
Computers, Materials & Continua CMC, vol.63, no.2, pp.649-661, 2020

CMC. doi:10.32604/cmc.2020.07736 www.techscience.com/journal/cmc

Skipping Undesired High-Frequency Content to Boost DPI
Engine

Likun Liu1, Jiantao Shi1, *, Xiangzhan Yu1, Hongli Zhang1 and Dongyang Zhan2

Abstract: Deep Packet Inspection (DPI) at the core of many monitoring appliances, such as
NIDS, NIPS, plays a major role. DPI is beneficial to content providers and censorship to
monitor network traffic. However, the surge of network traffic has put tremendous pressure on
the performance of DPI. In fact, the sensitive content being monitored is only a minority of
network traffic, that is to say, most is undesired. A close look at the network traffic, we found
that it contains many undesired high frequency content (UHC) that are not monitored. As
everyone knows, the key to improve DPI performance is to skip as many useless characters as
possible. Nevertheless, researchers generally study the algorithm of skipping useless characters
through sensitive content, ignoring the high-frequency non-sensitive content. To fill this gap,
in this literature, we design a model, named Fast AC Model with Skipping (FAMS), to quickly
skip UHC while scanning traffic. The model consists of a standard AC automaton, where the
input traffic is scanned byte-by-byte, and an additional sub-model, which includes a mapping
set and UHC matching model. The mapping set is a bridge between the state node of AC and
UHC matching model, while the latter is to select a matching function from hash and fingerprint
functions. Our experiments show promising results that we achieve a throughput gain of 1.3-
2.6 times the original throughput and 1.1-1.3 times Barr’s double path method.

Keywords: Deep packet inspection, pattern matching algorithm, AC.

1 Introduction
In recent years, content-based networks are developing rapidly, such as Software Defined
(SDN), Content-Centric Networking (CCN) which bring a new round of development
opportunities for content providers. Meanwhile, content providers and censorship are
paying more attention to monitor the content of traffic. As for monitoring appliances,
common ones include network intrusion detection system (NIDS), network intrusion
prevention system (NIPS), spam filtering, network user behavior analysis system, and so
on. No matter which one, Deep Packet Inspection (DPI) engine, a prerequisite component,
inspects the payload of the packets to detect predefined signatures of malicious information
[Afek, Bremler-Barr, Harchol et al. (2016)].
The key technology of DPI is the pattern matching algorithm, which is a mature technology

1 School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
2 Department of Computer Science and Engineering, The Ohio State University, Columbus, 43202, USA.
* Corresponding Author: Jiantao Shi. Email: shijiantao@hit.edu.cn.
Received: 23 June 2019; Accepted: 16 July 2019.

 CMC, vol.63, no.2, pp.649-661, 2020 650

and has been researched for nearly 40 years. The most famous algorithms are Aho-Corasick
algorithm (AC) [Aho and Corasick (1975)], Wu-Member algorithm (WM) [Wu and
Manber (1994)] and Set Backward Oracle Matching (SBOM) [Allauzen, Crochemore and
Raffinot (1999)]. AC is prefix searching using a trie tree, and it achieves a significant
performance boost in short pattern set, while WM is suffix searching using two hash tables,
which can skip well-established unmatched characters and perform better than AC in long
pattern set. As to SBOM, which is also appropriate for long pattern set, it borrows the factor
oracle structure and gets more throughput than WM in same situation. Most of the later
algorithms are based on the evolution of these three algorithms [Nelms and Ahamad (2010);
Liu, Liu and Tan (2015); Tan, Liu, Bu et al. (2011); Liu, Zhang, Yu et al. (2018); Chen and
Wang (2015); Xing and Pao (2018); Yuan, Duan and Cong (2018); Wu, Zhang, Zhang et
al. (2018)], especially under a multi-core architecture.
Although these algorithms have made outstanding contributions to improve the performance
of DPI, a significant gap remains in skipping extraneous characters. Generally speaking,
content providers or censorship are only concerned with a small portion of the payload of the
packets. This is verified by actually observing the pattern sets and traffic content of
monitoring appliances, and specifically the heavy HTTP traffic. The heavy HTTP traffic
clearly displayed a lot of undesired high-frequency content (UHC), including full repetition
and partial repetition. The full repetition is the entire string appears many times, such as
javascript and stylesheet (e.g., <html, <head>, </style>), while the partial repetition is the
substring, such as shared HTML code. What’s more, a close look at the heavy traffic and we
found that traffic from the same content provider is very similar, for example, the same html
framework, similar files. On top of that, since the rapid development of content-based
networks (e.g., CDN, SDN), similar content will be routed to the same monitoring appliance.
Naturally, such networks provide a hotbed for attackers to evade.
The literature begins by scoping the problem space, and proposes a new matching model.
The model is Fast AC Model with Skipping (FAMS), which allows UHC to be skipped
rather than scanned again. There are three modules in FAMS: standard AC automaton,
mapping module and UHC matching module. Standard AC automaton is used to scan
content byte-by-byte as normal. And the other two modules are applied to accelerate
scanning UHC, which are skipped if encountered. The mapping module is a bridge between
AC automaton and UHC matching module. A set of up to 255 bytes from ASCII code is
used for mapping identifiers. After a character is scanned, automaton will first search the
character from the mapping set. If matched, the matched character will point to the
corresponding UHC matching module. Afterwards, UHC matching module returns the
state to AC automaton after the jump. As to UHC matching module, the literature adopts
two UHC matching functions, hash table and fingerprint. Both can achieve a quick search.
In different traffic environments, the model will choose the best one from the two functions.
Note that UHC matching subsets and mapping set are one-to-one correspondence.
In terms of applicability, our model is versatile and flexible, and can be adjusted according
to various scenarios. When the pattern set of UHC is scalable, UHC matching algorithms
can be modified or replaced. In the scene of the normal pattern set with long length, the
efficiency of AC is not optimal. In this case, an optimization algorithm such as path
compression for AC can be used as an alternative. That said, as long as the model is fine-

Skipping Undesired High-Frequency Content to Boost 651

tuned, it can satisfy the specific requirements of different content providers and censorships.

2 Related works
Deep Packet Inspection (DPI) is a vital component of contemporary security and traffic
analysis systems, and pattern matching algorithm is the heart of DPI. The essence of DPI
performance is the efficiency of pattern matching algorithms. Conceptually, pattern
matching algorithm contains two types: exact pattern matching and regular expression
matching. On account of consuming a lot of resources for the latter with fewer practical
applications, the literature focuses on the former.
The classic exact pattern matching algorithms are AC, WM and SBOM, which are
commonly used in signature-based instruction detection [Snort (2019)]. The AC algorithm
constructs a Deterministic Finite Automaton (DFA), that records the pattern set as a Trie
tree. The AC automata is defined as follows:
M=(Q, 𝐿𝐿,𝑔𝑔, 𝑓𝑓, 𝑞𝑞𝑞𝑞,𝐹𝐹) (1)
In Eq. (1), Q is a finite state set (denote all nodes in the trie tree), L is a limited list of input
characters (denote characters on all edges of the trie tree), g is GOTO table, f is fail table,
𝑞𝑞𝑞𝑞 ∈ 𝑄𝑄 is initiate state (denote root node) and F is the final state set (denote output table).
We shall give a brief overview of the original AC algorithm. The original AC algorithm
includes three tables, the GOTO table, the FAIL table and the OUTPUT table. The GOTO
table records the next state according to the current state and the next character. The FAIL
table determines which state to return to when the next state obtained by the GOTO table
is invalid. While the OUTPUT table saves the matched pattern in a state.
The original AC algorithm performs well in short pattern set. In the AC automata, if there
are m nodes, the graph contains (m-1) GOTO transition edges and (m-1) failure pointers.
To process an input string with N characters, the original AC algorithm will make at most
2N state transitions. The main factor affecting the processing speed is the storage structure
of the state transition graph. If the GOTO table of a node are stored in a linked list, then
the original AC algorithm needs to carry out a sequential search to get the next state, which
leads to more memory accesses and lower efficiency. Therefore, in the case of sufficient
memory, array storage is an ideal choice. The performance can be improved by expanding
the graph. A 2-D transition rule table is designed to store the next state, the elements of the
table is a pair of <current state, input character>. Since the next state is predetermined and
AC automata only consumes once memory access to search the next state.
The disadvantage of AC algorithm is that it takes up a lot of memory when the length of pattern
is long, and the size of character set is large. In view of this case, WM has obvious advantages.
Drawing on two hash tables, WM can quickly skip bad characters. While SBOM combines the
advantages of both, it adopts a factor oracle structure to achieve search acceleration. Meanwhile,
attacks against these algorithms are growing, Afek et al. [Afek, Bremler-Barr, Harchol et al.
(2016)] proposed a threshold method to detect algorithm complex attacks and addressed it with
multi-core architecture. Subsequently, Liu et al. [Liu, Shi, Zhang et al. (2018)] further improved
the attack detection and demonstrated a two-step threshold detection method.
For the sake of high-speed DPI engine, researchers devoted themselves to explore
innovative algorithms in both hardware and software implementations. The greatest

 CMC, vol.63, no.2, pp.649-661, 2020 652

throughput is hardware implementation [Meiners, Patel, Norige et al. (2010); Pao, Lin and
Liu (2010); Chen and Wang (2013)], which relies on dedicated hardware, such as FPGA
and CAM/TCAM. Nevertheless, it is expensive and not easy to update the program, so it
is only suitable for ISP or large enterprises. On the contrary, software implementation Liu
et al. [Liu, Zhang, Yu et al. (2018); Kumar, Dharmapurikar, Fang et al. (2006); Bremler-
Barr, David, Harchol et al. (2012)] is universal. Additionally, with respect to the
aforementioned work, our strategy can be applied on top of these work.
The aforementioned work is focused on the matching of desired content. As for UHC,
Bremler-Barr et al. [Bremler-Barr, David, Harchol et al. (2015)] showed how repetitions
in network traffic could be used to enhance DPI performance. A mechanism was proposed
that changed the legacy AC algorithm, adding a dictionary of repeating data. The
mechanism consisted of a slow path and a data path. The former recognized repetitions and
created dictionary, while the latter traversed AC nodes at each step and determined how
many characters to skip based on the dictionary. The solution achieved a throughput gain
of 1.25-2.5 times the original throughput.
A close look at Barr’s mechanism, although DPI performance had been improved, a
significant gap remains in traversing each AC node. The dictionary is searched once for
each node visited, which obviously increases the overhead of time. By comparing the size
of character set between normal pattern set and UHC set, we find that the character set of
UHC is smaller. In other words, it is not necessary to search dictionary for all nodes.
Therefore, we design a small mapping set to construct a highway with AC node and
dictionary. The mapping set is a character set. All the first characters of UHC set are
extracted, and then a character set is composed after eliminating duplicate ones.
Consequently, only partial AC node will execute the search of dictionary. On top of that,
UHC strings are cut into k-grams in Barr’s mechanism, we suppose the length of UHC
string is L, there are (L-k -1) k-grams in all. The negative impact is the rise in hash collision
rate due to the increase of new UHC sets. To address the problem, we improved the cutting
method. Since the goal is to match UHC, that is, all characters can be hit, so the k-grams
with overlapping is not necessary and it is sufficient to remain �𝐿𝐿

𝑘𝑘
 � k-grams. In this way,

the UHC set is greatly reduced and hash collision rate is also reduced.

3 Fast AC model with skipping
3.1 Model framework
Fast AC Model with Skipping (FAMS) is an enhanced AC algorithm model. There are
three modules in FAMS, a standard AC automaton, a mapping module and UHC matching
module. The model framework is shown in Fig. 1.

Figure 1: Model Framework

Skipping Undesired High-Frequency Content to Boost 653

The mapping module is a quick search module, which is the key to improve DPI performance.
In the module, a small mapping set is generated to connect AC nodes and UHC matching
subsets. And the generation method is to select the first character of all string in UHC set, if
a repetition exists, remains only one. When an AC node is accessed, quick search is
performed to determine whether or not a secondary search of UHC set is required.
The UHC matching module mainly processes UHC matching and saves update state. The
UHC matching algorithm uses hash function or fingerprint function. This module creates
multiple subsets corresponding to the mapping set, and all the subsets use the same UHC
matching algorithm. The saved update state is the next state returned to AC automaton.
Each UHC string has a saved update state. If the suffix of UHC string is the same as the
prefix of AC automaton, the state in the deepest level in AC automaton is to be saved. The
state searching is as follows: a UHC string 𝑃𝑃 = {𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛}, its inverted string 𝑄𝑄 =
{𝑞𝑞𝑖𝑖|𝑞𝑞𝑖𝑖 = 𝑝𝑝𝑛𝑛−𝑖𝑖, 0 ≤ 𝑖𝑖 ≤ 𝑛𝑛} is used as input. The AC automaton is traversed starting from
root. When it is failed to match qi, this indicates that the currently traversed path is a longest
suffix of an UHC string. And then the current state is recorded as update state of string P.
The process of FAMS: inspected traffic traverses the trie of AC automaton. For the current
node, searching the current character in mapping set, if not found, continue traversing next
character, else further searching UHC set and return update state to AC automaton if success.

3.2 UHC matching algorithm
In Barr’s mechanism, the patterns of UHC set are k-grams with the same length. The
patterns are stored as an open hash table and a Bloom filter is used to query. Nevertheless,
the Bloom filter uses only a single hash function that degrades to a normal hash. In addition,
the k-grams are all substrings of UHC, that is, if the length of a UHC string is L, then there
is (L-k-1) k-grams. So many k-grams will undoubtedly increase the probability of hash
collision. Owing to the mapping set introduced by FAMS, UHC set is divided into subsets
by the first character, which can reduce conflicts. Further, we chop the number of k-grams
to �𝐿𝐿

𝑘𝑘
 � by deleting k-grams with partial overlap. This operation greatly reduces the size of

UHC set and hash collision, it is very beneficial to improve performance. When chopping
L to k-grams, L may be divided by k with remainder, the remainder is merged into the last
k-gram. As shown in Fig. 2, the UHC string “GoogleScholar” is divided by 4-gram and
the subset “fGoog”, “leSh”, “holarg” is obtained.

Figure 2: Generate k-gram subsets

More specifically, given UHC string L with length l and some constant k, we wish to divide
L into n substrings to get UHC subsets 𝐿𝐿�.

 CMC, vol.63, no.2, pp.649-661, 2020 654

𝑛𝑛 = �𝑙𝑙
𝑘𝑘
� , 0 ≤ 𝑖𝑖 < 𝑛𝑛 − 1 (2)

𝐿𝐿 = {𝑘𝑘𝑖𝑖|𝐿𝐿𝑖𝑖×𝑘𝑘+1,𝐿𝐿𝑖𝑖×𝑘𝑘+2, … , 𝐿𝐿𝑖𝑖×𝑘𝑘+𝑘𝑘}⋃𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 (3)
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = {𝐿𝐿(𝑛𝑛−1)×𝑘𝑘+1, … , 𝐿𝐿𝑙𝑙} (4)
𝐿𝐿𝐿𝐿𝐿𝐿 𝑘𝑘𝑛𝑛−1 = 𝑘𝑘𝑛𝑛−1 ⋃𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 (5)
𝐿𝐿� = {𝑘𝑘0,𝑘𝑘1, … ,𝑘𝑘𝑛𝑛−1} (6)
The literature adopts two UHC matching algorithms: hash table and fingerprint. The
common feature of both is that the window size is the shortest length of UHC set. The
substring in the window represents the entire pattern. Furthermore, the substring set with
the minimum collision rate is used as the representative set. The selection algorithm of
substrings is as described in Algorithm 1.

Algorithm 1: Selection of Substring
INPUT

OUTPUT

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

UHC set 𝐾𝐾 = {𝑘𝑘1, 𝑘𝑘2, … , 𝑘𝑘𝑚𝑚} with length k ,𝑃𝑃 =
{𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑛𝑛} with length 𝐿𝐿 = {𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑛𝑛}, 𝑘𝑘 <
𝑙𝑙𝑖𝑖 < 2 × 𝑘𝑘
New UHC set 𝐶𝐶̅ = {𝑐𝑐1� , 𝑐𝑐2� , … , 𝑐𝑐𝑚𝑚+𝑛𝑛�������}, hash table H =
{ℎ1, ℎ2, … , ℎ𝑚𝑚+𝑛𝑛}
𝐶𝐶̅ ← ∅,𝐻𝐻 ← ∅, 𝑖𝑖 ← 1, 𝑗𝑗 ← 1;
\\ compute unique ID(ℎ𝑖𝑖) for set K
while 𝑖𝑖 ≤ 𝑚𝑚 do

ℎ𝑖𝑖 ← 𝐹𝐹𝐹𝐹𝑛𝑛𝑐𝑐(𝑘𝑘𝑖𝑖) ;
if ℎ𝑖𝑖 ∈ 𝐻𝐻 then
 𝐶𝐶̅ = 𝐶𝐶̅ ⋃ 𝑘𝑘𝑖𝑖 ,𝐻𝐻 ← 𝐻𝐻⋃ℎ𝑖𝑖;
else

 𝐶𝐶̅ ← ∅,𝐻𝐻 ← ∅, 𝑖𝑖 ← 1;
 Update function or hash space;
end if

end while
\\ compute unique ID(ℎ𝑗𝑗) for set P
𝑃𝑃𝑗𝑗𝑗𝑗 = {𝑝𝑝𝑗𝑗𝑗𝑗 , 𝑝𝑝𝑗𝑗𝑗𝑗+1, … ,𝑝𝑝𝑗𝑗𝑗𝑗+𝑘𝑘+1};
while 𝑗𝑗 ≤ 𝑛𝑛 do

while z ≤ 𝑙𝑙𝑗𝑗 − 𝑘𝑘 + 1 do
 ℎ𝑗𝑗 ← 𝐹𝐹𝐹𝐹𝑛𝑛𝑐𝑐(𝑃𝑃𝑗𝑗𝑗𝑗);
 if ℎ𝑗𝑗 ∈ 𝐻𝐻 then
 𝐶𝐶̅ ← 𝐶𝐶̅ ⋃𝑃𝑃𝑗𝑗𝑗𝑗 ,𝐻𝐻 ← 𝐻𝐻⋃ℎ𝑗𝑗;
 break;
 end if
 𝑧𝑧 ← 𝑧𝑧 + 1;
end while

end while

For example, in Fig. 3, suppose that DKJMEF and D6DFEK are in conflict, D6DFEK will
be replaced by another random substring with different first character. The selection of
substring requires several rounds (1 ≤ r ≤ k) of computation. Accordingly, the process
takes a lot of time. However, it is less significant, as it belongs to the preliminary work
before NIDS runs.

file://compute
file://compute

Skipping Undesired High-Frequency Content to Boost 655

Figure 3: The selection of substring

On the flip side, there are 𝑃𝑃𝑟𝑟 = 𝑃𝑃𝐿𝐿 − 𝑘𝑘 characters left after substring selection, which have
to be processed by AC automaton. 0 ≤ 𝑃𝑃𝑟𝑟 < 𝑘𝑘 , it has little impact on the overall
performance, so it is tolerable.
With regards to matching function, hash table and fingerprint. Hash table is an open hash
table, it only needs to select the corresponding hash number according to length k.
Fingerprint is a polynomial function, the definition is emphasized below.
Definition 1: 𝜑𝜑(𝑝𝑝) is the fingerprint of string p, if and only if 𝜑𝜑(𝑝𝑝) satisfies two conditions:
(1) 𝜑𝜑 is the function of string p or its substring, if two strings or substrings of their
fingerprints are identical, and then their fingerprints are identical.

(2) For any two strings 𝑝𝑝1 ≠ 𝑝𝑝2,𝜌𝜌𝑟𝑟 �𝜑𝜑𝑓𝑓,𝜎𝜎(𝑝𝑝1) = 𝜑𝜑𝑓𝑓,𝜎𝜎(𝑝𝑝2)� ≪ 1 , that said, the probability
that p1 and p2 have the same fingerprint is much less than 1.
Definition 2: for the given string 𝑝𝑝 = 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑚𝑚,σ ∈ δ(𝑁𝑁4), a polynomial fingerprint
function for p is 𝜑𝜑𝑓𝑓,𝜎𝜎(𝑝𝑝) = (∑ 𝑝𝑝𝑖𝑖𝑓𝑓𝑖𝑖 𝑚𝑚𝑞𝑞𝑚𝑚 𝜎𝜎𝑚𝑚

𝑖𝑖=1), 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚,𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝜎𝜎 , where σ is primer
number, 𝐹𝐹𝜎𝜎 = {∀𝑓𝑓𝑖𝑖 ∈ 𝐹𝐹𝜎𝜎|𝑓𝑓𝑖𝑖 = 𝑚𝑚𝑞𝑞𝑚𝑚(ℤ,𝜎𝜎)}.
A polynomial fingerprint has two properties:
(1) Fingerprint 𝜑𝜑(𝑝𝑝1, … ,𝑝𝑝𝑚𝑚,𝑝𝑝𝑚𝑚+1) can be calculated according to
𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑚𝑚,𝜑𝜑(𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑚𝑚) and 𝑝𝑝𝑚𝑚+1.
(2) When 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚,𝜑𝜑(𝑝𝑝1+𝑖𝑖,𝑝𝑝2+𝑖𝑖, … ,𝑝𝑝𝑚𝑚) can be calculated according to
𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑚𝑚,𝜑𝜑(𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑚𝑚) and 𝜑𝜑(𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑖𝑖).
In the actual operation of FAMS, the matching algorithm can be selected according to the
conflict rate test result of different UHC sets.

3.3 Working instance
In order to clarity how FAMS works, we elaborate on the details through an instance.
Assume that the normal pattern set is {E, BE, BD, BCD, JDBC}, the corresponding AC
automaton is shown in Fig. 4 on the left. What’s more, we assume UHC set is {BTAGXUBC,
BCDZLA30TKN, JAVASCRIPT, JASONTK101B}, which is divided into two separate
subsets by the first character, {BTAGXUBC, BCDZLA30TKN} and {JAVASCRIPT,
JASONTK101B}. The window sizes of the two subsets are 8 and 10, respectively. After the
calculation by hash or fingerprint, we get two pattern subsets as UHC sets. In each UHC
set, all patterns have the same length. The generation process of UHC sets is depicted in
Fig. 5. Afterwards, we figure out mapping set {B, J}.

 CMC, vol.63, no.2, pp.649-661, 2020 656

S0

S1

E

S2 S3

S5S4 S6 S7

B J

CDE D

S9

S10

S8

B

C

D

B

J

Standard AC automaton

Mapping set UHC matching set

S11

B

BCDZLA30

BTAGXUBC

JAVASCRIPT

JASONTK101

S0

S6

S0

S0

Figure 4: FAMS working diagram

Figure 5: UHC subsets generation process

As to update state in UHC matching records, a prefix of normal pattern is a suffix of an UHC
string. In Fig. 5, the suffix BC of the second UHC string is a prefix of BCD in normal patterns.
After finishing UHC matching set and mapping set, we move the perspective to standard
AC automaton. The automaton scans from the initial state 𝑠𝑠0, when an input character is in
mapping set, then searching the corresponding UHC subset according to mapping relation.
If not found, automaton keeps scanning, else UHC matching module returns update state
to the automaton. This moment, a judgment is needed to determine whether to jump state.
Judgement condition: Assume current character is pi that is in mapping set, the window
size of the corresponding UHC is k. The scanning at automaton continues to search the
bytes 𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖+1,𝑝𝑝𝑖𝑖+𝑘𝑘−1 one by one, it is paused until reaching such a state with an input byte
𝑝𝑝𝑖𝑖+𝑗𝑗 , whose depth is less than or equal to j.
If the condition is satisfied, the current state jumps to the update state saved in UHC string
𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖+1,𝑝𝑝𝑖𝑖+𝑘𝑘−1.
Everything is ready now, we induce the input JDBCBTAGXUBCDH. The first character is
matched mapping set, but not matched UHC subset. The scan continues until state 𝑠𝑠10.
Then, BTAGXUBC is in UHC subset. Owing to the next character is B, and new current
state is 𝑠𝑠11, whose depth is 5>1 (index of UHC is 1). Since the judgement condition is
unsatisfied, the next character T is entered. By now, current state is 𝑠𝑠0, whose depth is 0<2
(index of UHC is 2), condition establishment. Therefore, the update state 𝑠𝑠6 in UHC subset
is new current state. FAMS skips the rest six characters AGXUBC and continues to scan
DH. Finally, the pattern BCD is matched successfully. The scanning process is presented

Skipping Undesired High-Frequency Content to Boost 657

in Tab. 1 and the characters with underline are skipped.

Table 1: Scanning process for input JDBCBTAGXUBCDH

𝑝𝑝𝑖𝑖 J D B C B T A G X U B C D H
match - - - - - - -
state after 𝑝𝑝𝑖𝑖 𝑠𝑠3 𝑠𝑠7 𝑠𝑠9 𝑠𝑠10 𝑠𝑠11 𝑠𝑠0 - - - - - 𝑠𝑠6 𝑠𝑠8 𝑠𝑠0
depth 1 2 3 4 5 0 - - - - - 2 3 0
index of UHC - - - - 1 2 - - - - - - - -

Next, Algorithm 2 gives the pseudo-code for FAMS scanning process.
Algorithm 2: FAMS SCAN
INPUT
OUTPUT

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

𝑃𝑃 = (𝑝𝑝0, 𝑝𝑝1, … , 𝑝𝑝𝑛𝑛−1)
current state 𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟
s𝑐𝑐𝑐𝑐𝑟𝑟 ← 𝑠𝑠0, 𝑖𝑖 ← 0;
while 𝑖𝑖 < 𝑛𝑛 do

if 𝑝𝑝𝑖𝑖 ∈ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚 then
 𝑤𝑤 = 𝑊𝑊𝑖𝑖𝑛𝑛𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈 , 𝑗𝑗 ← 0
 𝑓𝑓 = 𝐹𝐹𝐹𝐹𝑛𝑛𝑐𝑐(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑖𝑖+1, … , 𝑝𝑝𝑖𝑖+𝑤𝑤−1)
 if 𝑓𝑓 ∈ 𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈 then

 while 𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟 .𝑚𝑚𝐿𝐿𝑝𝑝𝐿𝐿ℎ > 𝑗𝑗 𝑎𝑎𝑛𝑛𝑚𝑚 𝑖𝑖 < 𝑛𝑛 do
 𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟 ← 𝑠𝑠𝑐𝑐𝑎𝑎𝑛𝑛(𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟 , 𝑝𝑝𝑖𝑖);

 𝑖𝑖 ← 𝑖𝑖 + 1, 𝑗𝑗 ← 𝑗𝑗 + 1;
 End while
 i ← i + (w − j);
 𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟 ← 𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈 . 𝑠𝑠𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢;
 else
 𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟 ← 𝑠𝑠𝑐𝑐𝑎𝑎𝑛𝑛(𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟 , 𝑝𝑝𝑖𝑖);
 𝑖𝑖 ← 𝑖𝑖 + 1;

end if
end if

end while

4 Experimental results
In our experiment environment, physical memory is 16 G, network card is a gigabit and
CPU is Intel Core i7. To improve throughput, the platform is driven by zero-copy unlocked
DPDK. Our model runs with 8 threads in parallel.
The number of the normal pattern is 105, which is selected from Snort rules and generated
randomly according to Snort rules. While UHC set is extracted from gateway traffic of
Harbin Institute of Technology. A script is used to extracted duplicate strings and ranks
them. We removed the strings that conflicts with normal pattern set and chose the top 200
as UHC set. A close look at UHC set, it is obvious that HTTP header fields rank top, as
shown in Tab. 2.

 CMC, vol.63, no.2, pp.649-661, 2020 658

Table 2: The top of UHC set
Ranking UHC Ranking UHC

1 text/html 6 text/xml
2 text/plain 7 application/xml
3 image/jpeg 8 gzip
4 image/png 9 Keep-alive
5 Image/jif 10 Mozilla

With regards to induce traffic, we captured five files with the sizes about 943 M, 1.3 G, 2.2
G, 2.8 G, 4.5 G and numbered the files numerically (1-5). To measure the performance of
our proposed FAMS, we recorded the following information for analysis: throughput,
automata node access, UHC node access and memory occupancy. The object of
comparison is the original AC and Birr’s double path. Accordingly, a total of three
programs were deployed.
Throughput: The results of throughput comparison are shown in Fig. 6. The x-coordinate
represents the file number and the y-coordinate represents the average throughput. Our
experiments show promising results that we achieve a throughput gain of 1.3-2.6 times the
original AC and 1.1-1.3 times Barr’s double path method.

Figure 6: Throughput comparison

Memory occupancy: In the three programs above, the order of memory occupancy is
FAMS≈Birr’s>original AC. FAMS has 5 K more memory than the original AC,
accounting for only 0.5% of the total memory of the automaton. Therefore, a small increase
in memory has less impact on performance.
Automata node access: Automata is the bottleneck of system performance, and the frequency
of its node access reflects memory access which directly affects the performance. The fewer
visits, the better performance. The statistics of the number of visits to a node includes two
parts: AC automaton node and UHC node. We run five test files in the experiment. From
Tab. 3, we can see that no matter which file, the result is the same. The original AC is the
most, Birr is the second, and FAMS is the least. Thus, a large number of repetitive strings in

Skipping Undesired High-Frequency Content to Boost 659

the input data are hit in FAMS, resulting in skipping many characters.

Table 3: The top of UHC set

File number 1 2 3 4 5
Original AC 65 892 191 247 389

Birr’s 62 785 181 236 371
FAMS 61 83 178 231 365

UHC node access: Statistical results of UHC nodes are shown in Tab. 4. UHC node access
accounts for 5%-7% of all nodes. The total number of bytes skipped accounts for 7%-8%
of the data. Undoubtedly, it is benefit for performance improvement.

Table 4: Statistics of UHC node access (unit: 𝟏𝟏𝟏𝟏𝟕𝟕)

File number 1 2 3 4 5
UHC statistics 3.5 4.9 13.8 15.7 23.3

5 Conclusion
The current boost traffic poses a challenge to DPI performance, most researchers work on
the optimization of the DPI algorithm itself. However, according to the observation of
traffic content, there is a lot of undesired high-frequency content, which is no needed to
match. In this literature, a fast AC model with skipping (FAMS) is proposed to accelerate
AC automaton by skipping repetitions. Based on the method of Birr’s double path, FAMS
adds mapping set so that UHC set is searched only if the input characters in mapping set.
Another, for a UHC set, UHC algorithm chooses an appropriate one from hash and
fingerprint functions. Unlike simply traversing AC automaton, we try to make sure early
whether skipping is possible, if it is, no scanning some characters. Finally, our experiments
show that FAMS is beneficial to the improvement of DPI performance.

Acknowledgement: This work was supported by National Natural Science Foundation of
China under Grant (Nos. 61771166, 61771166, 61402137) and National Key Research &
Development Plan of China under Grant 2016QY05X1000.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Afek, Y.; Bremler-Barr, A.; Harchol, Y.; Hay, D.; Koral, Y. (2016): Making DPI
engines resilient to algorithmic complexity attacks. IEEE/ACM Transactions on
Networking, vol. 24, no. 6, pp. 3262-3275.
Aho, A. V.; Corasick, M. J. (1975): Efficient string matching: an aid to bibliographic
search. Communications of the ACM, vol. 18, no. 6, pp. 333-340.
Allauzen, C.; Crochemore, M.; Raffinot, M. (1999): The Factor oracle: a new structure

 CMC, vol.63, no.2, pp.649-661, 2020 660

for pattern matching. International Conference on Current Trends in Theory and Practice
of Computer Science, pp. 295-310.
Bremler-Barr, A.; David, S. T.; Hay, D.; Koral, Y. (2012): Decompressionfree
inspection: Dpi for shared dictionary compression over HTTP. IEEE International
Conference on Computer Communications, vol. 131, no. 5, pp. 1987-1995.
Bremler-Barr, A.; David, S. T.; Koral, Y.; Hay, D. (2015): Leveraging traffic repetitions
for high-speed deep packet inspection. IEEE International Conference on Computer
Communications.
Chen, C. C.; Wang, S. D. (2015): A hybrid multiple-character transition finite-automaton
for string matching engine. Microprocessors & Microsystems, vol. 39, no. 2, pp. 122-134.
Chen, C. C.; Wang, S. D. (2013): An efficient multicharacter transition string-matching
engine based on the aho-corasick algorithm. ACM Transactions on Architecture & Code
Optimization, vol. 10, no. 4, pp. 1-22.
Kumar, S.; Dharmapurikar, S.; Fang, Y.; Crowley, P.; Turner, J. (2006): An
algorithms to accelerate multiple regular expressions matching for deep packet inspection.
Acm Sigcomm Computer Communication Review, vol. 36, no. 4, pp. 339-350.
Liu, P.; Liu, Y. B.; Tan, J. L. (2005): A partition-based efficient algorithm for large scale
multiple-strings matching. Computers, International Symposium on String Processing and
Information Retrieval, pp. 399-404.
Liu, L. K.; Zhang, H. L.; Yu, X. Z.; Xin, Y.; Shafiq, M. et al. (2018): An efficient
security system for mobile data monitoring. Wireless Communications and Mobile
Computing, vol. 2018, pp. 1-10.
Liu, L. K.; Shi, J. T.; Zhang, H. L.; Yu, X. Z. (2018): Tearing down the face of
algorithmic complexity attacks for DPI engines. IEEE International Conference on
Parallel & Distributed Processing with Applications, Ubiquitous Computing &
Communications, Big Data & Cloud Computing, Social Computing & Networking,
Sustainable Computing & Communications, pp. 751-758.
Meiners, C. R.; Patel, J.; Norige, E.; Torng, E.; Liu, A. X. (2010): Fast regular
expression matching using small TCAMs for network intrusion detection and prevention
systems. Proceedings of the 19th USENIX Conference on Security.
Nemls, T.; Ahamad, M. (2010): The packet scheduling for deep packet inspection on
multi-core architectures. Proceedings of the 6th ACM/IEEE Symposium on Architectures
for Networking and Communications System, pp. 21-30.
Pao, D.; Lin, W.; Liu, B. (2010): A memory-efficient pipelined implementation of the
aho-corasick string-matching algorithm. IEEE ACM Transactions on Architecture and
Code Optimization, vol. 7, no. 2, pp. 10.
Snort (2019): Snort intrusion detection system. http://www.snort.org.
Tan, G. M.; Liu, P.; Bu, D. B.; Liu, Y. B. (2011): A Revisiting multiple pattern matching
algorithms for multi-core architecture. Journal of Computer Science and Technology, vol.
26, no. 5, pp. 866-874.
Wu, X. N.; Zhang, C. Y.; Zhang, R. L.; Wang, Y. J.; Cui, J. H. (2018): A distributed
intrusion detection model via nondestructive partitioning and balanced allocation for big

http://www.snort.org/

Skipping Undesired High-Frequency Content to Boost 661

data. Computers, Materials & Continua, vol. 56, no. 1, pp. 61-72.
Wu, S.; Manber, U. (1994): A fast algorithm for multi-pattern searching.
http://webglimpse.net/pubs/TR94-17.pdf.
Xing, W.; Pao, D. (2018): Memory-based architecture for multi-character aho-corasick
string matching. IEEE Transactions on Very Large-Scale Integration Systems, vol. 24, no.
99, pp. 1-12.
Yuan, X.; Duan, H.; Cong, W. (2018): Assuring string pattern matching in outsourced
middleboxes. IEEE Transactions on Networking, vol. 26, no. 3, pp. 1362-1375.

	Skipping Undesired High-Frequency Content to Boost DPI Engine
	Likun Liu0F , Jiantao Shi1, *, Xiangzhan Yu1, Hongli Zhang1 and Dongyang Zhan2

	References

