memory is 16 G, network card is a gigabit and 
CPU is Intel Core i7. To improve throughput, the platform is driven by zero-copy unlocked 
DPDK. Our model runs with 8 threads in parallel. 
The number of the normal pattern is 105, which is selected from Snort rules and generated 
randomly according to Snort rules. While UHC set is extracted from gateway traffic of 
Harbin Institute of Technology. A script is used to extracted duplicate strings and ranks 
them. We removed the strings that conflicts with normal pattern set and chose the top 200 
as UHC set. A close look at UHC set, it is obvious that HTTP header fields rank top, as 
shown in Tab. 2. 
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Table 2: The top of UHC set 
Ranking UHC Ranking UHC 

1 text/html 6 text/xml 
2 text/plain 7 application/xml 
3 image/jpeg 8 gzip 
4 image/png 9 Keep-alive 
5 Image/jif 10 Mozilla 

With regards to induce traffic, we captured five files with the sizes about 943 M, 1.3 G, 2.2 
G, 2.8 G, 4.5 G and numbered the files numerically (1-5). To measure the performance of 
our proposed FAMS, we recorded the following information for analysis: throughput, 
automata node access, UHC node access and memory occupancy. The object of 
comparison is the original AC and Birr’s double path. Accordingly, a total of three 
programs were deployed. 
Throughput: The results of throughput comparison are shown in Fig. 6. The x-coordinate 
represents the file number and the y-coordinate represents the average throughput. Our 
experiments show promising results that we achieve a throughput gain of 1.3-2.6 times the 
original AC and 1.1-1.3 times Barr’s double path method. 

 
Figure 6: Throughput comparison 

Memory occupancy: In the three programs above, the order of memory occupancy is 
FAMS≈Birr’s>original AC. FAMS has 5 K more memory than the original AC, 
accounting for only 0.5% of the total memory of the automaton. Therefore, a small increase 
in memory has less impact on performance.  
Automata node access: Automata is the bottleneck of system performance, and the frequency 
of its node access reflects memory access which directly affects the performance. The fewer 
visits, the better performance. The statistics of the number of visits to a node includes two 
parts: AC automaton node and UHC node. We run five test files in the experiment. From 
Tab. 3, we can see that no matter which file, the result is the same. The original AC is the 
most, Birr is the second, and FAMS is the least. Thus, a large number of repetitive strings in 
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the input data are hit in FAMS, resulting in skipping many characters. 

Table 3: The top of UHC set 

File number 1 2 3 4 5 
Original AC 65 892 191 247 389 

Birr’s 62 785 181 236 371 
FAMS 61 83 178 231 365 

 
UHC node access: Statistical results of UHC nodes are shown in Tab. 4. UHC node access 
accounts for 5%-7% of all nodes. The total number of bytes skipped accounts for 7%-8% 
of the data. Undoubtedly, it is benefit for performance improvement. 

Table 4: Statistics of UHC node access (unit: 𝟏𝟏𝟏𝟏𝟕𝟕) 

File number 1 2 3 4 5 
UHC statistics 3.5 4.9 13.8 15.7 23.3 

5 Conclusion 
The current boost traffic poses a challenge to DPI performance, most researchers work on 
the optimization of the DPI algorithm itself. However, according to the observation of 
traffic content, there is a lot of undesired high-frequency content, which is no needed to 
match. In this literature, a fast AC model with skipping (FAMS) is proposed to accelerate 
AC automaton by skipping repetitions. Based on the method of Birr’s double path, FAMS 
adds mapping set so that UHC set is searched only if the input characters in mapping set. 
Another, for a UHC set, UHC algorithm chooses an appropriate one from hash and 
fingerprint functions. Unlike simply traversing AC automaton, we try to make sure early 
whether skipping is possible, if it is, no scanning some characters. Finally, our experiments 
show that FAMS is beneficial to the improvement of DPI performance. 
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