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Abstract: It is very difficult to know the exact boundaries of the variable domain for 
problems with small sample size, and the traditional convex set model is no longer 
applicable. In view of this, a novel reliability model was proposed on the basis of the 
fuzzy convex set (FCS) model. This new reliability model can account for different 
relations between the structural failure region and variable domain. Key computational 
algorithms were studied in detail. First, the optimization strategy for robust reliability is 
improved. Second, Monte Carlo algorithms (i.e., uniform sampling method) for 
hyper-ellipsoidal convex sets were studied in detail, and errors in previous reports were 
corrected. Finally, the Gauss-Legendre integral algorithm was used for calculation of the 
integral reliability index. Three numerical examples are presented here to illustrate the 
rationality and feasibility of the proposed model and its corresponding algorithms. 
 
Keywords: Structural reliability, non-probabilistic, fuzzy convex set, robust reliability, 
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1 Introduction 
Engineering of practical structures involves many uncertain factors. Identifying, 
measuring, and controlling these uncertainties are very important for ensuring the 
reliability and comprehensive performance of the engineered structures. The traditional 
method of addressing uncertainties is based on probability theory, and its development is 
very mature. However, probability models depend on a large amount of objective 
statistical data, which are used to determine the appropriate probability density function 
(PDF). In practical engineering, statistical data are often insufficient due to limitations of 
experimental conditions and costs. In addition, some parameters, e.g., geometries, do not 
exhibit any randomness, and their uncertainties stem from measurement or subjective 
understanding of people. This is the so-called unascertained type of uncertainty [Liu, Wu 
and Wang (1997)]. In summary, probability theory has inherent limitations for problems 
with small sample size. 
To overcome the limitations of probabilistic methods, Ben-Haim et al. [Ben-Haim and 
Elishakoff (1990)] opened a new way to deal with structural uncertainty using a 
non-probabilistic convex set model, which does not require a large amount of statistical 
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data. Ben-Haim first proposed using a non-probabilistic concept for structural reliability 
[Ben-Haim (1994)] and subsequently presented a new index of non-probabilistic 
reliability [Ben-Haim (1995)]. Elishakoff [Elishakoff (1995)] later presented another 
reliability index based on the interval safety factor. Guo et al. [Guo, Lu and Feng (2001)] 
presented a non-probabilistic reliability model based on interval analysis and a state 
function describing the structural limit, and this reliability index is an infinite norm. In 
recent years, robust reliability theory based on convex set uncertainties has been 
extensively studied [Ni, Jiang and Han (2016); Yang, Zhang, Meng et al. (2017); Gou, Li, 
Luo et al. (2016); Liu, Yu, Li et al. (2016); Yi, Shi, Dhillon et al. (2016); Chen, Fan and 
Bian (2017)]. Wang et al. [Wang, Wang, Su et al. (2017)] studied the time-dependent 
non-probabilistic reliability problem for structures with fatigue cracks. There are many 
studies on non-probabilistic reliability-based optimization problems for engineering 
design [Meng, Hu and Zhou (2018); Meng, Zhou, Li et al. (2016); Wang, Fan and Hu 
(2018); Chen, Wang, Qiu et al. (2018); Hao, Wang, Liu et al. (2017); Zheng, Luo, Jiang et 
al. (2018); Saad, Chateauneuf and Raphael (2018)]. However, robust reliability theories 
are no longer applicable when the variable domain interferes with the structural failure 
region. Many scholars have studied the reliability problem in this case. Wang et al. [Wang, 
Qiu and Wu (2007)] proposed a non-probabilistic reliability model based on interval 
interference, and this reliability index represents the volume ratio of the safety domain to 
the entire variable domain. Zhou et al. [Zhou, An and An (2009)] successfully applied the 
volume ratio-based reliability model to reliability analysis of supercavitating bodies. Qiao 
et al. [Qiao, Qiu and Kong (2009)] further studied volume ratio-based reliability based on 
a hyper-ellipsoidal convex set model. Wang et al. [Wang, Wang, Wang et al. (2016)] 
studied the computational method of non-probabilistic reliability for linear structural 
systems. There are many other aspects of these topics. For example, Wang et al. [Wang, 
Zhou, Gao et al. (2018)] studied non-probabilistic sensitivity analysis and its application 
in optimization of aeronautical hydraulic pipelines. Fang et al. [Fang, Su, Xiao et al. 
(2017)] studied the non-probabilistic reliability problem for structures with an implicit 
performance function. Zhang et al. [Zhang, Jiang and Fang (2016)] and Khairul et al. 
[Khairul, Norhisham and Hong (2017)] applied non-probabilistic reliability theories to 
several practical engineering problems. 
All the aforementioned non-probabilistic reliability methods are based on interval or 
hyper-ellipsoidal models, which are so-called rigid convex set models. However, when 
the sample size is very small, it is difficult to know the exact boundary of the variable 
domain. The robust reliability and volume ratio-based reliability methods cannot take into 
account all cases where the variable domain intersects with or is separated from the 
failure region, thus these methods do not have universal applicability in engineering. Sun 
et al. [Sun, Yang and Chen (2018)] proposed a new uncertainty model named the fuzzy 
convex set (FCS) model. The results presented in this paper stem from this uncertainty 
model. FCS has the following features: (1) the FCS model is used to establish 
non-probabilistic reliability model to overcome the limitations of traditional rigid convex 
models; (2) the new reliability model can take into account all kinds of location 
relationships between the failure region and the variable domain; the index is continuous, 
comparable, and clear in its physical meaning; (3) the location of the robust reliability 
index is discussed, and a previous conclusion is corrected. Then, an improved 
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optimization algorithm for a robust reliability index is proposed. The uniform sampling 
method for a hyper-ellipsoidal convex set is prepared, which revises the method in 
previous research reports and lays the foundation for application of volume ratio-based 
reliability theory. Finally, we present the numerical integration method for solving 
FCS-based reliability problems. All key algorithms of this new model will be presented. 

2 The comprehensive structural non-probabilistic reliability model 
Assume the structural limit state equation is 

( ) ( )1 2, , , 0nM G G x x x= = =x                                           (1) 

where x=(x1, x2,…, xn) is the uncertain variable vector. The surface G(x)=0 divides the 
variable space into two parts: the failure region Ωf and the safe region Ωs. 

Assume the multiple FCS of the structural parameters is ( , , )U  xθ φ . According to Cor.2 

in Sun et al. [Sun, Yang and Chen (2018)], the cut set of ( , , )U  xθ φ  under any level is 
certainly a convex set, and the following equation can be obtained: 
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θ . Thus, the cut FCSs are completely 

correlated with the cut sets of the fuzzy extending parameters. 
Robust reliability based on the FCS model is a fuzzy number. Assume its possibility 
distribution is ( )xηπ



. Corresponding to the λ-level cut set , the 
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If ( ) 1η λ ≤ , the convex set ( )( )1 , ,U π λ−


uθ φ  interferes with the failure region Ωf. In 

this case, we can define the non-probabilistic reliability index as 
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Then, the comprehensive index for non-probabilistic reliability is defined as 
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The reliability index defined above is based on the ordinary convex set model. Even if the 
nominal value point of the convex set is located in the failure region, the index is still 
valid. Moreover, continuity of the reliability index is guaranteed for all real numbers. The 
integral reliability index based on FCS is  

( ) ( )
1 1 1

0 0
d dR κκ λ λ π λ λ−′ = =∫ ∫ 

                                             (6) 

When the nominal value point of the convex set is located in the failure region, and the 
convex set interferes with the safe region, the robust reliability index is less than 0, but 
the comprehensive reliability index in Eq. (5) is greater than 0. Thus, the robust reliability 
model cannot reasonably reflect the structural reliability in this case. This case is 
illustrated in Fig. 1. 

Failure region

Safe region

G(x1,x2)=0

1( ( ), , )U θπ λ−


φ u

x1

x2

 
Figure 1: The case where η(λ)<0 and κ(λ)>0 

Regarding the reliability problem shown in Fig.1, the robust reliability degree is η(λ)<0, 
but the comprehensive reliability index is κ(λ)>0. Although η(λ)<0 according to Fig. 1, 
the shaded failure region is far smaller than the safety region. Therefore, the 
comprehensive reliability model can more rationally measure the interference level 
between the failure region and the variable domain. Furthermore, the proposed integral 
reliability index can account for uncertainties in the structural parameters and the 
inaccuracy of the ordinary convex set model. Thus, this index is a more rational and 
comprehensive structural reliability model for problems with small sample size. 

3 Key algorithms in the proposed reliability model 
3.1 Normalization of the multiple convex set 
The non-probabilistic reliability under any-level cut set can be obtained by spreading the 
original convex set or the interference between the failure region and the original convex 
set. However, it is often impractical to use the original convex set directly, as the 
designed algorithm has many difficulties. Thus, we first need to normalize the original 
convex set model. 
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Let us assume that the multiple convex set model for uncertain parameters includes p 
interval models and m hyper-ellipsoidal models. The interval vector X can be converted 
to a normalized interval variable vector with the following equation: 

[ ]c
1 1, 1,1 p= + ∆   ∈ −X X δ X δ                                               (7) 

where, cX  is the central vector of X, 1δ  is the p-dimensional normalized interval 
vector, ∆X  is the deviation vector, and p denotes the dimensionality of the interval 
variable vector. 
Let us assume that the i-th hyper-ellipsoidal model can be expressed by 

( ) ( ) ( ){ }T0 0 2, : , 1,2, ,i i i i i i i i i i i i mθ θ∈ = − − ≤  = X E X X X X Ω X X                (8) 

Let us perform an eigenvalue decomposition for the positive definite matrix : 
T T,i i i i i i i=    =Ω Q D Q Q Q I                                                  (9) 

where Di is a diagonal matrix and Ii is an identity matrix. Let us introduce the vector 

( ) 1/21i i i i iθ=u D Q X                                                     (10) 

According to Eq. (8), we can obtain 

( ) ( ){ }T0 0: 1 , 1,2, ,i i i i i i i m∈ − − ≤  = u u u u u u                                (11) 

or 

{ }T: 1 , 1,2, ,i i i i i m∈ ∆ ∆ ≤ =Δ Δ u u u u                                       (12) 

The original hyper-ellipsoidal convex set has been converted to a unit hyper-sphere 
through the above conversion. According to Eq. (10), we can obtain 

( )T 1/2 T 1/2 0
i i i i i i i i i iθ θ− −= = ∆ +X Q D u Q D u u                                     (13) 

After substitution of Eqs. (7) and (13) into Eq. (1), we can obtain the following 
normalized limit state function: 

( )1 1 2, , , , 0mM G= ′ ∆ ∆ ∆ =δ u u u                                          (14) 

To make the expression more convenient, the normalized limit state function will be 
written as 

( ) ( ) ( )1 2 1 2, , , , , , 0n kM G G Gδ δ δ= ′ = ′ = ′ ∆ ∆ ∆ = δ u u u                       (15) 

where n is the total number of dimensions in the non-deterministic variable space, and 

i∆u  is the normalized variable vector in the i-th submodel. 

3.2 Optimization algorithm for robust reliability 
3.2.1 Discussion of the robust reliability index position 
Jiang et al. [Jiang and Chen (2007)] has pointed out that the robust reliability index under 
the interval model can only be located at one of the intersection points between the 
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ultra-rays (passing through the origin and the vertices of the normalized interval set) and 
the normalized failure surface, and a detailed proof was presented. Some applications 
related to this conclusion have been reported [Zhou, An and Jia (2011)]. 
However, the proof was not rigorous and the conclusion was somewhat biased. In order 
to save space, this proof will not be discussed here in detail, but the problem of the 
conclusion will be illustrated with a counter-example. 
A 2-dimensional case is shown in Fig. 2, where the limit state surface denoted by M1 
monotonically decreases in the 2-dimensional space. The robust reliability index is indeed 
located at an intersection point. However, the robust reliability for M2 is not located on the 
ultra-rays passing through the origin and the vertices of the interval sets. In fact, one can 
prove that the conclusion in Jiang et al. [Jiang and Chen (2007)] is correct if the normalized 
limit state surface is monotonic in the normalized interval variable space. However, when 
the limit state surface is not monotonic, this conclusion is not always true. 

δ1

δ2

-1 10

M1M2

 
Figure 2: Location of the interval robust reliability index 

When the limit state surface is monotonic, the conclusion can be proven as follows: 
Proof: Assume that the n-dimensional normalized limit state surface M=G(δ1,δ2,…,δn)=0 
is a monotonic surface, and the robust reliability index point is ( )1 2, , , nδ δ δ′ = ′ ′ ′δ . This 
conclusion will be proven by contradiction. 
Assume the relation 1 2 nδ δ δ′ = ′ = = ′ does not stand, and there is a relation

{ }1 21
max ii n

δ δ δ
∞ ≤ ≤

′ = ′ = ′ > ′δ . Because the surface M=0 is monotonic, any two 

dimensions of this surface must be monotonic. 
Case 1: Assume that 1δ  monotonically increases with 2δ  at the point 

( )1 2, , , nδ δ δ′ = ′ ′ ′δ . Then, 20 ε δ∀ < < ′ , let ( )( )2 2 2sgnδ δ δ ε″ = ′ ′ −  and assume the 

point ( )1 2 3, , , nδ δ δ δ″ = ″ ″ ′, ′δ  is located on the normalized limit state surface G(δ)=0. 
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We can obtain 1 1δ δ″ < ′ , followed by 
∞ ∞

″ < ′δ δ . Thus, it is impossible for ′δ  to be 
the minimum infinite norm point, i.e., ′δ  must not be the point of robust reliability. 

Case 2: Assume that 1δ  monotonically decreases with 2δ . Then, 

( )1 20 ε δ δ∀ < < ′ − ′ . Let ( )( )2 2 2sgnδ δ δ ε″ = ′ ′ +  and assume that the point 

( )1 2 3, , , nδ δ δ δ″ = ″ ″ ′, ′δ  is located on the normalized limit state surface G(δ)=0. We can 

obtain 1 1δ δ″ < ′  and ( )2 2 1δ δ ε δ″ = ′ + < ′ , followed by 
∞ ∞

″ < ′δ δ , i.e., ′δ  must 
not be the minimum infinite norm point. In other words, it must not be the location of the 
robust reliability index. 
In summary, ( )1 2, , , nδ δ δ′ = ′ ′ ′δ  must not be the location of the robust reliability index. 

Thus, 1 2 nδ δ δ′ = ′ = = ′  must be true. This concludes the proof. 

When the uncertain variables are described by a hyper-ellipsoidal model, the model can 
be converted into a unit hyper-sphere. In this hyper-sphere space, the robust reliability 
index point will not certainly satisfy the condition 1 2 nδ δ δ′ = ′ = = ′ , regardless of 
whether the limit state surface is monotonic or non-monotonic. As shown in Fig. 3, the 
limit state surface G′(δ)=0 is monotonic in the normalized hyper-sphere space, but the 
components of the robust reliability index point are not equal. 

η

r=1

0 δ1

δ2

( ) 0G′ =δ

1 2 1 2( , ),δ δ δ δ′ ′ ′ ′′ =   ≠δ

 
Figure 3: Location of the ellipsoidal robust reliability index 

According to the above discussion, the following two corollaries can be obtained when 
we use a multiple convex set model to express the variables’ uncertainties: 
(1) When the limit state surface is monotonic in the normalized space, the following 
relation for the robust reliability point holds: 
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                                       (16) 

where 1 2 pδ δ δ′, ′, , ′  are the coordinates of the p normalized interval variables and 
* * *

1 1, , ,p p p mδ δ δ+ + +  are the radii of the m hyper-spheres. 

(2) When the limit state surface is non-monotonic in the normalized space, any one of the 
following relations for the robust reliability index point may not exist: 

1 2

* * *
1 2

* * *
1 2 1 2

p

p p p m

p p p p m

δ δ δ

δ δ δ

δ δ δ δ δ δ
+ + +

+ + +

 ′ = ′ = ′
 = = =


′ = ′ = ′ = = = =





                                  (17) 

Therefore, it is very difficult to reduce the scope of the feasible solution by adding 
constraints when the limit state surface is non-monotonic, or if it is difficult to judge 
whether the surface is monotonic. 

3.2.2 Improved PSO optimization strategy 
In order to calculate the non-probabilistic comprehensive reliability index in Eq. (5), we 
first need to calculate the robust reliability index under the corresponding cut set. 
According to Eq. (3), the physical meaning of η(λ) is the shortest distance measured by 
the uncertainty level parameter χ from the centric point x  of the convex set model 

( )( )1 , ,U χπ λ−


xθ φ  to the failure surface G(x)=0. In the normalized variable space, η(λ) 

can be obtained from the following constrained optimization problem: 

( ) ( ) ( )
( ) ( )

( )

sgn

min

s.t. 0

G

G

η λ η λ

η λ ρ

 =  ′   =  


   ′ =

0 

δ
δ

δ

                                              (18) 

where ρ(δ) is the distance from any point δ to the origin derived from the normalized 
convex set model of the multiple convex set ( )( )1 , ,U χπ λ−



xθ φ . The expression for ρ(δ) is 

( ) * T

1,2, ,
max i i ii k

δρ
=

= = ∆ ∆


δ u u                                              (19) 

According to the analysis in Section 3.2.1, it is difficult to reduce the feasible region for 
robust reliability index when the limit state surface is not monotonic. In order to develop 
a universally applicable method, the algorithm for determining the robust reliability index 
based on particle swarm optimization (PSO) is presented here. 
In this paper, the basic theory of PSO will not be thoroughly discussed. PSO is suitable 
for continuous and discrete functions. Li [Li (2012)] presented the following 
unconstrained optimization problem by introducing a penalty term: 

( ) ( ) ( ){ }1 1min C Gη λ ρ Ψ
∈

=  +  ′  Ωδ
δ δ                                        (20) 

* *
1 2 1p p p mδ δ δ δ δ+ +′ = ′ = ′ = = =
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where 

( )
( ) ( )
( ) ( )1

 1       sgn 0 0

 0       sgn 0 0

G G
G

G G
Ψ

  ′  ′ >   ′  =    ′  ′ ≤  

δ
δ

δ
                                 (21) 

sgn (·) is sign function, and C1 is the penalty factor. The penalty factor only needs to be 
greater than 10 because the non-probabilistic reliability index is usually a small number. 
According to Eq. (20), the former constrained optimization problem has been converted to 
an unconstrained optimization problem after introducing the penalty factor. In order to 
improve the performance and efficiency of the PSO algorithm, another penalty factor has 
been introduced into the fitness function. This approach is equivalent to adding a constraint 
on the opposite side of the nominal value of the convex set about the limit state surface. 
The optimization problem remains an unconstrained problem with the following form 

( ) ( ) ( ) ( ){ }1 1 2 2= min ,C G C Gη λ ρ ψ ψ ξ
∈Ω

′ ′+   +     δ
δ δ δ                          (2

2) 
where 

( )
( ) ( )
( ) ( )2

1 sgn 0
,

0 sgn 0

G G
G

G G

ξ
Ψ ξ

ξ

       − −  ′  ′ >   ′  =         − −  ′  ′ ≤  

0

0

δ
δ

δ
                            (23) 

ξ is the parameter controlling the scale of the search field, and C2 is the second penalty 
factor. The principle of the value of C2 is similar to that of C1. C2 can meet the 
requirement when it is slightly larger than or equal to C1. Because the PSO algorithm has 
no requirement for differentiability of the fitness function, introducing the penalty 
function defined in Eq. (23) is feasible and can effectively improve the efficiency of the 
PSO algorithm. This algorithm is shown in Fig. 4.  

( )G ξ′ =δ

( ) 0G′ =δ Im
portant search area

Add the 
second 

penalty termAdd the first 
penalty term

0 δ1

δ2

 
Figure 4: Schematic diagram of the PSO algorithm. 
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The steps of the improved PSO algorithm are as follows: 
Step 1: Determine a particle’s fitness function denoted by f(δ), defined as 

( ) ( ) ( ) ( )1 1 2 2 ,f C G C Gρ Ψ Ψ ξ= +  ′  +  ′    δ δ δ δ          
                     

(24) 

where the values of δ represent the location of the particles, and ρ(δ) is defined in Eq. 
(19). Redefine the problem as a minimization problem. 
Step 2: Determine the search range and maximum velocity. According to the practical 
problem, make a substantial expansion of the normalized multiple convex set model and 
use the smallest external ultra-cuboid L U[ , ]n =I δ δ as the search range. In addition, 
define the maximum velocity as 

( )U L
max 0.2= × −v δ δ                                                   (25) 

Step 3: Determine the parameters of the particle swarm. 
Step 4: Solve by iteration. Randomly select l samples in In as the initial location of the 
particle swarm. Then, the historical best position of the particle (δb), global best position 
(δgb), and neighborhood optimum position (δnb) can be obtained. The position of the next 
step can be determined using update formulas. Then, the values of the fitness function 
can be calculated, and iteration can be carried out until that the termination criteria are 
reached. 
Step 5: Output the absolute value of the non-probabilistic reliability index, i.e., |η(λ)|. 
|η(λ)| is determined from the global optimum position δgb. Denote this as 

; this yield 

( ) ( ) * T
gb gb gb1,2, ,

max i i ii k
δη λ ρ

=
= = = ∆ ∆



δ u u                                    (26) 

The robust reliability index can be obtained from Eq. (18). The improved PSO algorithm 
has better performance and efficiency. The robust reliability under any cut set level can 
be obtained from this algorithm and has desirable accuracy. 

3.3 Monte Carlo algorithm for the hyper-ellipsoidal convex set model 
According to the non-probabilistic comprehensive reliability definition in Eq. (5), the 
volume ratio-based reliability index ( )setR λ  must be calculated when ( ) 1η λ ≤ . 

In view of the difficulty involved in calculating the volumes of the structural safe or 
failure domains in a high dimensional ellipsoidal model and the non-linear complex limit 
state function, Zhou et al. [Zhou, An and Jia (2011)] presented a Monte Carlo simulation 
algorithm. The main procedure is: (1) convert the hyper-ellipsoidal model into 
hyper-sphere; (2) transform the orthogonal coordinates into spherical coordinates; (3) 
uniformly sample within the spherical coordinate intervals and obtain Monte Carlo 
samples for the hyper-sphere. Assume the dimension of the i-th hyper-sphere is ni, its 
spherical coordinate is ( )1 2 1, , , ,

inr θ θ θ − , and all components are intervals, i.e., 

[ ]0,1r ∈ , [ ]1 2~ 0,
inθ θ π− ∈ , [ ]1 0,2

inθ π− ∈ . The orthogonal coordinates and the spherical 

( )TT T T
gb 1gb 2gb gb, , , k= ∆ ∆ ∆δ u u u
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coordinates obey the following relations: 

,1 1

,2 1 2

, 1 1 2 2 1

, 1 2 2 1

cos
sin cos

sin sin sin cos

sin sin sin sin
i i i

i i i
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i n n n

i n n n

u r
u r

u r

u r

θ

θ θ

θ θ θ θ

θ θ θ θ
− − −

− −

∆ =


∆ =
   
∆ =
∆ =







                                   (27) 

Monte Carlo samples in the orthogonal space can be obtained after performing the above 
transformation. However, after performing the transformation, uniform samples within 
the spherical coordinates will no longer follow a uniform distribution in the orthogonal 
space. The samples gradually become sparse as the radius increases. A 2-dimensional unit 
sphere with 900 samples is shown in Fig. 5, and one can find that the samples become 
increasingly sparse as the radius increases. 

0 0.5 1

0.5

1

 
Figure 5: The distribution of samples within a unit circle 

In fact, the cause of this phenomenon is not complicated. The samples are uniformly 
distributed along the radial direction in spherical coordinates. In other words, as long as 
the widths of the rings are equal, the number of samples contained in each ring tend to be 
equal. However, the areas of the rings increase with radius, and the samples gradually 
become sparse. 
In order to obtain a uniform distribution of samples in a unit hyper-sphere in orthogonal 
coordinates, we need to change the sampling density function along the radial direction. 
This problem will be studied in the following section, and we will find that the density 
functions for hyper-spheres with different dimensions are different. 
The volume of an n-dimensional hyper-sphere can be computed from 
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For an n-dimensional sphere, the area of the n-1 dimensional spherical surface is 

12
1

1
2
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n
n

nn n
n n

dV nV RS nC R
ndR R

π −
−

− = = = =
 
 
 

                                     (30) 

Take two hyper ring infinitesimals at radii r1 and r2 with differential widths dr1 and dr2, 
respectively. The volumes of the two infinitesimals are 

1 1
1 1 1 2 2 2d , dn n

n nV nC r dr V nC r dr− −=    =                                         (31) 
In order to obtain uniformly distributed samples in the orthogonal coordinates, the 
number of samples should be proportional to the volumes. In other words, the cumulative 
probabilities of r in dr1 and dr2 should be proportional to the volumes of the hyper rings. 
Denote the probability density function (PDF) along r as f(r). Then we have 

( )
( )

1
1 11 11

1
2 2 2 2 2

ddd
d d d

n
n

n
n

f r rnC r rV
V nC r r f r r

−

−= =                                             (32) 

According to the above equation, we can obtain ( ) 1nf r kr −= . According to the properties 
of the PDF, we have the following if we sample randomly in a unit hyper-sphere: 

                                                         (33) 

from which one can obtain k=n. Therefore, the PDF of r is 

( )
[ ]
[ ]

1 0,1

0 0,1

nnr r
f r
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−    ∈= 
         ∉

                                                 (34) 

Now that we have obtained the PDF of r, generating pseudo-random numbers is another 
problem that must be discussed. There are only some pseudo-random number generators 
for typical probability distributions in common software platforms (e.g., MATLAB). For 

1 1

0
d 1nkr r− =∫
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an atypical probability distribution (e.g., f(r)) or even for any type of probability 
distribution, we need to develop additional algorithms and programs. 
In this study, the required pseudo-random numbers are sampled using the Metropolis 
method. This method is one of the Markov chain Monte Carlo (MCMC) algorithms and 
can be used to draw samples from any complex distribution. The principle of Metropolis 
sampling is to simulate a Markov chain in a state space of random variables whose 
stationary distribution is the target distribution. Assuming an arbitrary distribution f(r), 
the Metropolis sampling algorithm is as follows: 
(1)  At t=0, choose an initial value r0 that meets the requirement of f(r0) ≥0. 
(2)  At the (t+1)th iteration, sample the candidate value rc from the proposal distribution 
q(r|rt), which should be a symmetric distribution, such as a normal distribution or 
uniform distribution. 
(3)  Calculate r=min(f(rc)/f(rt),1). 
(4)  Construct rt+1=rc with probability r, and construct rt+1=rt with probability (1-r). 
The above sampling yields a Markov chain with stationary distribution f(r), i.e., the 
random numbers of f(r) are obtained. 
Different PDFs for r should be used for hyper-spheres with different dimensions. The 
other components should be sampled from uniform distributions. Convert the points 
sampled from spherical coordinates to orthogonal coordinates, and the uniform Monte 
Carlo samples can be obtained. 
Fig. 6 shows a 2-dimensional unit sphere including 1000 samples obtained via the 
modified method. 
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Figure 6: Distribution of samples obtained from the modified Monte Carlo algorithm 

For uniform sampling of interval variables, we can use MATLAB to first degenerate the 
random numbers in the normalized interval variable vector [0,1]p

∆ ∈δ . The samples in 
the unit interval variable vector 1δ  can be obtained from the relation 1=2 -1∆δ δ . 
When the variable domain interferes with the failure region, we can use the above Monte 
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Carlo algorithm to calculate the non-probabilistic reliability index for a high dimensional 
non-linear complex limit state function as follows: 

( ) s
set

all

lim
q

qR
q

λ
→∞

=                                                       (35) 

where qall is the sum of all simulation calculation times, and qs is the times corresponding 
to ( ) 0G′ >δ . 

3.4 Numerical integration algorithm and overall analysis procedures 
In Eq. (6), the analytical form of κ(λ) is difficult to obtain. Thus, it is necessary to present 
a numerical method to calculate the integration in Eq. (6). Given n integral nodes, the 
Gaussian integral formula has the highest algebraic accuracy [Yan (2006)]. 
Substituting λ=(1+t)/2 into Eq. (6) yields 

( )
1 1

0 1

1 1d d
2 2

tR tκ λ λ κ
−

+ ′ = =  
 ∫ ∫                                          (36) 

Eq. (36) can be viewed as integration from -1 to 1 with weight function ( ) 1tρ ≡ . The 
corresponding orthogonal polynomials are Legendre polynomials. Thus, we can use the 
Gauss-Legendre integral formula to solve this problem. The Legendre polynomials are 

( ) ( )21 d 1
2 ! d

n n

n n nL t t
n t

 = ⋅ −  
                                             (37) 

Take the zero points of Ln(t) as integral nodes, and the following integral formula can be 
obtained: 
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Eq. (38) is the Gauss-Legendre integral formula. The expression for Ai is 
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Thus, the integration in Eq. (36) can be calculated with 
1

1
1

11 1 1d
2 2 2 2

n
i
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ttR t Aκ κ
−

=

++   ′ = ≈      
∑∫                                      (40) 

The integral nodes and integral coefficients of Gauss-Legendre integral formula can be 
found in the numerical analysis monograph [Yan (2006)]. 
The overall analytical procedure for the proposed reliability model is as follows: 
a) Build the FCS model for the structural variables, and determine the possibility 
distribution function for the fuzzy extending parameter. 
b) n cut set levels λi can be obtained according to the n integral nodes ti of the 
Gauss-Legendre integral formula. 
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c) Transform the multiple convex set models under n cut set levels into n unit convex set 
models, and the structural limit state function is transformed into the normalized limit 
state function. 
d) Apply the optimization algorithm in Section 3.2 to resolve the robust reliability index 
η(λ). If η(λ)>1, construct κ(λ)=η(λ); if η(λ)<-1, construct κ(λ)=η(λ)+1; if |η(λ)|≤1, proceed 
to Step e). 
e) Apply the Monte Carlo algorithm in Section 3.3 to compute the non-probabilistic 
reliability index Rset(λ) for the case where the variable domain interferes with the failure 
region, and subsequently construct κ(λ)=Rset(λ). 
f) Calculate Eq. (40), thus yielding the final structural non-probabilistic reliability result. 

4 Numerical examples and discussion 
4.1 Example 1: A numerical example 
Let the limit state function of a structure be 

2 2
5 1 2 2 1 2 3

2 1 1 3 2 4
2

1 4 3 3 3 4
2

4 4

0.00115 0.00157 0.00117 0.0135
0.0705 0.00534 0.0149 0.0611

0.226 0.0333 0.558

1.339

M X X X X X X X
X X X X X X

X X X X X X

X X

= − + + +
        − − − −

        + 0.0717 − + −

        + 0.998 −

 

where X1-X5 are fuzzy interval variables whose accurate boundaries cannot be obtained. 
Their uncertainties are described by fuzzy interval models as follows: 

( ) { }1 1 1 11
, , | 10 1.5XU θ x x xφ θ= − ≤  , ( ) { }2 2 2 22

, , | 25 3XU θ x x xφ θ= − ≤  , 

( ) { }3 3 3 33
, , | 0.8 0.12XU θ x x xφ θ= − ≤  , ( ) { }4 4 4 44

, , | 0.0625 0.025XU θ x x xφ θ= − ≤  , 

( ) { }5 5 5 5 5, , | 1.2 0.1XU x x xθ φ θ  = − ≤   

The extending parameters 1θ - 5θ  follow a semi-trapezoidal distribution with small bias. 
The distribution functions decrease linearly from 1 to 0 and with extension parameters 
ranging from 1 to 1.5. 
The Gauss-Legendre integral formula including seven nodes is used here. The 
corresponding cut set levels can be obtained from the integral nodes and the relation

( )= 1+ / 2tλ : 

1 2 3 4

5 6 7

0.97455395615; 0.02544604385; 0.8707655928; 0.1292344072;
0.7029225757; 0.2970774243; 0.5

λ λ λ λ
λ λ λ

= = = =
= = =

 

The integral coefficients are 

1 2 3 4 5 6

7

0.1294849662; 0.2797053915; 0.3818300505;
0.4179591837

A A A A A A
A

= = = =  = =
=

 

The robust reliability indices corresponding to every cut set level are 
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( ) ( ) ( ) ( ) ( )
( ) ( )

1 2 3 4 5

6 7

1.1641; 0.79264; 1.1073; 0.8213; 1.0264;

0.8723; 0.9431

η λ η λ η λ η λ η λ

η λ η λ

=  =  =  = =  

=  =
 

The optimization procedures for η(λ1) and η(λ2) are shown in Figs. 7 and 8. 

 
Figure 7: Optimization procedure for η(λ1) 

 
Figure 8: Optimization procedure for η(λ2) 

The comprehensive reliability indices corresponding to every cut set are 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 3 4

5 6 7

1.1641; 0.994066; 1.1073; 0.996836;

1.0264; 0.9993008; 0.9999806

κ λ κ λ κ λ κ λ

κ λ κ λ κ λ

=  =  =  =

=  =  =
 

The robust reliability index η and the comprehensive reliability index κ change with the 
cut set level, as shown in Fig. 9. 
According to the Gauss-Legendre integral formula, the integral non-probabilistic 
reliability degree is 
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1

1 1.0297
2

n

i i
i

R Aκ λ
=

′ ≈ =∑  

If the robust reliability model is applied, the result is 0.95598. 
When the cut set level is high enough, the convex set does not interfere with the failure 
region, and the volume-ratio based non-probabilistic reliability degree is equal to 1. 
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Based on this model, the integral reliability result is 0.999036. 
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Figure 9: Variation in η and κ with λ 

The difference between the results stems from the physical definitions of the various 
metrics. The proposed non-probabilistic reliability model takes into account the 
advantages of the robust reliability and volume ratio-based reliability methods. Moreover, 
it can account for the fuzziness of the structural parameters or the fuzziness of the 
ordinary convex set model. Thus, the proposed reliability model is a more comprehensive 
and realistic reflection of the structural reliability, but in a non-probabilistic way. 

4.2 A ring-stiffened cylindrical shell example 
The instability between ring ribs is one of the main failure modes of a cylindrical shell. 
The reliability of a ring-stiffened cylindrical shell in this failure mode will be analyzed. 
The critical pressure for instability between adjacent ribs is 

cr g s Ep C C p=  

where pE denotes the Euler pressure for instability and Cg is the model correction factor 
that takes into account initial imperfections on the shell. Cs is the model correction factor 
taking into account the plastic and residual stress. 
Assume the Poisson ratio of the material is 0.3, pE can be calculated using 

2

E
0.6
0.37

hp E
r u

 =   − 
 

where E, h, and r denote the elastic modulus, thickness, and radius of the cylindrical 
pressure shell, respectively. u is a dimensionless parameter expressed as 

0.642u l rh=  

where l is the distance between adjacent ribs. 
The structural limit state equation is 
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( )sh cr cr, 0G p p p p = − =  

When combined with the above formulas, the limit state equation has the following form: 

( )
2

sh s g g s
0.6, , , , , , 0

0.642 0.37
h rhG p r h E l C C C C E p
r l rh

       = − =  − 
 

The uncertainties in the parameters X=(p, r, h, E, l, Cs, Cg)T are described by the 
following fuzzy convex set model: 

( ) ( ) ( ){ }T 2
E ,1, | XU θ θ= − − ≤ X X X X W X X  

where T 5 T
s g( , , , , , , ) (2.94, 3000, 22, 2 10 , 500, 0.9, 0.9)p r h E l C C=       =    ×    X and 

WX=Diag(1/0.152, 1/1802, 1/1.12, 1/(0.17×105)2, 1/482, 1/0.172, 1/0.152). θ  follows a 
semi-trapezoidal distribution whose value reduces linearly from 1 to 0 and with extension 
parameter ranging from 1 to 2. 
Here, we still use the Gauss-Legendre integral formula with seven integral nodes. The 
corresponding cut set levels and integral coefficients are equal to their values in Example 1. 
The robust reliability values corresponding to the cut set levels are 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 3 4

5 6 7

1.8974; 0.98536; 1.7230; 1.0400;

1.5000; 1.1425; 1.2971

η λ η λ η λ η λ

η λ η λ η λ

= = = =

= = =
 

We need to calculate the volume ratio-based non-probabilistic reliability according to the 
cut set level λ2 due to ( )2 1η λ < . The corresponding failure degree is 0.66×10-7. 

Based on the Gauss-Legendre integral formula, the integral reliability is 

( )
1

1 1.34956
2

n

i i
i

R Aκ λ
=

′ ≈ =∑  

If the reliability analysis is based on the rigid convex set model, i.e., the kernel of the 
fuzzy convex set, the obtained reliability is 1.9521. It can be found that the reliability 
result based on the ordinary rigid convex set is higher than the value based on the FCS 
model. Thus, when we cannot determine the exact boundaries of the parameters, the 
proposed reliability model can effectively reduce the risk of the reliability analysis based 
on traditional rigid convex set models. 
We could also use the Gauss-Legendre integral formula with more integral nodes in order 
to obtain higher accuracy. 

4.3 A ten-bar truss example 
Fig. 10 shows a ten-bar structure. There are 15 independent fuzzy interval variables, 
including modulus of elasticity E, rod length L, cross section areas Ai

 (i=1, 2,…,10), and 
external loads P1, P2, and P3. The maximum allowable displacement in the vertical 
direction of node 2 is 0.06 m. The uncertainties in these variables are described using the 
following fuzzy interval models: 
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( ) { }, , 100 10 GPaE E E E EU x x xθ φ θ= − ≤  , ( ) { }, , 1 0.02 mL L L L LU x x xθ φ θ= − ≤  , 

( ) { }1 1 1 1 1
, , 800 100 kNP P P P PU x x xθ φ θ= − ≤  , ( ) { }2 2 2 2 2

, , 100 15 kNP P P P PU x x xθ φ θ= − ≤  , 

( ) { }3 3 3 3 3
, , 100 15 kNP P P P PU x x xθ φ θ= − ≤  , 

( ) { }1 10 1 10 1 10 1 10 1 10

2
~ ~ ~ ~ ~, , 0.001 0.0001 mA A A A A A A A A AU x x xθ φ θ  = − ≤   
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Figure 10: Ten-bar truss structure 

The vertical displacement function of node 2 is 

( )
0 06 10

2
1 7

2i i i i

i ii i

N N N N Ly x
A A E= =

 
= + 

 
∑ ∑  

where Ni is the axial force in every member, 0
iN  represents the axial force when 

P1=P3=0, and P2=1N. Ni can be easily obtained as follows: 
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( )3 2 2 2
2

4 5 10

2 2 4
2

P P P P Lb
A A A E

 −
= − −  

   
Here, we still use the Gauss-Legendre integral formula with seven integral nodes. The 
corresponding cut set levels and integral coefficients are equal to their values in Example 1. 
The robust reliability index η and the comprehensive reliability index κ both change with 
the cut set level, as shown in Fig. 11. 
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Figure 11: Variation in η and κ with λ 

According to the Gauss-Legendre integral formula, the integral non-probabilistic 
reliability degree is 

( )
1

1 1.3478
2

n

i i
i

R Aκ λ
=

′ ≈ =∑
 

If the reliability analysis is based on the kernel of the fuzzy convex sets which are 
traditional rigid convex set models, the obtained reliability is 1.9237, which is obviously 
higher than the result based on the FCS model. As discussed in Section 4.2, when 
statistical samples of parameters are scarce, the exact boundaries of these parameters 
cannot be determined accurately. In this case, the proposed reliability model based on 
FCS model can better reflect the actual engineering, and effectively reduce the risk of the 
reliability analysis based on traditional rigid convex set models. 
Here, we offer the following discussion: 
(1) When the structural failure region and the variable domain do not intersect, the 
volume ratio-based non-probabilistic reliability index is equal to 1. When the two regions 
interfere, the robust reliability index cannot strictly reflect the relationship or comparison 
between the failure and safety domains. The proposed reliability model in this paper is a 
comprehensive index, which can overcome the above two problems, and it is more 
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reasonable and scientific. In addition, the new index is smooth, continuous, comparable, 
and has a clear physical definition. 
(2) For problems with small sample size, the traditional rigid convex model cannot 
strictly express the structural uncertainties, i.e., the boundaries of the variable domain are 
difficult to determine. The FCS model can take into account fuzzy boundary information. 
Therefore, the proposed reliability model based on FCS can take into account different 
position relations between the variable domain and the failure region, as well as the 
uncertain information regarding the variable boundaries. 
(3) The examples demonstrated the correctness and effectiveness of the presented 
algorithms in the proposed non-probabilistic reliability theory. The improved 
optimization strategy based on PSO is especially suited for high dimensional reliability 
problems and has high efficiency. The amended Monte Carlo method for the hyper 
ellipsoidal model (i.e., the uniform sampling algorithm) provides corrections for errors 
that were previously reported in the literature. The pseudorandom number sampling 
method based on the Metropolis method for the PDF of r is very clever and scientific. 
The numerical integral algorithm based on the Gauss-Legendre integral formula is 
suitable for use in the proposed reliability model, and the accuracy increases with the 
number of integration points. 

5 Conclusions 
In this paper, a comprehensive reliability model was presented based on a fuzzy convex 
set model, and the key computational algorithms were studied in detail. The proposed 
reliability model can account for the various position relations between the structural 
failure region and the variable domain, and the index has a better physical meaning. It is 
smooth, continuous, and comparable. In addition, this novel model can overcome the 
limitations of the traditional rigid convex set model, especially for problems with small 
sample size. The improved optimization strategy ensures the robust reliability 
computation is efficient and accurate. The uniform sampling strategy for use in the hyper 
ellipsoidal model and the pseudorandom number simulation method for an atypical 
probability distribution function lays the foundation for the volume ratio-based reliability 
analysis. Integration of the comprehensive reliability index with the cut set level was 
solved with the Gauss-Legendre integral formula. The correctness and efficiency of the 
novel reliability model and all of the presented algorithms were demonstrated by 
applying them to three numerical examples. 
Although this study focuses on structural reliability problems, some of the presented 
methods can be extended to other engineering fields, such as structural static and 
dynamic responses, structural fatigue prediction, buckling and post buckling, etc. These 
areas are interesting for future studies. 
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