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Abstract:Wavelength-dependent mathematical modelling of the differential energy change
of a photon has been performed inside a proposed hypothetical optical medium. The exis-
tence of this medium demands certain mathematical constraints, which have been derived
in detail. Using reverse modelling, a medium satisfying the derived conditions is proven to
store energy as the photon propagates from the entry to exit point. A single photon with a
given intensity is considered in the analysis and hypothesized to possess a definite non-zero
probability of maintaining its energy and velocity functions analytic inside the proposed
optical medium, despite scattering, absorption, fluorescence, heat generation, and other
nonlinear mechanisms. The energy and velocity functions are thus singly and doubly dif-
ferentiable with respect to wavelength. The solution of the resulting second-order differen-
tial equation in two variables proves that energy storage or energy flotation occurs inside a
medium with a refractive index satisfying the described mathematical constraints. The
minimum-value-normalized refractive index profiles of the modelled optical medium for
transformed wavelengths both inside the medium and for vacuum have been derived.
Mathematical proofs, design equations, and detailed numerical analyses are presented in
the paper.

Keywords: Optical medium modelling, energy storage, multivariable second order
differential equation, numerical analysis,minimumvalue-normalized refractive index profile.

1 Introduction

Optical media can affect many interaction mechanisms of a photon as it travels through
them. In normal optical media, the change in light direction as it passes from one
medium to another is associated with changes in velocity and wavelength, but the energy
of the light remains unchanged throughout different media. For visible light, the velocity
decreases to 0.66 times in linseed oil medium; for pigments such as titanium white, the
corresponding decrease is 0.40 times relative to the speed in vacuum. Semiconducting
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silicon is transparent to low-energy infrared (IR) photons but opaque to photons in the
visible portion of the spectrum. This IR transparency of silicon arises from its covalent
bonds. Gallium arsenide and many paint pigments like titanium white, titanium oxide,
red vermilion, and mercury sulfide have similar wavelength-dependent responses to light
[Akinlami and Ashamu (2013); Seredin, Lenshin, Zolotukhin et al. (2018); Robinson,
Cho and Gellene (2000); Høye and Stell (1982)].

Compton scattering is one of three competing processes occurring in photon-matter
interactions [Mallick (2011); Nieto-Chaupis (2016)]. At energies of a few electron-volts
to a few thousand electron-volts, corresponding to visible light through soft X-rays, a
photon can be completely absorbed as energy that ejects an electron from the host atom,
a process known as the photoelectric effect. High-energy photons of 1.022 MeV and
above can bombard the nucleus, causing the formation of an electron and a positron in
the pair-production process. Coherent or Rayleigh scattering may occur at low photon
energies. A photon may interact with an orbital electron and scatter at a small angle with
no change in energy and no other effects. The probability of photoelectric interactions,
on the other hand, decreases rapidly with increasing photon energy; it is inversely
proportional to the cube of the photon energy. The energy at which interactions change
from predominantly photoelectric to Compton is a function of the atomic number of
the material comprising the medium [Hopersky, Nadolinsky, Novikov et al. (2015);
Powell (1978)].

For visible light, most transparent media have refractive indices between 1 and 2. These
values are measured at the yellow doublet D-line of sodium, which has a wavelength of
589 nm, as is conventionally done [Hecht (2002); Bor, Osvay, Rácz et al. (1990)].
Complex values of refractive indices possess a real component indicating the phase
velocity and an imaginary part indicating attenuation; the two parts are related through
the Kramers-Kronig relations. If the refractive index of a medium varies gradually with
position, the material is defined as a gradient-index or GRIN medium and is described by
gradient index optics [Moore (1980)].

The wavelength dependence of a material’s refractive index is usually quantified by its Abbe
number or its coefficients in empirical formulas such as the Cauchy or Sellmeier equations
[Wei, Murray, Barnes et al. (2018); Donaldson and Caplin (1986)]. The refractive indices
and absorption edges of liquid bromine and iodine have been measured over the
temperature ranges 19-57°C and 114-181°C respectively, and at wavelengths from the
absorption edge (700 nm in bromine and 1100 nm in iodine) to 1800 nm. At 1800 nm,
the indices are 1.604 in bromine at 19°C and 1.934 in iodine at 114°C; both liquids are
therefore strongly dispersive [Donaldson and Caplin (1986)].

Recent research has also demonstrated the existence of materials with negative refractive
indices, which can occur if the permittivity and permeability are both negative. This can
be achieved with periodically constructed metamaterials. A survey of relatively recent
developments in reconfigurable and tunable metamaterial technology can be found [Chen
(2011); Turpin, Bossard, Morgan et al. (2014)]. Unlike natural matter, a metamaterial’s

334 CMES, vol.123, no.1, pp.333-351, 2020



refractive index depends on the properties of the materials composing it and how they are
arranged [Padilla, Basov and Smith (2006); Hindy, Elsageer and Yasseen (2018); Soukoulis,
Linden andWegener (2007)]. The resulting negative refraction, which is a reversal of Snell’s
law, offers the possibility of superlenses and other exotic phenomena. Negative-index
metamaterials or negative-index materials (NIMs) are metamaterials with electromagnetic
(EM) refractive indices that are negative over some frequency range [Shalev (2007);
Engheta and Ziolkowski (2006); Zouhdi, Sihvola and Vinogradov (2008); Shelby, Smith
and Schultz (2001); Pendry (2004); Smith, Padilla, Vier et al. (2000)].

In a work [Veselago (1968)] it has been shown that the opposing directions of EM plane
waves and the flow of energy arose from the individual Maxwell curl equations. In
ordinary optical materials, the curl equation for the electric field shows the ‘right-hand
rule’ for the directions of the electric field E, the magnetic induction B, and wave
propagation, which has the direction of the wave vector k. However, the direction of
energy flow formed by E×H is right-handed only when the permeability is greater than
zero. This means that when the permeability is less than zero, e.g. negative, the direction
of wave propagation is reversed (determined by k) and opposes the direction of energy
flow. Furthermore, the relations of vectors E, H, and k form a ‘left-handed’ system;
Veselago coined the term ‘left-handed (LH) material’ for such situations. He contended
that an LH material has a negative refractive index, basing his argument on the steady-
state solutions of Maxwell’s equations. A study of the reduction of photon group velocity
in free space by measuring a change in arrival time induced by changing the beam’s
transverse spatial structure using time-correlated photon pairs in both a Bessel beam and
a focused Gaussian beam has been mentioned in Giovannini et al. [Giovannini, Romero,
Potoček et al. (2015)].

In this paper, the case of a single photon is considered; the photon conforms to all
probabilities and its continuous travel is analyzed through a proposed hypothetical
medium. During transit, an energy differential with respect to wavelength is assumed to
be present in the medium; its existence is governed by certain mathematical conditions.
This energy differential exists only with the satisfaction of these mathematical conditions,
which requires special properties for parameters like the refractive index, in the optical
medium. The photon, when moved out from a single outlet, possesses a lower energy
than the input photon, with a change in wavelength but the same velocity. The difference
in energy is considered to become stored in the medium under the forced boundary
conditions. For this energy differential to exist at a given light intensity, the probability
for a single photon’s energy and velocity functions, excluding scattering, dispersion,
absorption, or other nonlinear processes, is hypothesized to be analytic, which makes it
singly and doubly differentiable with respect to wavelength.

The paper is arranged into four major sections. After the present introduction to the
proposed approach, in Section 2, the proposed optical medium is physically defined with
a stream of photons entering through a narrow orifice, encountering refraction only at the
first interface. The energy and velocity functions are analytic for a single photon that
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enters the orifice and which is assumed to exit at the other end of the medium. Inside the
medium, the energy and velocity functions are singly and doubly differentiable with
respect to wavelength, i.e., a gradient energy is assumed to exist. The mathematical
constraints necessary for these properties are derived, permitting the development of a
second-order differential equation in two variables. The wavelength shift for the single
photon under consideration is due to refraction alone at the first interface of the inlet and
not due to any other wavelength-shifting mechanism, whereas the proposed medium
introduces a wavelength differential for energy and velocity for the photon travelling
through it. In Section 3, a mathematical solution of the derived second-order differential
equation in two variables is obtained by two proposed substitutions for the wavelength-
dependent energy and velocity of the photon under consideration inside the medium. The
boundary conditions for integration are also derived in this section. The wavelengths in
the solutions are in a transformed domain and are defined as unitless. In addition, the
possible numerical solutions for the proposed solution parameters of the wavelength,
energy, and velocity of the photon are also estimated using computational software
platforms. For the optical medium, the wavelength-energy and wavelength-velocity
relations are derived using the polynomial curve fitting technique and the results are
presented and plotted. In Section 4, the design of the photonic medium using the
derived and estimated parameters is performed in detail. Using the derived results, the
differential of the refractive index of the medium is developed; using vector analysis,
the solution is derived that ultimately necessitates the mathematical condition for the
refractive index of the medium to be existent. Using numerical analysis, the minimum
value-normalized refractive index profile is estimated for transformed wavelengths
inside the medium and also for vacuum wavelengths. The mathematical analysis proves
that such a photonic medium satisfying the derived conditions can produce wavelength-
differential energy accumulation, which in turn causes energy storage or energy
flotation inside the medium. It is assumed in the mathematical derivation that, with a
certain angle of incidence to the normal, the light beam undergoes refraction at the first
boundary. The analysis is with respect to the energy-wavelength differential of a single
photon; despite effects by ionic interactions, the energy and velocity functions remain
continuous and differentiable. A non-zero probability assumption in the derivation for
the abovementioned medium is by all means valid, conforming to the basic law that a
probability of unity can never be assumed for all photons undergoing interactions. In
addition, out of those undergoing ionic interactions, a nonzero probability exists for
their energy and velocity functions to be continuous and differentiable, thus making
those functions for the photon analytic. The hypothesis is that such a proposed medium
that introduces an energy gradient with respect to wavelength in its bulk should satisfy
the mathematical and boundary conditions as shown in the following derivations.
Inside the medium, the energy function and velocity of the photon will be singly and
doubly differentiable with respect to wavelength; therefore, gradients of energy and
velocity for the photon are assumed to exist.
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2 Energy-wavelength and velocity-wavelength derivatives for the photon in the
proposed medium

The light beam comprising photons is assumed to enter the closed optical medium through a
considerably narrow inlet, as illustrated in Fig. 1. With perfectly reflecting inner surfaces
except for the inlet and outlet orifices, from this stream of photons, a single photon by all
means is hypothesized to possess a definite nonzero probability of maintaining
continuous and differentiable velocity and energy functions from the entry point to the
exit, despite ionic interactions or mechanisms of scattering, absorption, fluorescence,
and other nonlinear processes [Singh, Gangwar and Singh (2007); Black, Lin, Cronin
et al. (2002)].

Inside the proposed optical medium, for the photon under consideration, it is assumed that
energy and velocity differentials exist with respect to wavelength. Then rates of change of

energy and velocity exist, that can be denoted by
dE�

d�
and

dc�
d�

respectively in Fig. 1.

The perfectly reflecting inner surfaces eliminates any possibility of photon being
absorbed or escaped through the horizontal walls. The vertical interface boundary of the
optical medium and free space at the exit point of photon is illustrated in an expanded
view with a very small thickness Δx. With a non-zero probability of the photon energy
and velocity functions being continuous throughout the transit, the photon moving out of
the orifice is assumed possess lesser energy compared to that at the entry point, resulting
in the existence of energy differential and velocity differential inside the medium. A
multivariable second order differential equation is derived using these principles for
modeling the optical medium possessing these properties.

2.1 Multivariable second-order differential equation
With reference to Fig. 1, the medium is modelled to be having energy and velocity
differentials inside it for a photon in transit. For that to exist, the quantum mechanical
energy equations should be differentiable with respect to wavelength of the photon
[Klein (2010)]. Additionally, velocity of the photon inside the medium will be a function
of wavelength.

Figure 1: Photon medium with energy differential with respect to wavelength
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Let Eλ and cλ denote the wavelength (λ)-dependent energy and velocity of the photon,
respectively, in the medium; c is the velocity of the photon in vacuum. Let the boundary
conditions be as marked in Fig. 1. For simplicity, denoting energy Eλ as E only and the
velocity cλ of the photon, a function of λ,

c� ¼ f ð�Þ and E ¼ E� ¼ hc�
�

The energy differential with respect to wavelength inside the medium will be:

dE

d�
¼ h

�
dc�
d�

� c�

� �
�2

(1)

dE

d�
¼ h

�

dc�
d�

� E

�
(2)

Or

E ¼ h
dc�
d�

� �
dE

d�
(3)

Differentiating the energy of the photon with respect to the wavelength again inside
the medium and rearranging yields the multivariable second-order differential equation
as follows:

d2E

d�2
þ 2

�

dE

d�
� h

�

d2c�
d�2

¼ 0 (4)

Eq. (4) therefore becomes

d2E

d�2
þ 2

�

dE

d�
� E

c�

d2c�
d�2

¼ 0 (5)

The multivariable second-order differential equation in two variables, which forms the basis
of the modelling of the proposed optical medium, can be made solvable by converting it to a
second-order second-degree differential equation. This is allowed using mathematical
substitutions for energy and velocity, as presented in Section 3.

3 Mathematical solution and numerical analysis

The second-order differential Eq. (5) in two variables is solved by making the following
mathematical substitutions:

E ¼ ea� (6)

c� ¼ ebE (7)
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which in turn becomes

c� ¼ ebe
a�

(8)

The energy and velocity of the photon inside the medium is modelled in such a way that they
conform to standard properties and also render the multivariable second order differential
equation suitable for numerical analysis based solutions. i.e. within the differential energy
medium under consideration, the energy is modelled as a function of the transformed
wavelength λ and another wavelength-dependent parameter α, where α=f(λ), Additionally,
the velocity of the photon within the proposed medium is modelled as another function of
α, β, and λ, where β is modelled as an independent parameter with respect to both α and λ,
which in turn are dependent variables. Eqs. (6) and (7) are proposed mathematical
substitutions needed for transforming Eq. (5) so as to obtain numerical analysis based
solutions. Eq. (8) follows from Eqs. (6) and (7). These mathematical substitutions are made
conformed to standard energy and velocity relations as proved in Appendix A2.

For photons undergoing dispersion, the Sellmeier equation [Sellmeier (1871)] traditionally
characterizes the refractive index-wavelength relation of an optical medium. The dispersion
effects are modelled by considering the oscillating electric fields of the light beam
interacting with the dipoles of the medium. The oscillating dipoles resonate at a specific
wavelength and hence their response is modelled as Lorentz oscillators. The proposed
solution considers the dipole interaction with the field of propagating light via its
conformity to the Sellmeier equation of the medium with the m oscillators under
consideration. The detailed derivation for the relationship of the solution to the Sellmeier
coefficients of the proposed medium is presented in Appendix A1. Denoting λ0, the
wavelength in vacuum, and c, the photon velocity in vacuum, the relation is given by:

X1
p¼0

bp

p!

X1
k¼0

ðf ð�Þ�Þk
k!

 !p

1þ
Xm
i¼1

Ai�0
2

�0
2 � �i

2

 !1
2 � c ¼ 0 (9)

The truncated infinite summation in the first term conforms to the Sellmeier coefficients of
the optical medium.

With α=f(λ) already defined, Eq. (9) considers the field–dipole interaction occurring within
the medium as the photon propagates through it. Any modification that may be introduced in
the original Sellmeier equation is also reflected in the second term of Eq. (9).

Then, from Eq. (6):

dE

d�
¼ eax aþ �

da
d�

� �
(10)
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d2E

d�2
¼ �ea�

d2a
d�2

þ 2ea� þ a�ea� þ a�e2a�
� � da

d�
þ

�2e2a�
da
d�

� �2

þ a2ea�
(11)

With reference to Eq. (5), all dependencies can be considered in the development of a
complete multivariable second-order second-degree differential equation for the photon.
For the velocity solution, neglecting very minute dependencies in the context of the
second-order differential Eq. (5) in energy and velocity, the following is developed:

d2c�
d�2

¼ ab�
da
d�

e a�þbea�ð Þ þ a2be a�þbea�ð Þ (12)

After substitutions and simplification, Eq. (5) becomes:

�ea�
d2a
d�2

þ a�ea� þ a�e2a� þ 2ea� � ab�e2a�
� � da

d�
þ

�2e2a�
da
d�

� �2

þ a2ea� þ 2

�
aea� � a2be2a� ¼ 0

(13)

3.1 Boundary conditions
The boundary conditions for Eq. (13) are derived, based on the physical background
presented in Fig. 1. For the photon constituting the input stream at the inlet of the optical
medium, the wavelength boundaries are λ1 and λ2. This happens because of the existence
of an energy differential in the medium for the photon. Then the following boundary
conditions can be derived for the parameter α, making use of Eq. (6) and the quantum
mechanical energy equivalence.

a1 ¼
ln

hc

�1

� �
�1

¼ 1

�1
lnðhcÞ � ln �1ð Þð Þ (14)

a2 ¼
ln

hc

�2

� �
�2

¼ 1

�2
lnðhcÞ � ln �2ð Þð Þ (15)

3.2 Discussions on initial conditions
The initial conditions of the photon can be assessed in the context of its transit from inlet to
outlet as in Fig. 1. Since the photon is assumed to enter into the inlet from free space, the
initial condition of velocity of the photon will be the velocity in free space, c. It is with
this initial velocity that the photon starts its transit across the optical medium. While
traversing the length across this medium, the initial velocity will undergo change, which
is analysed. For the photon, the initial wavelength value is assumed to be λ1, which
corresponds to its initial energy. The optical medium is possessing energy differential
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with respect to wavelength and consequently this initial energy will be lowered as the
photon travels across the medium.

3.3 Function-transformed wavelength domain
The proposed solution defines and also generates a set of wavelengths in a function-
transformed mode, which are hence defined as unitless in the analysis. The transform
function for energy equivalence is derived in Appendix A2, as:

Tð�Þ ¼ �
e a��bea�ð Þ

h
(16)

The system energy in a real experimental set up is correlated to quantum mechanical
expressions by deriving the transform function as shown in Appendix A2. The
transformed wavelengths in the analysis which are unitless can be mapped back to unit-
based real wavelengths by using standard photon energy equations and applying an
energy equivalence condition for the two wavelength domains. The analysis and solution
of the multivariable differential equation are rendered more suitable in the transformed
domain which always possesses equivalence to the real wavelength domain by the
presence of the derived transform function. The numerical solutions derived in Section
3.4 belong to this transformed unitless wavelength domain and are used for further analysis.

3.4 Numerical solutions
The approximate solutions for α and λ in the second-order second-degree differential
Eq. (13) are estimated by numerical analysis using MATLAB® for different values of β.
The boundary conditions are specified in Eqs. (14) and (15); however, the complex
nature of Eq. (13) does not yield implicit or explicit solutions, thus requiring numerical
integration. Reliability in the numerical solutions is ensured by performing the
integration operation using MATLAB® toolbox which makes use of the adaptive
Simpson quadrature technique. This is a robust procedure in which the interval is divided
into subintervals and the quadrature rule is used in each subinterval to compute the
integral [Lyness (1969); Bernsten, Espelid and Sørevik (1991)]. The subdivision of
intervals is determined recursively using an error estimate.

After estimating α and λ, using Eqs. (6) and (7), the energy and velocity values of the photon
are computed. The results are presented in Tab. 1.

The λ-cλ relation is estimated by polynomial curve fitting. The estimation yields a sixth-
degree polynomial as in Eq. (17):

c� ¼ �0:5015� 1012�6 þ 2:3191� 1012�5 � 4:4088� 1012�4þ
4:4054� 1012�3 � 2:4376� 1012�2 þ 0:7075� 1012�� 0:0841

(17)

Similarly, the λ–E relation of the photon in the medium is governed by the sixth-degree
polynomial as:
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E ¼ 0:4026� 105�6 � 1:9041� 105�5 þ 3:7040� 105�4�
3:7875�3 þ 2:1438�2 � 0:6359�þ 0:0771

(18)

The plots of the two polynomials in Eqs. (17) and (18) for λ in the interval (0, 1.1) are shown
in Figs. 2 and 3, respectively. The estimated photon velocities are plotted in Fig. 2 which are
spread over a nonlinear curve. The lowest order nonlinear curve that fits closest these
estimated values is found to be a sixth degree polynomial, which is plotted over the
spread values to show the fit. Similarly, in Fig. 3, the estimated photon energies are
plotted which are having a nonlinear distribution. The lowest order nonlinear curve that
fits closest these estimated energy values is found again to be a sixth degree polynomial,
which is plotted over the distributed values to show the fit. Thus the estimated values for
both velocity and energy of the photon fit sixth-degree polynomials as derived for the
two cases. Eq. (17) denotes this sixth degree polynomial for velocity and Eq. (18)
represents the sixth degree polynomial fit for energy. In the velocity-wavelength and
energy-wavelength profiles shown, the wavelengths, velocity, and consequently energy
are in transformed unitless domains that can be mapped to real unit-based parameters in a
design-based implementation setup.

4 Photonic medium modelling from mathematical solution

The refractive index for a common optical medium can be considered as the factor by which
the velocity and wavelength of the radiation are reduced with respect to their vacuum values
and hence modified as v=c/n, where c is the speed in vacuum, v is that in the medium, and
n is the refractive index. Similarly, the wavelength in that medium is λ=λ0/n, where λ0
is the wavelength in vacuum. This implies that, in a common optical medium, the

Table 1: Numerical analysis-based solutions for the second-order second-degree
differential equation

β α λ E cλ
1 -0.405 0.484 0.822 2.28

2 1.43 0.75 2.93 3.51×107

3 1.03 1.01 2.83 4.8×103

4 0.89 0.964 2.35 1.2×104

5 0.79 0.93 2.08 3.3×104

6 0.72 0.90 1.92 1×105

7 0.66 0.87 1.76 2.24×105

8 0.62 0.86 1.70 8.1×105

9 0.58 0.85 1.64 2.60×106

10 0.55 0.84 1.58 7.3×106
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frequency (f =v/λ) of the wave is not affected by the refractive index; therefore, the energy
(E=hf) of the photon is not affected by the refraction or the refractive index of the medium.

However, the proposed photonic medium that stores energy, thereby possessing energy-
wavelength and velocity-wavelength differentials, can be modelled using the obtained
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Figure 2: The estimated λ-cλ sixth-degree polynomial. The wavelengths and velocity are in
transformed unitless domains but can be mapped back to real parameters
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Figure 3: The estimated λ-E sixth-degree polynomial. The wavelengths and energy are in
transformed unitless domains but can be mapped back to real parameters
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mathematical results. As already hypothesized in Section 2, a single photon is considered in
the analysis which by all means possesses a definite nonzero probability of maintaining
continuous and differentiable energy and velocity functions from the entry point to the
exit. Thus, the medium can be designed as a multi-layered structure such that at any
point inside it, the derivative or slope of the wavelength-velocity profile at that point
matches that of the designed profile shown in Fig. 2. In analyzing the refractive index
differential with respect to wavelength for the medium:

n ¼ c

c�
¼ �0

�
(19)

dn

d�
¼ � c

c�2
dc�
d�

¼ ��0

�2
(20)

dn

d�
¼ � n

c�

dc�
d�

¼ ��0

�2
(21)

Substituting from Eq. (17) gives the differential as:

dn

d�
¼ �n

c�

� �
ð�3:01� 1012�5 � 11:60� 1012�4 þ 17:6� 1012�3�

413:22� 1012�2 þ 24:88� 1012�� 0:7075� 1012Þ
(22)

Again with reference to Eq. (17) and using vector notations, let the vectors be defined as:

p ¼ 3:01 11:60 � 17:60 413:22 � 24:88 þ 0:7075ð Þ

q ¼ �5 �4 �3 �2 � 1
� �

r ¼ �0:5015 2:3191 � 4:4088 4:4054 � 2:4376 0:7075 � 0:0841ð Þ
s is the modified q vector of seven elements with the extra first element as the sixth power of
wavelength while so is the s-vector with the photon vacuum wavelengths. In addition,

u ¼ n�6 n�5 n�4 n�3 n�2 n�1 1
� �

Then Eq. (22) becomes

dn

n
¼ pqT

rsT
d� (23)

Integrating both sides of Eq. (23) to obtain the refractive index dependence on wavelength
for the medium and considering the boundary conditions will yield neither implicit nor
explicit solutions. Therefore, numerical integration is performed using MATLAB® and
the adaptive quadrature technique. The approximate solutions for Eq. (23) are estimated
as the dot product as follows:
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lnðnÞ ¼ ln
1

1018m � s

� �
(24)

This gives the Refractive Index profile with respect to wavelengths in the designed
medium as

n ¼ 1

1018m � s (25)

where the vector

m ¼ 5:132 � 23:745 45:146 � 45:111 24:961 � 7:244 8:611� 10�13
� �

With reference to the wavelengths in vacuum λ0, Eq. (25) is modified to the Hadamard
product as:

n ¼ 1

1018mðu � soÞT
(26)

Eq. (25) corresponds to the refractive index profile of the proposed medium for the energy–
wavelength differential to exist as the photon propagates through it. The minimum value-
normalized refractive index profiles for the medium with respect to λ and for the vacuum
wavelength λ0 are estimated by numerical analysis and the results are presented in Tab. 2.
As stated in Section 3.2, the numerical solutions of wavelength belong to the transformed
unitless domain, rather than being real wavelengths, but they can be mapped back to
unit-based real wavelengths in practical designs by using photon energy relations.

4.1 Existence of solutions
The solutions of the numerical analysis indicate the mathematical constraints to be satisfied
for the optical medium to possess an energy differential for a photon. Possible solutions of
negative and complex values of normalized refractive indices indicate the prospect of

Table 2: Minimum value-normalized refractive index (n) profiles for the proposed optical
medium

Unitless transformed
domain wavelengths

Normalized n with
respect to Min value

Possible solution set for normalized n
with respect to min. value for vacuum
wavelength-based analysis

1 -7.4127 1.0323+j0.5548

0.1 -7.4689 1.0323-j0.5548

0.01 -7.7051 1.1178+j1.7880

0.001 -46.691 1.1178-j1.7880

0.0001 1.00 1.00
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metamaterials in the physical design of the medium, inside which energy differential exists
for a photon. The solutions that yielded using numerical analysis act as pointers towards the
existence of composite materials that can constitute the proposed optical medium with
differential energy storage. Design and implementation of the proposed optical medium
can go a long way in the development of photon based optical energy storage structures
or cells. If the challenges of exact physical design and optimization can be overcome,
these non-conventional energy storage units find numerous applications in practical
scenarios.

5 Conclusions

Mathematical modelling of an optical medium possessing the property of energy storage by
the existence of differential energy and velocity for a photon of light with respect to
wavelength is carried out in this paper. Inside the medium, a nonzero probability is
assumed for a single photon to maintain analytic velocity and energy functions despite
ion interactions, absorption, scattering, and other nonlinear mechanisms. This assumption
makes the photon energy and velocity functions singly and doubly differentiable with
respect to wavelength; in other words, a gradient energy with respect to wavelength is
assumed to exist. Such an optical medium exists only when certain mathematical
constraints are satisfied, especially for the refractive index, which are analyzed in the
paper. A multivariable second-order differential equation is derived whose mathematical
solutions are developed using two proposed transformations for energy and velocity.
Using numerical analysis, specific solutions are estimated for different modelling
parameters. The solution of the derived second-order second-degree differential equation
proves that energy storage or flotation occurs inside the medium if it is designed as per
the mathematical constraints. The minimum value-normalized refractive index profiles of
the proposed optical medium for the transformed wavelengths both inside the medium
and for vacuum wavelengths have been derived. The future prospect of the proposed
model includes physical implementation by suitable design of optical materials including
metamaterials, thereby resulting in the development of energy storage units or cells in a
practical scenario.
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Appendices

A1. Relation of the proposed solution to Sellmeier equation
The Sellmeier equation [Sellmeier (1871)] is an empirical relationship between the
refractive index and wavelength for an optical medium and can be used to analyze the
dispersion of light in that medium. The oscillating dipoles of the medium resonate at a
specific frequency and wavelength; thus, the dielectric response is modelled as one or
more Lorentz oscillators. For m oscillators, the Sellmeier equation may be written as:

n2 ¼ 1þ
Xm
i¼1

Ai�0
2

�0
2 � �i

2 (A1)

where n is the refractive index of the material, λ0 is the vacuum wavelength, and λi are the
wavelengths associated with the corresponding relaxation frequencies.

Using the defined mathematical substitutions: E =eαλ and cλ=e
βE inside the differential

energy medium under consideration, the energy is modelled as a function of the
wavelength λ and another wavelength-dependent parameter α, where α = f(λ).

Additionally, the velocity of the photon inside the proposed medium is modelled as another
function of α, β, and λ, where β is modelled as an independent parameter with respect to both
α and λ.

Analyzing the function as a Taylor series expansion:

E ¼ ef ð�Þ� ¼
X1
k¼0

ðf ð�Þ�Þk
k!

(A2)

and

c� ¼ ebE ¼
X1
p¼0

bp

p!

X1
k¼0

ðf ð�Þ�Þk
k!

 !p

(A3)

The photon velocity inside the medium, defined with respect to the refractive index,
manifests itself from the Sellmeier equation as:

c2

c�2
¼ 1þ

Xm
i¼1

Ai�0
2

�0
2 � �i

2 (A4)
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c� ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þPm

i¼1

Ai�0
2

�0
2 � �i

2

� �s ¼
X1
p¼0

bp

p!

X1
k¼0

ðf ð�Þ�Þk
k!

 !p

(A5)

Or,

X1
p¼0

bp

p!

X1
k¼0

ðf ð�Þ�Þk
k!

 !p

1þ
Xm
i¼1

Ai�0
2

�0
2 � �i

2

 !1
2 � c ¼ 0 (A6)

The infinite summation in the first term is truncated, conforming to the Sellmeier coefficients.

The proposed solution parameters should satisfy the above relation, as in (A6) to conform to the
Sellmeier equation or the Sellmeier coefficients of the proposed hypothetical optical medium. It
considers the light-dipole interactions while the light propagates inside the medium.

A2. Derivation of transform function for energy equivalence
From Section 3, the proposed energy and wavelength dependent velocity inside the medium
are E = eαλ and cλ = eβE. For obtaining energy equivalence, for the photon,

ea� ¼ hebE

�
Tð�Þ (A7)

where T(λ) is the transform function applied for energy equivalence in the wavelength
domain of the solution obtained. Solving,

Tð�Þ ¼ �
ea�

hebea�
(A8)

On simplification, the transform function is derived as:

Tð�Þ ¼ �
e a��bea�ð Þ

h
(A9)

Evaluating typically for a four-decimal-place nonzero approximation using numerical
solutions from Tab. 1 in Section 3.4 as follows:

For vector ~b ¼ ½ 1 2 3 4 5 �, the transform function value vector is estimated as:

~Tð�Þ ¼ 1

h
½ 0:1749 0:0063 0:0006 0:0002 0:0001 �
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Estimations can be extended to higher-decimal-place nonzero approximations considering
the constraint of computational complexity.

Section organization

The various sections of the manuscript are organized as follows: Section 1 is an introduction
to different photon interaction mechanisms in an optical medium and the studies carried out
in the field. In addition, an overview of metamaterials along with an introduction to the
proposed modelling is presented. In Section 2, a multivariable second degree differential
equation is derived for photon propagating in the proposed optical medium. For solving,
this differential equation is being transformed to a second degree second order
differential equation using two proposed mathematical substitutions. After deriving the
boundary conditions, numerical analysis-based solutions have been estimated. The
photonic medium modeling has been carried out in Section 4. Section 5 is a conclusion
of the work presented, followed by acknowledgement and declaration of conflicts of
interest. In the reference section, the various citations utilized in the work are shown.
Finally, in the Appendices section, the relation of the proposed solution to Sellmeier
equation is derived in A1 and the derivation of transform function for energy equivalence
is presented in A2.
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