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Towards No-Reference Image Quality Assessment Based on
Multi-Scale Convolutional Neural Network

Yao Ma', Xibiao Cai" * and Fuming Sun”

Abstract: Image quality assessment has become increasingly important in image quality
monitoring and reliability assuring of image processing systems. Most of the existing
no-reference image quality assessment methods mainly exploit the global information of
image while ignoring vital local information. Actually, the introduced distortion depends
on a slight difference in details between the distorted image and the non-distorted reference
image. In light of this, we propose a no-reference image quality assessment method based
on a multi-scale convolutional neural network, which integrates both global information
and local information of an image. We first adopt the image pyramid method to generate
four scale images required for network input and then provide two network models by
respectively using two fusion strategies to evaluate image quality. In order to better adapt
to the quality assessment of the entire image, we use two different loss functions in the
training and validation phases. The superiority of the proposed method is verified by
several different experiments on the LIVE datasets and TID2008 datasets.

Keywords: Image pyramid, global information, local information, image distortion.

1 Introduction

In the image transmission process, there is a variety of distortion and degradation to reduce
image quality, which further affects the accuracy and adequacy of the obtained information.
Therefore, it is crucial to establish an effective image quality assessment mechanism. Image
quality assessment algorithms are generally classified into three categories according to
whether reference images are available for the comparison: full-reference image quality
assessment (FR-IQA) algorithms, reduced-reference image quality assessment (RR-IQA)
algorithms, and no-reference image quality assessment (NR-IQA) algorithms. The FR-
IQA algorithms use all the information of the non-distorted reference image to evaluate
image quality scores. Classical FR-IQA algorithms mainly include the SSIM
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[Wang, Bovik, Sheikh et al. (2004)], the GMSD [Xue, Zhang, Mou et al. (2014)], the FSIM
[Zhang, Zhang, Mou et al. (2011)], and many others. The RR-IQA algorithms use only
partial information about the reference image as a reference to evaluate image quality
scores, and the NR-IQA algorithms evaluate image quality without any reference-image
information. However, in practical applications, it is often difficult to obtain a non-
distorted reference image. Therefore, no-reference image quality assessment methods
have been attracting more attention.

Due to the usage of reference images, the FR-IQA has put forward a lot of work based on the
research of human visual system (HSV), but it becomes difficult for NR-IQA. The NR-IQA
[Saad, Bovik and Charrier (2012); Mittal, Moorthy and Bovik (2012); Li, Zhu and Qian
(2014)] starts from the distorted image and extracts the features that can represent the
distorted characteristics. Saad et al. [Saad, Bovik and Charrier (2012)] stated that the
degree and type of image distortion are closely related to discrete cosine transformation
(DCT) coefficients, so they extracted features in the DCT domain to predict the quality
score. The aforementioned works have achieved some significant results, but the HSV is
a very complex system, and it is very difficult to extract accurate and comprehensive
features manually [Qiao, Xu and Yan (2020); Qiao, Wang and Xu (2020); Sun, Tang, Li
et al. (2014)]. Thanks to the deep learning development, manually extracted features have
been gradually replaced by the ones acquired by the feature learning methods. For
instance, in Bare et al. [Bare, Li and Yan (2017)], an end-to-end method without any
handcrafted features was directly used to implement the NR-IQA. The reliability map
was used in Kim et al. [Kim, Nguyen and Lee (2018)] as a middle target to learning
changes caused by distortion.

However, there are two main problems that need to be addressed. On the one hand, for the
whole image, the distortion effect is often reflected in a change in high-frequency details,
which is only a small part of the information contained in the whole image; it has a little
effect on the energy-intensive low-frequency information, as demonstrated in Fig. 1. As
can be seen in the Fig. 1, the more severe the image distortion is, the more severe the loss
of high-frequency information is, but the low-frequency information is almost unchanged.

By using the black-box pool learning method, the problem is analyzed from the pixel value
of the image without considering the process of human’s observation of an image.
Moreover, it is easy to focus only on the energy-intensive outline information, ignoring
the lost realistic texture, which greatly increases the learning difficulty of a network. This
phenomenon makes fully learning of distortion characteristics from small datasets such as
IQA very difficult. Therefore, we propose a method of combining multi-scale with
CNNs. The image pyramid fully simulates the HSV process, reduces the details in the
down-sampling process, and shows the image at different resolutions from a coarse level
to a fine level. It is well known that multi-scale input can merge the details of images
with different resolutions and can combine global information with local information.
The multi-scale input is very helpful for image feature extraction so that it is applied to
various aspects related to image processing. By inputting four different scales of images
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Figure 1: Images with different distortion types and their corresponding spectrograms. The
first column shows the non-distorted reference image and its corresponding spectrogram.
From left to right different distortion types are represented and distortion degree is
gradually increased

into a network simultaneously, the reference object, i.e., the low-frequency information, can
be acquired in the learning process because it is almost unchanged under the influence of
distortion. Therefore, it will be easier for the network to learn the changes in high-
frequency information caused by distortion, which greatly reduces the difficulty of
learning and improves the learning accuracy. At the same time, in order to utilize the
multi-scale input better, we designed two different fusion methods in the network, the
results showed good competitiveness.

On the other hand, because the prediction ability of the CNN models heavily depends on the
image datasets used, it is difficult to obtain stable and excellent results without the training
with a sufficiently large amount of data. However, the existing available IQA datasets are
not sufficient to support the training of the network models with a large number of
parameters. In order to overcome this problem, researchers [Kang, Ye, Li et al. (2014);
Dash, Wong and Mishra (2017); Dendi, Dev and Kothari (2018)] have used various
methods. For instance, Kang et al. [Kang, Ye, Li et al. (2014)] split the entire image into
32x32 image patches without overlapping to expand the datasets. Dash et al. [Dash,
Wong and Mishra (2017)] used a pre-trained network which enabled certain recognition
capabilities to reduce the need for learning space.

To solve this problem, we adopt a method similar to the method presented in Kang et al.
[Kang, Ye, Li et al. (2014)]. However, the method used in Kang et al. [Kang, Ye, Li
et al. (2014)] has a problem that a network trained with the expanded datasets is difficult
to adapt to the label in the original datasets. Different from the previous works, in this
work, we use two different loss functions in the training and validation training and
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validation. In the training, we use the quality score of small image patches as a target, that is,
each image patch corresponds to a label, and the extended dataset for supervised training. In
the validation, we use the quality score of the entire image as a target, that is, each minibatch
corresponds to a label. After the patches obtained by dividing an image are grouped into a
minibatch, we average the predicted scores for each group as an output to fine-tune the
parameters. By alternating the two mentioned stages, the network can meet the
requirements for image quality assessment better.

The advantages of the proposed method are three-fold.

1. A multi-scale-input method is adopted. Both local and global information of an image is
extracted as an input of the network with multi-scale characteristics.

2. Two fusion strategies are provided and compared. One strategy fuses the predicted results
of each scale, and the other fuses the features extracted from the convolution layer and
pooling layer. Accordingly, two network models are given, Multiple Scales Concat
(MS-C) and Multiple Scales Fusion (MS-F), and experiments show that each network
has own advantages in different situations.

3. Different loss functions are used. Owing to the form of label in train dataset and validation
dataset are different, we use two different loss functions to make the evaluation of the entire
image quality score better by migrating the evaluation ability of an image patch.

The rest of this paper is organized as follows. Section 2 reviews the related works. Section 3
introduces the proposed method, including the image pyramid, normalized processing,
network structure, fusion method, and loss functions. Section 4 conducts different
experiments. Finally, Section 5 concludes this work and discusses our future work.

2 Related work

The NR-IQA methods can be roughly categorized into two groups, namely statistical
characteristics methods and feature learning methods. The former methods unfold the
statistical properties of distorted images and non-distorted images. For instance,
the BRISQUE proposed in Moorthy et al. [Moorthy and Bovik (2011)] shows that the
statistical characteristics of natural images are similar to the generalized Gaussian
distribution (GGD), which is warped by distortion. Therefore, the statistical characteristics
are used to distinguish distortion types and evaluate distorted-image quality. Jiang et al.
[Jiang and Zhou (2016)] performed structural similarity calculations on multiple scales and
calculated the structural similarity of the two inputs according to the certain weights. Xu
et al. [Xu, Lu and Ren (2015)] extracted mutual information between the images and
pixels to capture pixel changes caused by distortion. All these algorithms are based on a
hypothesis that distortion changes some statistical characteristics of natural images, but it is
difficult to determine these characteristics comprehensively and accurately manually.

With deep learning development, feature learning gradually replaced manual feature extraction.
The latter method obtains learning features instead of hand-crafted feature extraction via deep
learning. Bianco et al. [Bianco, Celona and Napoletano (2018)] used different methods to
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analyze and verify each component of the network to make the network learn distortion
features better. Hou et al. [Hou, Gao, Tao et al. (2017)] proposed a blind IQA model that
classifies distortion into five levels for qualitative analysis and predicts numerical scores by
regression. Kim et al. [Kim and Lee (2017)] used four classical FR-IQA algorithms to get
the quality score of image patches, which was further used as ground truth for supervised
learning. Bosse et al. [Bosse, Maniry, Miiller et al. (2018)] also determined the image
quality score directly from the image patches but combined different patches weights to
predict the image quality score. Similarly, Oh et al. [Oh, Ahn, Kim et al. (2017)] used deep
learning on 3D images, and the difference was that the left image and the right image were
fused by the CNNs. In Fan et al. [Fan, Zhang, Feng et al. (2018)], the authors input images
into multiple networks at the same time. Since each network related to a specific distortion
type, the output of each network represented the correlation between the image and specific
distortion type. All of these methods adopt some data enhancement methods to expand the
dataset to meet the requirement for data amount needed for adequate CNN training, but two
problems about image-wise and patch-wise need to be overcome.

Hitherto, some researchers have adopted unsupervised learning methods. Because artificial
subjective scores are no longer used, datasets can be extended from specific datasets to a
wide variety of readily available datasets, or even to image datasets obtained by
generated and distorted. In view of the sequential learning algorithm (L2R), Ma et al.
[Ma, Liu, Liu et al. (2017)] collected distorted images from the real world and used
unsupervised learning to realize the NR-IQA. Liu et al. [Liu, Weijer and Bagdanov
(2017)] used a series of image pairs with known rank order to train the network so that
the network had the ability to distinguish image quality. Due to the lack of reference
images, unsupervised learning can difficultly quantify the degree of learning distortion as
a score, resulting in a low final measurement score. Recently, the Generative Adversarial
Networks (GAN) network have been used in the NR-IQA. Some researchers [Lin and
Wang (2018); Pan, Shi, Hou et al. (2018)] used the GAN network to generate the
available image to compensate for miss reference image in the dataset; for instance, the
Hallucinated-IQA [Lin and Wang (2018)]. Although the generated reference image is
difficult to be false, it also provides a new idea for the research in the NR-IQA field.

3 Multi-scale convolutional neural network for NR-IQA

3.1 Image pyramid

Image pyramids are a way of expressing images with multiple scales. For an image, the
shorter the distance between the observer and the image is, the clearer the image is, so
the more detailed content of the image the observer see. Conversely, the farther the
observer is, the more blurred the image is, so the observer an only see the outline of the
image. Because of the mentioned, the image pyramid expresses the distance between the
observer and the image as an image scale. Due to the existence of this scale, we can
convert a two-dimensional image into three-dimensional space to analysis and extract its
intrinsic characteristics. For the original non-distorted image, when it is looked carefully
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from the whole to the part, it can be seen that the new details basically coincide with the
rough ones [Li, Zhu and Qian (2014)]. However, distorted images tend to produce
different results in content when looking roughly and closely. The comparison of image
local information between the clean image and noisy image is shown in Fig. 2.

The clean image m 1 The noisy image
at 1/3 the scale

oy ‘ | at1/3thescale

Figure 2: Figure from Li et al. [Li, Zhu and Qian (2014)]. Comparison of image local
information at 1/3 the scale. (a) Clean image. (b) Noisy image

In Fig. 2, it can be seen that there are obvious differences in details between the distorted and
non-distorted images. Therefore, the NR-IQA method cannot achieve satisfactory results by
using only global information. To address this issue, we use both local and global
information of images. In order to extract scale invariant features of distorted images, we
first use multi-scale images as an input of a neural network. In this way, global
information is obtained without losing local information. The method of obtaining a
multi-scale image adopted in this paper is similar to the Gaussian pyramid. This is
mainly due to two reasons. On the one hand, it does not introduce other noise in the
convolution process because Gaussian kernels are linear. On the other hand, the statistical
characteristics of the distorted and non-distorted images keep unchanged using the
Gaussian kernels since the data distribution of natural images is similar to the generalized
Gaussian distribution [Mittal, Moorthy and Bovik (2012)]. The Gaussian convolution
function we use in this work is given by:

L) o)
2162 202

Glx,y) = (1)
As for the parameter o, the experimental results showed that the result is the best at a fixed
value of 1.6. At first, we regard the original image as an input of the first layer. Through
down-sampling the convolution result of the original image and Gaussian kernels, a new
image that is 1/4 of the original image is obtained. Then, the new image is reshaped to
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the original size and used as an input of the second layer. Comparing the two layers’ images
at the same size at the pixel level, we can find that there are obvious differences between
them. We can denote this difference as a result of image distortion. In this way, we have
four scale images as a network input.

3.2 Normalized processing

Before performing the convolution operation on the original image and Gaussian kernels,
we first perform a simple normalization of the image similar to that in Kang et al. [Kang,
Ye, Li et al. (2014)] and use the mean and variance to decorrelation. Consequently, the
effect of image redundancy features that are weakly related to the image quality can be
eliminated. The local normalization method we use is as follows:

j(l',j) _ I(i>j) — u(iaj)

(i) +C @

i) =30 S i+ pij+a) 3)
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where C is a positive constant that prevents dividing by zero, # and ¢ are the mean and
variance, respectively; P and Q are the normalization window size lengths and widths. In
practical application, we take P and Q as fixed values of 3. The window size should be
smaller than the image size, and the smaller the window size is, the better the
normalization effect will be. The experimental results in Kang et al. [Kang, Ye, Li et al.
(2014)] showed that the effect is the best when P and Q are fixed at 3.

3.3 Network structure and fusion method

The proposed network structure, including two fusion strategies, Multiple Scale Concat
(MS-C) and Multiple Scale Fusion (MS-F), is shown in Fig. 3.

We also provide two fusion strategies. In one, the predicted results of all the scale are fused,
and in the other, the features from the convolution layer are fused. The MS-C and MS-F
networks share the CONV (convolution) layer. The CONV consists of one convolution
layer and two pooling layers. There are 50 convolution kernels with the size of 7x7 and
the stride of 1 in the convolution layer. A maximum pooling layer and a minimum
pooling layer are used to reduce the feature dimensions. After implementing the Gaussian
pyramid on the original image, four multi-scale images, showing different distortion
degrees are obtained. Further, four feature vectors are generated after the convolution, 1.
e., f1, 12, 13, and f4. The convolution method we use is as follows:
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Figure 3: The proposed network structure
fi= n;a}Jx(bk + Z Wik x;’b) + nt}ibn(bk + Z Wh * x;,b) Q)
’ k ’ k

where * denotes convolution operations, f; denotes feature vectors extracted by convolution
and pooling at the scale of i, @ and b denotes max and min values of location (a, b) of the
feature map obtained by the i-th scales convolution, xZ,b denotes location (a, b) of input
images at i-th scales, w}, denotes weights of k convolutions on i-th scales and b denotes bias.

In the MS-C network, the four features are fused before the fully connected layer (FC), that
is, f=concat (f1, 12, 13, f4). Then, f'is used as an input of the fully connected layer to obtain
the image quality score. So, the MS-C connects four networks to form output with the size of
8%50; then follows the FC, which contains two fully connected layers consisted of
800 nodes. In the MS-F network, the four features are considered as four independent
features, and the full connection layer four outputs, r/, r2, r3, and r4 are obtained
respectively. The four results are taken as an input of the penultimate layer, which makes
the neural network optimize the weights of each layer by learning to predict the image
quality score. So, the MS-F has four FC after the pooling layer. Finally, the predicted
score is obtained by the last linear regression layer. The two networks types are
compared by the experiments.

The proposed NR-IQA algorithm based on the multi-scale convolutional neural network is
given in Algorithm 1.
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Algorithm 1: Multi-scale convolutional neural network based NR-IQA algorithm

Input: Distortion image I
Output: The predicted quality score of a distorted image q
Procedure:

1: For input I, normalized according to Eq. (2);

2: Get four scale images by the image pyramid;

3: Input four scale images to the CONV layers to obtain four feature vectors f1, f, f3, and
f4 on Eq. (5)
MS-C:
1. f=concat(f,/>.f3./4), fusion of the features f,, 1>, f3, and f4

2. Pass f'through the FC layers
3. Last fully connected layer regression output ¢

MS-F:

1. Input f1, 5, f3, f4 into the FC layers, respectively, and obtain four results 7, r,, 73, 74.
2. Combine r, 1, 13, 74 to the final output layer
3. Last fully connected layer regression output ¢

3.4 Loss functions

When the small IQA datasets are extended into new datasets by the non-overlapping
segmentation, in this work, it is assumed that the quality score of each patch is equal to
that of its source. When the network is trained with image-patch datasets, it will finally
learn to evaluate the quality score of patches. But when obtained the label of patches, the
distortion degree of some small patches is not completely equal to the entire image, so
there will be some deviation. Therefore we adopt two different loss functions to correct
the error caused by this assumption.

In the training dataset, all the image patches correspond to a label of their own, after disorder
were used, and the quality score of each image patch was evaluated. In the validation
dataset, the quality scores of image patches were not our target, the entire image
correspond to a label. Since all the image patches were obtained by the non-overlapping
segmentation of the entire image, the quality score of the entire image was evaluated
when all the patches from that image were taken as an input. Therefore, the loss functions
for training and validation were different. All the image patches were used during the
training. In the validation, the patches obtained from one image were grouped into a
minibatch, and the average value of minibatch was used as a label of that image. Therefore,
the loss function L1 during the training, and the loss function L, during the validation were
respectively defined as follows:
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n=1
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where x,, and y, denoted the input patch image and its ground truth score, respectively;
f (x,; w) denoted the predicted score of x,, with network weight w, N was the batch size
of 128, and M denoted the non-overlapping patches number of the image.

4 Experimental results and analysis

4.1 Datasets
The following two datasets were used in experiments.

LIVE: This dataset consisted of a total of 779 distorted images, including 29 reference
images and five types of distortion (gblur, jp2k, jpeg, wn, and fast fading).

TID2008: This dataset consisted of a total of 1700 distorted images, including 25 reference
images and 17 types of distortion. Four of these 17 distortion types were common to the
LIVE dataset, namely gblur, jp2k, jpeg, wn. The experiments were mainly performed for
the four common types of distortion.

We divided the datasets into the training set, validation set, and test set, which were used
in the experiment. The ratio of the training set was 0.6, and the ratio of the validation set
and test set was the same and equal to 0.2. We set the batch size to 128, and the learning
rate to 0.0001.

4.2 Gauss convolution

In the process of generating the multi-scale input images, the Gauss convolution was
indispensable. In order to demonstrate the effect of parameters of the Gaussian
convolution function, the results for different settings are shown in Tab. 1. As presented
in Tab. 1, the larger the value of ¢ was, the larger the range of data that could affect it
was. We compared six different values, o=1.0, 1.2, 1.4, 1.6, 1.8, and 2.0. The
experimental results show that adding the Gauss convolution to the image pyramid was
effective, but different values did not result in a large difference. Overall, the result for o
of 1.6 was slightly better than others, so we fixed o at 1.6.

Table 1: The results for different o values

N/A o

1.0 1.2 1.4 1.6 1.8 2.0
SROCC 09414 09530  0.9537  0.9553 0.9580  0.9528  0.9529
PLCC 0.9443 09676 09673  0.9688  0.9690  0.9578  0.9575
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4.3 Evaluation on LIVE

The performance of the proposed method on the LIVE dataset was validated, and obtained
results are given in Tab. 2. Tab. 2 shows the comparison results of the proposed method and
the state-of-the-art NR-IQA methods.

Table 2: The SROCC and PLCC on LIVE dataset

SROCC JP2K JPEG WN BLUR FF ALL
BRISOUE 0.910 0.919 0.955 0.941 0.874 0.920
CORNIA 0.903 0.889 0.958 0.946 0.915 0.906
DLIQA 0.933 0.914 0.968 0.947 0.857 0.929
CNN 0.952 0.977 0.978 0.962 0.908 0.956
MS-F 0.957 0.961 0.991 0.979 0.866 0.940
MS-C 0.973 0.974 0.986 0.977 0.879 0.958
PLCC JP2K JPEG WN BLUR FF ALL
BRISOUE 0.936 0.937 0.958 0.935 0.898 0.917
CORNIA 0.915 0.902 0.952 0.940 0.913 0.903
DLIQA 0.953 0.948 0.961 0.950 0.892 0.934
CNN 0.953 0.981 0.984 0.953 0.933 0.953
MS-F 0.948 0.973 0.992 0.972 0.852 0.933
MS-C 0.963 0.980 0.968 0.975 0.870 0.969

We compared the proposed method with the four representative NR-IQA methods: the
BRISOUE, the CORNIA, the DLIQA, and the CNN. In Tab. 2, it can be seen that the
proposed method performed well for each distortion type. The CNN is the result of the
method presented in Kang et al. [Kang, Ye, Li et al. (2014)]. It can be seen that in most
cases, the results of our proposed method were superior to those of the CNN. Especially
when the distortion types were blur and wn, the effects of both proposed networks were
higher than of the others, and the accuracy of MS-F network achieved the highest. For
the fast fading distortion type, the result was worse than the CNN. For the remaining two
types of distortion, the result was almost the same as that of the other types. The full
name of the BLUR was Gaussian Blur, that is, R, G, and B components were filtered using
a circular-symmetric 2-D Gaussian kemnel with the standard deviation sigma. The
experimental results show that the input image obtained by the Gaussian pyramid method
enhance the recognition ability of the distortion caused by the Gaussian noise. When the
five types of distortion were used simultaneously in the training process, the MS-C
performed better than the MS-F, and they both outperformed all the state-of-the-art NR-
IQA methods.
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4.4 Evaluation on TID2008

We conducted the experiments on the TID2008 dataset to further evaluate the proposed
method. We divided the TID2008 dataset (containing 17 distortion types) into two parts;
one included the same distortion types as those in the LIVE dataset, the other included
the thirteen remaining distortion types. Tabs. 3 and 4 show the results of the MS-C and
the MS-F, respectively.

Table 3: Results of the MS-C on TID2008 dataset

MS-C WN GBLUR JPEG JP2K 4-all 13-all ALL
SROCC 0.941 0.953 0.947 0.946 0.950 0.753 0.782
PLCC 0.957 0.979 0.991 0.986 0.970 0.750 0.811

Table 4: Results of the MS-F on TID2008 dataset

MS-F WN GBLUR JPEG JP2K 4-all 13-all ALL
SROCC 0.955 0.950 0.927 0.932 0.945 0.727 0.756
PLCC 0.966 0.970 0.986 0.978 0.959 0.719 0.798

We first separately trained the four distortion types shared by the TID2008 and LIVE
datasets. Compared with the LIVE datasets, in the TID2008 datasets, the number of
distortion types was larger, but the number of images contained in each distortion type
was smaller. This reason makes the training of models more difficult so that the
performance in TID2008 datasets was relatively reduced. However, compared with
the other networks, we proposed method was still competitive. After the training with the
four types together, the test results on the TID2008 datasets were very good. In Tabs. 3
and 4, “13-all” denotes the thirteen distortion types that LIVE did not include but which
were included in the TID2008 dataset; “ALL” refers to the seventeen distortion types in
the TID2008 dataset. In Tabs. 3 and 4, it can be seen that the recognition ability of
distortion types that were not included in the LIVE dataset was the weakest. When one
distortion type was tested, the accuracy of the two networks was almost the same, while
multiple distortion types were tested together, such as “13-all” and “ALL”, the accuracy
of MS-C network was much higher than that of MS-F network. It can be seen that MS-C
network has stronger ability to capture common characteristics of different distortion
types. As the number of distortion types increased, the performance of the both networks
decreased significantly. However, compared with the state-of-the-art NR-IQA methods,
the experimental results of the proposed method were much competitive.

According to several different experiments, it can be seen that the predict ability of networks
for each distortion type varies greatly, which shows that the characteristics of each distortion
type are different. With the increase of distortion types, it becomes more and more difficult
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to design a general method that is applicable to all distortion types. How to find a balance
among different distortion types and find more representative common characteristics
among them are the problem that we need to further study.

4.5 Cross-dataset evaluation

To verify the generalization ability of the proposed method, we conducted the cross-dataset
experiment. The model was trained with the LIVE dataset and then tested on the TID2008
dataset. Tab. 5 shows the comparison results of different NR-IQA methods.

Table 5: The SROCC and PLCC obtained by the network trained on the LIVE dataset and
tested on the TID2008 dataset

SROCC JP2K JPEG WN BLUR ALL
BRISOUE 0.902 0.875 0.821 0.857 0.865
CORNIA 0.920 0.899 0.647 0.901 0.866
DVRM 0.943 0.930 0.909 0.733 0.894
MS-F 0.946 0.937 0.961 0.941 0.919
MS-C 0.945 0.941 0.958 0.938 0.920
PLCC JP2K JPEG WN BLUR ALL
BRISOUE 0.908 0.909 0.812 0.855 0.873
CORNIA 0.904 0.928 0.642 0.887 0.878
DVRM 0.945 0.942 0.801 0.919 0.911
MS-F 0.925 0.982 0.962 0.978 0.913
MS-C 0.937 0.985 0.969 0.981 0.920

This experiment was designed such that to analysis the generalization capability of the
proposed method. We compared our method with three representative NR-IQA methods:
the BRISOUE, the CORNIA, and the DLIQA. Only the four types of distortions that
were common for the LIVE and TID2008 datasets were examined in this experiment. At
this test, the superiority of the proposed method was even more apparent. In this
experiment, all the methods except for the proposed one were difficult to maintain the
good performance as test on LIVE dataset, while the proposed method performed well.
The experimental results show that on the TID2008 dataset test, the results did not
fluctuate much compared with the results on the LIVE dataset, and it was even not
inferior compared with the results in Tab. 2. And it can be seen that each network had
own advantages in different situations. Therefore, it can be concluded that the proposed
method showed a strong generalization ability. Compared with the other methods, both
MS-F and MS-C networks achieved better results in the cross-dataset experiments.



214 CMES, vol.123, no.1, pp.201-216, 2020

5 Conclusion

In this paper, a strong multi-scale convolutional neural network for the no-reference image
quality assessment is presented. The proposed method can study the unique properties of
distorted images, and make the research work of NR-IQA even further. The experimental
results show that the proposed method has very good performances both in terms of
consistency with human subjective scores and generalization. However, as the characteristics
of each distortion type are different, the recognition ability of the general network is still
difficult to get rid of the distortion type constraint, so the results vary widely on different
distortion types. This phenomenon is widespread in the related research work on the NR-IQA.

Unfortunately, it is expected that there will be even more distortion types in the future, so
general methods will difficultly perform well for all distortion types. Moreover, in the
real world, distorted images often contain many types of distortion, which makes it
difficult for the existing methods to show excellent results on specific distortion types.
Accordingly, the current NR-IQA methods cannot achieve high performances on real-life
distortion pictures, and this will be the focus of our future work on the no-reference
image quality assessment.
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