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Abstract: Exoskeletons are designed to control the forces exerted during the physical 
coupling between the human and the machine. Since the human is an active system, the 
control of an exoskeleton requires coordinated action between the machine and the load 
so to obtain a reciprocal adaptation. Humans in the control loop can be modeled as active 
mechanical loads whose stiffness is continuously changing. The direct measurement of 
human stiffness is difficult to obtain in real-time, thus posing a significant limitation to 
the design of wearable robotics controllers. Electromyographic (EMG) recordings can 
provide an indirect estimation of human muscle force and stiffness, but current methods 
for the acquisition of the signals limit their use and efficiency. This work proposes a 
hybrid method for the estimation of upper limb joint stiffness during reaching movements 
that combines EMG-driven muscle models and constrained optimization. Using these two 
stages process, we estimated an optimal joints’ stiffness bounded in a physiologically 
sound variability range. This information is crucial when designing exoskeletons user 
interfaces in which the limb stiffness is an integral part of the control loop. Point-to-point 
human reaching movements were analyzed to reconstruct the joint stiffness of the upper 
limb. An accurate 3D model of the arm, encompassing all bones from the hand to the 
scapula and the majority of the upper limb muscles, was developed to represent the 
sliding center of rotation of the joints. A well-posed parallel mechanism between the 
skeleton and the configuration of the tracking markers was implemented. Thus, the 
muscles’ force and joint stiffness were calculated using a generalized pseudo-inversion of 
the Jacobian transformation between the muscles and Cartesian Space. The maximal and 
minimal forces exertable by the muscles were set as the boundary condition for the 
generalized pseudo-inverse by means of a state-of-the-art muscle model.  

Keywords: Stiffness, inverse problem, force method, constrained optimization, EMG. 

1 Introduction 
The control of wearable devices cannot be efficiently designed by assuming that the users’ 
muscle forces are the only means to control body segments dynamics while ignoring the 
intrinsic mechanical properties of the muscles. The mechanical dynamics of the 
combined musculoskeletal system play a central role to gain a fuller understanding of the 
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control of movement in its entirety. To control the human body movement, the Central 
Nervous System (CNS) generates neural commands to activate the muscles. Muscles’ 
force combined with inertia and external forces, results in observable movement. An 
accepted parameter that has been used to describe the relationship between neural control 
and limb mechanics is muscle stiffness [Piovesan, Morasso, Giannoni et al. (2013)]. 
However, the direct measurement of both muscles’ force and stiffness is impossible, thus 
posing an important limitation to the design of wearable robotics controllers.  
Methods to obtain muscle force and stiffness rely on numerical models that can be 
subdivided into two main categories. The first approach is to assume a physiologically 
sound cost function [Van Bolhuis and Gielen (1999)] that is minimized to resolve the 
over-constrained problem of having more muscles than Degrees Of Freedom (DOFs) to 
move [Van Bolhuis and Gielen (1999)]. The second approach is to use the 
Electromyographic (EMG) signal of muscles as input for a muscle model that can 
produce a force output [Lloyd and Besier (2003); Shao, Bassett, Manal et al. (2009)]. 
Methods based purely on cost functions are often not able to represent the co-contraction 
level of the muscles. Co-contraction is energetically expensive and, if the cost functions 
to be minimized are based on metabolic energy or similar figures of merit, co-contraction 
strategies are usually avoided. On the other hand, musculo-skeletal models based on 
EMG recordings can provide an indirect estimation of human muscle force and estimate 
the co-contraction levels of muscles’ pairs which are directly related to joints’ stiffness. 
However, while EMG-Driven models seem quite appealing, factors such as perspiration 
and movements of the skin can create EMG artifacts that affect the estimation. Lastly, it 
is difficult to acquire deep muscles as only superficial muscles are practical to measure for 
the control of wearable robots. As a consequence, a large number of muscles are ignored. 
The complexity of the human arm kinematics and dynamics is evident when the hand is 
moved to achieve a specific goal in the Cartesian Space while controlling the over-
abundant DOFs of wrist, elbow and shoulder girdle at the same time. To clarify this 
statement, let us analyze a concrete situation such as the simple routine of reaching for a 
pencil placed on a table. The same final goal (i.e., to grasp the pencil with a well-defined 
position and orientation of the hand) can be achieved with an infinite number of arm 
poses since the self-motion manifold of the joint space has a finite dimension [Burdick 
(1989)]. The number of joints in the upper extremity allows the hand to cross many 
different paths leading to the same final point. This is because the number of joints in the 
upper extremity is higher than the DOFs the pencil has in the Cartesian Space. In this 
context, one of the main difficulties connected to solve the inverse kinematic problem is 
to discover a general control strategy that allows the selection of the most appropriate 
trajectories during a given task assuring at the same time the same type of smoothness we 
can find in natural movements. A common method to analyze the control of the upper 
limb is to use a reductionist approach where a two-link arm is constrained to move on a 
plane under the implicit assumption that the duration of the movement is known before 
its beginning and the shoulder girdle is a simple revolute joint [Piovesan, Pierobon, DiZio 
et al. (2012, 2013)]. Using such a simple approach some important issues in natural 
every-day motion might be neglected, including multiple constraint satisfaction, endpoint 
solution specificity as a function of the task and the generation of complex paths in 3D 
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space. The model here proposed considers a large number of internal degrees of freedom 
of the arm which obviates these limitations. 
The human arm is not only a kinematically redundant system where, given the position of 
the hand, an infinite number of self-motions is possible, but is also an over-constrained 
system where the motion of each link is commanded by multiple actuators (i.e., the 
muscles) acting together [Kutch and Valero-Cuevas (2012)]. The problem of representing 
a mechanism as redundant (i.e., over-constrained) has been tackled in the field of 
structural and applied mechanics [Aghili (2011); Stadlmayr, Witteveen and Steiner 
(2015); Wojtyra and Frączek (2012)], where it is necessary to estimate if a structure is 
able to withstand the loads for which it was designed and at the same time limit the 
maximum deflection given a certain load. Hence, some easy parallelisms can be drawn 
between system control and structural mechanics resolution methods. 
The control of a redundant kinematic chain can be tackled using a stiffness control scheme. 
This strategy commands the movement of the joints with respect to a reference position and 
the relative stiffness between the joints themselves to achieve the desired torque and force 
at the point of contact [Piovesan, Kolesnikov, Lynch et al. (2019)]. In structural mechanics, 
this is equivalent to solve the indeterminate structural problem using the displacement 
method [Bauchau and Han (2014); Shin, Lee, In et al. (2010)], where the original system is 
modified by adding new constraints obtaining a combination of elementary structures 
whose reaction forces under deformation have been previously studied. The input is 
displacements in the directions of the added constraints, the output is the reactions force of 
the imposed deformation which sum must be equal to zero to obtain equilibrium.  
Conversely, the over-constrained mechanism can be solved with an explicit compliance 
control scheme that uses force set-points as commands and accomplishes contact force 
control directly [Masarati, Morandini and Fumagalli (2014); Piovesan, Kolesnikov, 
Lynch et al. (2019); Segalman (2007)]. The torque and force at the joint and the 
compliance of the system determine the position of the joints. This is equivalent to 
resolve a statically indeterminate problem [Maugh (1946)] in a structure by means of the 
force method, where constraints are removed from the chosen structural model (e.g., 
welded junctions are modeled as hinges). The removed constraints are replaced by 
torques so to obtain a stable and statically determinate structure (virtual forces are 
imposed resulting in the movement of the structure, which must be zero at equilibrium). 
The ultimate goal of this work is to produce the estimation of the joint stiffness by 
applying the two aforementioned control schemes separately between the joints and the 
Cartesian Space (redundant/stiffness control) and between the muscle and joint space 
(over-constrained/compliance control) to solve the redundant/over-constrained control 
problem of the human arm. The transformation between the three spaces (Cartesian, 
Joints, Muscles) is done using geometrical transformation establishing the relationship of 
a generalized pseudo-inverse of the Jacobian matrices via the elastic energy field.  
We designed a simulation using SimWise 4D, and VirtualMuscle [Cheng, Brown and 
Loeb (2000)], using a hybrid approach that can take advantage of the best of both EMG-
Driven and optimization-based models. This paper presents the simulation of a closed 
kinematic chain between a modeled “right human arm and shoulder” on one side, and the 
kinematic chain of an ad-hoc marker set on the other representing the position of 
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anatomical landmarks on the “arm and shoulder” in the Cartesian space. Thirty-nine 
muscles were implemented for which minimum and maximum force were estimated 
instant-by-instant using the EMG-Driven muscle model while the arm moved along a 
pre-determined trajectory. This was possible by imposing either a minimum or maximum 
activation to the muscles while simulating a point-to-point reaching movement enforced 
onto the simulated arm. The interaction force between the arm and the environment was 
also estimated, assuming the aforementioned anatomical landmark as point of contact 
with the environment. Obviously, for an unfettered movement such contact forces ought 
to be nil. This information allowed for the creation of upper and lower boundaries for 
both muscle forces and short-range muscle stiffness. Hence, for each instant, the boundaries 
where used into a constrained optimization aimed at obtaining an estimate of muscles’ 
force that would satisfy the interaction forces between the human and the environment. 

2 Methods 
2.1 Theoretical background 
To summaries the different coordinates and spaces used in this work, we will refer to the 
following scheme: 
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where Ψ , Θ , and Λ  are functors, mapping the generalized positions of the specific 
vectorial space into a generalized force associated with said topology [Jacobson (2009)]. 

Let us consider a vector [ ]1 2
T

ry y y=y   that describes the position and 
orientation of a specified set of anatomical landmarks on arm in a Cartesian Space. This 
vector is not strictly representing the operational coordinates often specified in robotics as 
the position and orientation of the end effector but it rather denotes a set of generalized 
co-ordinates on the surface of the arm. This formulation is often used when describing 
Whole-Arm-Manipulations (WAM), as in Salisbury  [Salisbury (1987)]. 

Let [ ]1 2
T

kq q q=q   be a set of generalized coordinates that fully describes the 
configuration of the limb joints. Note that, also in this case, 𝑞𝑞𝑖𝑖  is not necessarily a 
rotation (as in a revolute joint) but it could be a translation (as in a prismatic joint). A 
mapping between the two spaces can be described as follows: 

( )W =  y q .  
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The map [ ]W , where the dependency from q  has been omitted for convenience, is a 
Jacobian matrix. Indeed, the relationship between the differential of the co-ordinates in 
the Cartesian space and those in the joint space can be written as a first approximation as: 

( )d W d =  y q q


. (2) 

Due to the redundancy condition, [ ]W  has usually more columns than rows (i.e., k r> ). 

Thus, the regular inverse [ ] 1W −
 does not exist and the inverse kinematics allows an 

infinite number of solutions.  
The DOFs of the human arm are actuated via a sophisticated actuators’ network (i.e., the 
muscles). Thus, the over-constrained relationship between generalized joint torques 

[ ]1 2
T

kT T T=T   and muscle forces [ ]1 2
T

m= Φ Φ ΦΦ  , can be written 
as follows: 

[ ]( ) TB=T q Φ . (3) 
The matrix [ ]B  (where again the dependency from q  has been omitted for convenience) 
represents the moment arms of the forces with respect to the joints. When trying to invert 
the matrix [ ]B , the number of muscles is larger than the number of joints (i.e., m k> ) 
and thus an infinite number of muscle forces can provide the same torque component iT . 
To find a unique solution to this problem several cost functions have been proposed over 
the years [Bortoletto, Pagello and Piovesan (2014); Hu, Murray and Perreault (2012); 
Van Bolhuis and Gielen (1999)]. 
Finally, we can consider the mapping between the coordinates in the Cartesian space (CS) 
y and the muscles length x .  

[ ]( )M=x y   

Again, we can demonstrate that [ ]( )M y is Jacobian matrix between the displacements dy  
and dx  that can be written using the following linear first approximation relationship: 

[ ]( )d M d=x y y
  (4) 

A congruent stiffness transformation have been proposed [Chen and Kao (2000); Mussa-
Ivaldi and Hogan (1991)] as one of the possible generalized inverses providing a bi-
univocal mapping between twists (the sets of displacements and rotations) and wrenches 
(the sets of force and torques) in different spaces. 
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Figure 1: Graph describing the functions that connect the Cartesian Space (CS), the joint 
space  and the muscle space at a certain instant. We assume “d” as the function mapping 
the variable to its differential 

The stiffness matrix [𝑅𝑅] in Fig. 1 represents the mapping between the differentials of 
joint angles ( dq ) and joint torques ( dT ) so that: 

[ ]d R d=T q  (5) 
Notice that the Joint Stiffness [𝑅𝑅] is square and invertible. 
A similar relationship can be constructed between the differentials of muscle length ( dx ) 
and muscle force ( dΦ ) so that: 

[ ]Md K d=Φ x  (6) 
[ ]MK  is a stiffness matrix representing the Short-Range Muscle-Stiffness (SRMS) 
[Piovesan, Pierobon, DiZio et al. (2013)]. It is worth noting that [ ]MK  is always 
invertible, as it is diagonal, full ranked, and all the coefficients on the diagonal are 
positive. To estimate the muscle stiffness we adopted a model-based approach inspired to 
previous studies about upper limb [Hu, Murray and Perreault (2011)] and lower limb 
[Bortoletto, Michieletto, Pagello et al. (2014); Pfeifer, Hardegger, Vallery et al. (2011); 
Pfeifer, Vallery, Hardegger et al. (2012)]. In particular, a muscle-unit stiffness coefficient 
can be estimated as a function of the 𝑖𝑖𝑡𝑡ℎ muscle force ϕi, the Optimal Fiber Length 𝑥𝑥0𝑖𝑖, 
and of a dimensionless scaling constant 𝛾𝛾 [Cui, Perreault, Maas et al. (2008); Piovesan, 
Pierobon and Mussa Ivaldi (2013)]: 

𝐾𝐾𝑀𝑀𝑖𝑖𝑖𝑖 =
𝛾𝛾𝜙𝜙𝑖𝑖
𝑥𝑥𝑜𝑜𝑖𝑖

 (7) 

From Fig. 1 the relationship between the differentials of the joint’s space generalized 
coordinates and Cartesian coordinates can be written as: 

[ ]B d d=q x  (8) 
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where the matrix of moment arm [ ]B is also a Jacobian matrix relating twists which 
elements are the moment arms of the muscles with respect to the joints. Assuming the 
joint stiffness matrix [ ]R  to be invertible we can combine Eqs. (5)-(7) so that: 

[ ] [ ]( ) [ ] [ ][ ][ ]( )1 1 1
M MB R d K d K B R d d− − −= ⇔ =T Φ T Φ  (9) 

It is evident that the matrix [ ][ ][ ]( )1
MK B R −  is a generalized inverse of [ ]TB . 

Differentiating Eq. (3), we obtain  

( )1 1
ˆM M

i mi m mi m i im m
dT B d dB dT o dT

= =
= Φ + Φ = +∑ ∑  (10) 

using the relationship provided in Eq. (8) to describe the term ( )io dT in Eq. (10) and 
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The substitution of Eq. (11) in Eq. (10) and the use of Eqs. (6) and (8) leads to; 

[ ] [ ] [ ] [ ][ ] [ ]( )T T
Md B d d B K B d= + Γ = + ΓT Φ q q  (12) 

Comparing Eq. (12) with Eq. (5) it is immediate to notice the new form of the joint 
stiffness matrix (i.e., [ ]R ). The stiffness [𝑅𝑅] is a function of the muscle forces Φ . Indeed, 

its components [ ]Γ  and [ ]MK depend on the muscle force as shown in Eqs. (11) and (7). 

The calculation of the muscle force Φ  is therefore an important factor of this work. We 
can proceed to estimate Φ  through the computation of the Cartesian force F  as 
suggested in Fig. 1 so that; 

[ ]#Td M d=Φ F  (13) 

Having found an invertible Jacobian guarantees local inevitability of the function Φ  
[Spivak (2018)]. Furthermore, we can compute the Jacobian of F  by computing the 
inverse of the Jacobian of Φ . Indeed, numerous functions that are globally non-invertible 
can be locally invertible almost throughout their domain (e.g., most even polynomial). 
Global inevitability can be achieved if an interval can be found where, the Jacobian 
determinant is everywhere non-zero and Φ  is proper in the mathematical sense 
[Hadamard (1906)]. 
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[ ]
0

#
0

( , )

TM d= + ∫
c y y

Φ Φ F  (14) 

The integral (14) is evaluated by parameterizing the path ( )0c y ,y between the initial 

point 0y  and the position y  and numerically approximating integral. We will see how 
the calculation of Φ  is possible by using the multibody software SimWise 4D2 (Design 
Simulation Technologies, Inc., Canton, MI, USA) 

2.2 Constrained optimization 
In this section we will present a hybrid approach to calculate the generalized pseudo-
inverse [ ]#TM . The Moore-Penrose (MP) pseudo-inverse is in the form: 

[ ] [ ][ ] [ ]
1#T TM M M M
−

 =  
  

The MP model finds the vector dΦ , which has the norm 0nulld =Φ  in the null space of 

matrix [ ]TM . This means that any solution given by the MP model corresponds to a 

solution with minimum norm 2
m

m
dΦ∑  [Klein and Huang (1983)]. 

The use of the MP approach neglects the following constraints: 
1. It does not guarantee a non-negative Φ  ignoring that the muscles can only pull 

and never push. While dΦ  can be negative, indicating that the muscle force is 
decreasing from a previous point, the force per se cannot be negative.  

2. It does not constraint the minimum and maximum amount of force exertable by 
the muscle 

3. It does not take into account additional constraints such as the maximum stiffness 
obtainable with the maximum force 

Calculating [ ]#TM  at each instant of time with a linear static optimization allows 
imposing all of the aforementioned constraints, which we evaluated using a muscle 
driven model. 

2.3 Muscle model 
The Virtual Muscles (VM) 3.1.5. software utilizes an algorithm of recruitment of motor 
units, individually defined as Hill-type muscle models [Cheng, Brown and Loeb (2000)]. 
The equations that are used to describe a muscle’s behavior are fit to data acquired in 
feline in vivo experiment using a Levenberg-Marquardt algorithm [Levenberg (1944); 
Marquardt (1963)]: a well-known least-squares non-linear curve-fitting technique. For 
each function, the developers of VM tested numerous possible equations and identified 
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those fitting the data best with minimal complexity and number of coefficients [Brown, 
Cheng and Loeb (1999); Brown, Kim and Loeb (1998); Brown and Loeb (1999, 2000); 
Cheng, Brown and Loeb (2000)]. 

 

Figure 2: Mechanical scheme for the muscle models as implemented in the software 
Virtual Muscle (VM). The model’s output is the force exerted by the muscle between two 
bones considered as static and mobile references 

Fig. 2(A) Represent a generic muscle actuating a rotational joint. The point A and B 
represent the insertion of the whole muscle on the bone, point G represent the insertion of 
the muscle on the tendon. Fig. 2(B) represents a muscle with four main sub-blocks such 
as, muscle MASS, serial elastic element (SEE) (i.e., the muscle’s aponeurosis and 
tendon), parallel viscoelastic elements (PVE), and contractile elements (CE). PVE can be 
conceptualized with a spring (PE1) and a damper (PDE) active only when the muscle is 
elongating, and with just a spring (PE2) when it is shortening. The contractile element is 
a combination of motor units, which contract with a pre-determined sequence following 
the Hanneman principle, determined by the size of the motor unit and the activation 
pattern. Note that the sum of the force of each motor unit will produce the overall force of 
the contractile element 𝐹𝐹𝐶𝐶𝐶𝐶. 
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𝐹𝐹𝐶𝐶𝐶𝐶 = 𝐹𝐹𝑉𝑉 ∙ ( 𝑥𝑥,̇  𝑥𝑥) ∙ 𝐹𝐹𝐿𝐿( 𝑥𝑥, 𝑡𝑡) ∙ 𝐴𝐴𝑓𝑓(𝑥𝑥,𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒, 𝑆𝑆,𝑌𝑌) (16) 
VM uses the net force between the contracting 𝐹𝐹𝐶𝐶𝐶𝐶  element, the parallel viscoelastic 
element 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃  and the serial elastic 𝐹𝐹𝑆𝑆𝑆𝑆  element of each muscle to compute the 
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contracting element velocity 𝑉𝑉𝐶𝐶𝐶𝐶  and muscle length 𝑥𝑥0 necessary for the calculation of 
the muscular force. Dividing the net force by the muscle mass 𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 gives the 
acceleration of the contracting element. The contractile element velocity and length are 
calculated by integrating the acceleration 𝑎𝑎𝐶𝐶𝐶𝐶, which requires boundary conditions.  
Notice in Eq. (16) that the force of the contractile element depends on three components 
which are function of the force-velocity relationship 𝐹𝐹𝑉𝑉, the force-length relationship 𝐹𝐹𝐿𝐿 
and the activation of the fibers 𝐴𝐴𝑓𝑓. VM incorporates four first order differential equations 
to describe the total muscle activation 𝐴𝐴𝑓𝑓 which encompass 1) activation delays, 2) rise 
and fall time of muscle force, as well as fatigue phenomena such as 3) muscle yield 𝑌𝑌  
(i.e., a fast decrease in muscle apparent stiffness [Brown, Cheng and Loeb (1999)]) and 4) 
muscle sag 𝑆𝑆  (i.e., a slow decrease in muscle apparent stiffness [Brown and Loeb 
(2000)]). The equations, dependent on time and motor unit’s firing frequency, are 
implemented for each fiber type and therefore for each motor unit to model physiological 
behaviors found experimentally. A complete description of the mathematical formulation is 
provided in Brown et al. [Brown, Kim and Loeb (1998); Brown and Loeb (2000); Cheng, 
Brown and Loeb (2000); Rack and Westbury (1969); Scott, Brown and Loeb (1996)]. 
Using a 3D software based on SimWise 4D platform and the kinematic model of the 
human arm, we reconstructed the trajectories of the arm’s bones in the Cartesian Space. 
Muscles were implemented like actuators in the SimWise environment, and were 
controlled using a Matlab-Simulink (MathWork) interface. We used VM to simulate the 
force of the muscles. Assuming that the skeletal model is moved passively along a 
superimposed reaching trajectory via a set of experimentally recorded whole-arm 
Cartesian trajectories 𝒚𝒚, the forces that the muscles can apply is directly dependent on the 
muscles’ lengths 𝒙𝒙  and their derivative with respect to time 𝒙̇𝒙 , which will uniquely 
determine 𝐹𝐹𝐿𝐿 and 𝐹𝐹𝑉𝑉 in (16) at the specific instant. On the other hand the total activation 
𝐴𝐴𝑓𝑓 depends on the muscles’ excitations 𝒖𝒖(𝑡𝑡). We can posit two extreme conditions where 
all muscles have no excitation (𝒖𝒖(𝑡𝑡) = 𝟎𝟎),  and all muscles have maximum excitation 
(𝒖𝒖(𝑡𝑡) = 𝟏𝟏) . Therefore, we can calculate a boundary condition for minimum and 
maximum muscle force and, according to Eq. (7), muscles’ stiffness. Notice that even 
without activation the muscle will produce a passive force given by the interaction 
between the parallel viscoelastic element and the serial elastic elements as shown in Eq. 
(15) and Fig. 2B. 

2.4 Experimental protocol 
The aim of this section is to calculate the force of the muscles in a reaching movement by 
means of VM, and compute the minimal and maximal stiffness that a subject could exert.  
Experimental data where acquired on 10 human subjects in previous experiments of our 
group. Protocol and instrumental setup are detailed in Piovesan et al. [Piovesan, Pierobon, 
Dizio et al. (2011); Piovesan, Pierobon, DiZio et al. (2013)]. Each subject was asked to 
follow with the pointing finger a straight-line trajectory, parallel to the sagittal plane in a 
movement similar to that of grabbing a pencil that lies on a table. 
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Figure 3: Example of path and trajectory followed by the subjects. The origin of the 
reference frame is positioned under the index finger in the initial configuration. The x-
axis points frontally and the y-axis medially A) Final Configuration B) Initial 
Configuration. C) time-profile of the displacement along the x axis 

Using an Optotrack® system to measure the trajectories described by the subjects’ arm, 5 
active markers were placed on the latter, located on the index fingertip, styloid process of 
ulna, lateral epicondyle of humerus, acromion and sternum. 
The marker on the sternum was considered as a reference because of the limited mobility 
of the torso, while the one placed on the scapular part of the acromion was a marker 
cluster, necessary to record the attitude of the scapular bone. The Cartesian coordinates of 
the other markers were considered as the description of the position of the arm 

[ ]1 2
T

ry y y=y  . 

A model with joints’ sliding center of rotations was used to describe the trajectories of the 
bones during the set of reaches. Particularly, we constructed a geometrically consistent 
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closed kinematic chain using two mechanisms in parallel: the skeleton and its articulation 
on one side and the kinematic chain produced by the markers’ movements on the other. In 
other words, we considered the skeleton as a mechanism which DOFs were driven by the 
movement of the markers. In our simulation the markers were connected to the skeleton 
with rigid constrains and driven with the data acquired with the Optotrack system.  
Fig. 4 illustrates the coupling of the bone structure (that for brevity we will call here ∑ ) 
with the kinematic chain created by the markers. For the entire mechanism, the number of 
DOFs Σn  of Σ are: 

1553)16(6
2345)1(6 54321

=⋅−−=
−−−−−−=Σ



CCCCCmn
 (17) 

where, again, m is the number of links considering also the ground and | 1, 2,...,5iC i =   is 
the number of joints of a certain class [Shai (2011)]. The class of the joint indicates the 
number of DOFs that the constrain leaves free. Hence, prismatic and revolute joints are all 1C . 

As depicted in Fig. 4 a set of kinematic relationship between the markers and ∑  has been 
introduced by constraining 153435 =+++=Σmn  DOFs. 

Each Cartesian constraint let a coordinate [ ]1 2
T

ry y y=y   free. We modeled 
the marker constraint placed onto the scapula, so that the orientation of the bone would be 
completely predictable. A list of all constrains can be found in in Tab. 1. 
The model ∑  was used to calculate the force elicited by the muscles, both using a MP 
pseudo-inverse and a more physiological approach derived by the knowledge of the 
muscles’ properties. 
The trajectory (with total duration of 1.2±0.01 s as depicted in Fig. 3) was subdivided 
into 3000 frames. Using the markers configuration presented in Fig. 4 we could 
reconstruct a well-posed system between the 15 coordinates of the limb’s joints (q ) and 
the 15 Cartesian co-ordinates of the four moving markers and marker cluster ( y ). For 
each frame the relationship between the two spaces can be linearized. By applying for 
each frame a variation of 1 mm or 1 deg to each coordinate iy  and noting the 
corresponding variation of dq  and dx it was possible to calculate each components of 
the Jacobians [ ]W  and [ ]M in Eqs. (2) and (4). 
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Figure 4: Model of the kinematic chain embedding joints with sliding centers of 
instantaneous rotations. Light gray joints represent the internal articulation of the 
mechanism, while the white constrains represent the superimposition of the movement 

We superimposed the recorded movement of the real markers onto the model in our 
simulation. This way, we considered the simulated markers gliding on slides which 
shapes were those of the recorded trajectories. With our 3D model, we could simulate 
without ambiguity the movement of the articular joints and the elongations of the muscles. 
SimWise 4D requires the inertial properties of each segment and the kinematic constraint 
between each element as inputs. SimWise 4D calculates the current acceleration of each 
body in the model given its inertial properties under the generalized displacement y , and 
uses this acceleration to compute a velocity (and position) one time step later of all 
segments. Furthermore, SimWise 4D incorporates a scheme to check and correct its 
prediction. This process is then used again to find a new velocity and position. Because 
of the particular internal and external constraints’ placement illustrated in Fig. 4, as well 
as the correction algorithm that maintains the constraints congruent it is possible to 
compute the force vector F  exerted by the skeleton on the slides at each instant of the 
simulation, depending on the inertial features of the links. 
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Table 1: Representation of the markers and internal coordinates of model . 
SC=Sternum Clavicular Joint; GH=Gleno Humeral Joint; AC=Acromion Clavicular Joint 
q  y  

Ry wrist hand flexion/extension P1x displacement fingertip marker dorso-ventral 
Rz wrist hand ad/abduction P2y displacement fingertip marker medio-lateral 
Rx elbow prono-supination of the forearm P3z displacement fingertip marker vertical 
Rz elbow elbow flexion/extension P4x displacement wrist marker dorso-ventral 
Ry SC first rotation of SC P5y displacement wrist marker medio-lateral 
Rx SC second rotation of SC P6z displacement wrist marker vertical 
Rx GH gleno-humeral ab-adduction P7x displacement elbow marker dorso-ventral 
Ry GH gleno-humeral flex-extension P8y displacement elbow marker medio-lateral 
Rz GH gleno-humeral int-ext rotation P9z displacement elbow wrist marker vertical 
Rx AC Acromio-clavicular ab-adduction P10x displacement shoulder marker dorso-ventral 
Ry AC Acromio-clavicular flex-extension P11y displacement shoulder marker medio-lateral 
Rz AC Acromio-clavicular int-ext rotation P12z displacement shoulder wrist marker vertical 
Pz wrist axial movement of the wrist R13x rotation of the wrist marker around x 
Px elbow axial movement of the elbow R14x rotation of the shoulder marker around x 
Pz AC axial movement of the clavicle R15y second rotation of the shoulder marker around y 

By knowing the forces F  we can calculate the muscle force Φ , using the constrained 
pseudo-inverse of [ ]TM and integration along the pre-imposed trajectory as previously 
described in the method section.  The constraint to the optimization were the maximum 
and minimum Φ  calculated using VM and the maximum muscle stiffness [ ]MK
obtained using the length of the muscle and the maximum force at the specific instant as 
input for Eq. (7). Thus, we computed the matrix [ ]#B  after we calculated [ ]Γ  and 

[ ]MK  using Eqs.  (11) and (6). 

3 Results 
During the superimposition of the movement for the whole recorded trajectory we were 
able to monitor all the muscles’ length changes, so that we could use these data as an 
input for the VM models mentioned above. The introduction of maximal and minimal 
activation of the muscle throughout the trajectory would bring the maximum and 
minimum force that all the muscles would exert in that particular instant and with that 
particular velocity. 
Fig. 5 shows the force Root Mean Square (RMS) of each muscle of our model, along the 
superimposed trajectory. It can be seen that the force calculated using the pseudo inverse 
[ ]#TM always lies between the minimum and maximum force calculated with the 
activation driven model. 

∑
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Figure 5: RMS force of each muscle along the movement. Solid) maximum activation, 
Dashed) minimum activation, Dotted) inverse dynamics 

Introducing the forces in Eqs. (7) and (11) on a frame by frame basis, we could calculate 
the joint stiffness matrix R  from Eq. (12) throughout the trajectory.  
The value of the elbow rotational stiffness 𝑅𝑅𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒calculated with the inverse dynamic 
method varies between 82.62 to 9.61 [Nm/rad] whereas the value calculated with 
maximal activation is between 251 and 43 [Nm/rad]. The estimates of 𝑅𝑅𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 as function 
of time are always within the experimental error provided by Piovesan et al. [Piovesan, 
Pierobon, DiZio et al. (2013)]. It is also evident the tendency of the stiffness to decrease 
during movement, again in line with the experimental findings in Piovesan et al. 
[Piovesan, Pierobon, DiZio et al. (2013)]. 
For the shoulder rotational stiffness 𝑅𝑅𝑍𝑍𝐺𝐺𝐺𝐺  the inverse dynamic method yields values 
between 5.45 to 16.02 Nm/rad. The value of 𝑅𝑅𝑍𝑍𝐺𝐺𝐺𝐺  calculated with maximal activation is 
between 11.2 and 19.97 Nm/rad. Again, both values are within the experimental error 
provided by Piovesan et al. [Piovesan, Pierobon, DiZio et al. (2013)] with a similar 
tendency of the stiffness time-profile to increase monotonically throughout the movement.  
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Figure 6: Time profiles of stiffness for the generalized joint q  as reported in Tab. 1. 
Minimum (dashed line) and maximum (dotted line) joint stiffness are obtained using the 
value of force at minimum and maximum activation via VM. Optimized stiffness (solid 
line) was obtained through the inverse Jacobian [ ]#TM  

We also found that the MP estimates of both wrist flexion/extension 𝑅𝑅𝑌𝑌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 and 
ad/abduction 𝑅𝑅𝑍𝑍𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  stiffness were compatible with the experimental measurement 
reported in Formica et al. [Formica, Charles, Zollo et al. (2012)] with a maximum of 1.65 
and 2.49 Nm/rad, respectively. This maximum value occurs at 0.33 s right before the 
beginning of the finger movement. Radial prono-supination 𝑅𝑅𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  was also maximal 
after the movement initiation phase with a peak of 1.95 Nm/rad also compatible with 
experimental measurements [Drake and Charles (2014)]. 
The axial movement of elbow and wrist along the prismatic joints depicted in Fig. 4 
mostly elicit a stretching of the muscles along their line of action. The maximum values 
of the stiffness are 𝑃𝑃𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒=2386 N/m and 𝑃𝑃𝑍𝑍𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤=1372 N/m. The contractions of the 
muscles keep the metacarpal joints connected to the forearm and the forearm connected 
to the humerus, respectively. The stiffness is of the same order of magnitude of the 
muscles stiffness 𝐾𝐾𝑀𝑀𝑖𝑖𝑖𝑖 around the prismatic joints acting in parallel. 

4 Discussion and conclusion 
This study implemented a 3D model of the upper limb. The force of 39 muscles was 
calculated considering many DOFs often neglected during arm reaching movements. 
With this work, we found a configuration for the joint structure, combined with a markers’ 
placement on the body that allowed us to calculate the inverse dynamics of the human 
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arm, with no redundancies between whole-arm and joint space. The relationship between 
the external marker movements and the modeled mechanism of the upper limb can be 
treated as a parallel robot or a wearable device interacting with the arm. This allows us 
finding the reaction forces that virtually should be applied between an exoskeleton and 
the arm if the markers would be the point of contact between the arm and the exoskeleton 
moving along a pre-determined trajectory. This method is equivalent to the applying the 
force method on a structure. The virtual forces applied to the arm combined with the 
recorded kinematics can provide the virtual work necessary to move the arm. For the 
principle of virtual work the elastic energy provided by the muscle must be the same. We 
calculated the force that the muscles could apply between joints, as well as their stiffness 
using an optimization based on phenomenological aspects.  
A physiological approach was used to calculate the maximum and minimum muscle force 
and stiffness along the trajectory, considering the relation between muscle force and 
activation being monotone.  
We investigated the force that the implemented muscles could apply to the mechanism 
with no activation and maximal activation, developing a range of possible values of the 
muscle-stiffness components. We want to highlight that the results achievable using our 
optimized inverse method are comparable to those obtained experimentally for different 
upper-limb joints. Moreover, the ability of the proposed technique to provide a subject-
specific and task-specific physiologically consistent range of variability of joint stiffness 
could be effectively used to modulate the metabolic cost in individuals wearing orthotic 
devices and to better understand abnormal stiffness strategies in patients with 
neurological and orthopedic conditions in order to setup personalized rehabilitation 
procedures that restore physiological properties. 
It is worth noting that the present analysis have some limitations. First, it requires the use 
of Jacobian matrices that are computationally expensive to calculate. Second, at the time 
of this study, the whole analysis loop is implemented in an offline manner allowing for a 
preliminary setup of a wearable robot control loop. Future work will focus on the 
improvement of the highlighted limitations through the introduction of a 
multidimensional spline based approach in order to substitute the use of Jacobian 
matrices and the integration of the proposed technique in an online loop to effectively use 
the hybrid inverse dynamics estimation and corresponding joint stiffness information 
within a control loop of an assistive wearable device.  
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Supplementary material 
Table A:  Implemented muscles location in our model 

1 anconeus 

2 short head of bicheps brachii 

3 long head of bicheps brachii 

4 brachialis 

5 brachio-radialis 

6 coraco-brachialis 

7 acromial deltoid 

8 clavicular deltoid 

9 spinal deltoid 

10 extensor carpii radialis brevis 

11 extensor carpii radialis longus 

12 flexor carpii radialis 

13 flexor carpii ulnaris 

14 serratus anterior 

15 lumbar latissimus dorsii 

16 sacral latissimus dorsii 

17 thorax latissimus dorsii 

18 teres major 

19 infraspinatus 

20 levetor scapulae 

21 palmaris longus 

22 abdominal pectoralis major 

23 clavicular pectoralis major 

24 sternal pectoralis major 

 

 



44                       CMES, vol.123, no.1, pp.23-47, 2020 

25 pectoralis minor 

26 teres minor 

27 pronator quadratus 

28 pronator teres 

29 rhomboid major 

30 rhomboid minor 

31 supraspinatus 

32 subscapularis 

33 subclavius 

34 upper trapezius 

35 lower trapezius 

36 middle trapezius 
37 lateral head of triceps brachii 

38 long head of triceps brachii 

39 medial head of triceps brachii 

Table B:  Configurations of the arm pose during the movement 

1) 0 s 2) 0.15 s 3) 0.3 s

4) 0.35 s 5) 0.4 s 6) 0.45 s
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7) 0.5 s 8) 0.55 s 9) 0.6 s 

10) 0.65 s 11) 0.70 s 12) 0.75 s 

13) 0.8 s 14) 0.85 s 15) 0.9 s 

16) 1.05 s 17) 1.2s 
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Table C: Physiological parameters of muscles [Yamaguchi, Sawa, Moran et al. (1990)].  

Muscles’ name 
Mass 
[g] 

x0
T 

[cm] 
x0 
[cm] 

PCSA 
[cm2] 

𝝓𝝓𝟎𝟎 
[N] 

xpath 
[cm] 

xmax 
[x0] Ur % s.f. % f.f. 

anconeus 7.1 6.7 2.7 2.50 78.91 9.5 1.14 0.8 30.0 70.0 
shor head of bicheps brachii 32.0 19.0 13.0 73.80 73.85 34.3 1.24 0.8 50.0 50.0 
long head of bicheps brachii 60.0 18.0 13.6 4.20 132.35 33.9 1.23 0.8 42.3 57.7 
brachialis 62.9 4.0 8.0 7.40 235.72 13.4 1.19 0.8 50.0 50.0 
brachio-radialis 44.0 13.0 16.0 2.60 82.50 30.8 1.15 0.8 39.8 60.2 
coraco-brachialis 22.6 8.0 10.0 2.10 67.74 18.5 1.09 0.8 50.0 50.0 
acromial deltoid 236.2 3.0 16.5 430.80 430.81 20.0 1.04 0.8 53.3 46.7 
clavicular deltoid 93.8 3.0 10.0 281.40 281.40 15.0 1.21 0.8 61.0 39.0 
spinal deltoid 80.0 3.0 19.5 123.00 123.08 24.0 1.08 0.8 50.0 50.0 
extensor carpii radialis brevis 16.7 25.0 5.3 3.00 94.80 30.0 1.15 0.8 50.0 50.0 
extensor carpii radialis longus 19.4 22.5 7.8 2.30 74.61 31.0 1.21 0.8 50.0 50.0 
flexor carpii radialis 12.4 22.4 5.8 64.10 64.14 28.0 1.13 0.8 50.0 50.0 
flexor carpii ulnaris 16.4 23.0 4.8 102.50 102.50 28.0 1.25 0.8 50.0 50.0 
serratus anterior 163.6 3.0 17.3 284.20 284.17 23.0 1.17 0.8 50.0 50.0 
lumbar latissimus dorsii 120.0 5.0 31.3 115.00 115.02 41.6 1.18 0.8 50.0 50.0 
sacral latissimus dorsii 120.0 12.0 34.0 105.90 105.88 51.9 1.19 0.8 50.0 50.0 
thorax latissimus dorsii 120.0 2.0 28.0 128.60 128.57 33.0 1.11 0.8 50.0 50.0 
teres major 75.4 4.0 12.2 185.50 185.54 18.0 1.16 0.8 44.6 55.4 
infraspinatus 91.2 4.0 15.0 182.50 182.48 21.0 1.15 0.8 50.0 50.0 
levator scapulae 18.8 4.0 7.0 80.60 80.64 12.0 1.17 0.8 50.0 50.0 
palmaris longus 5.5 21.0 5.7 28.90 28.95 27.0 1.21 0.8 50.0 50.0 
abdominal pectoralis major 83.4 4.0 20.3 123.10 123.07 28.5 1.21 0.8 50.0 50.0 
clavicular pectoralis major 100.0 2.0 18.0 5.20 166.77 22.0 1.12 0.8 42.3 57.7 
sternal pectoralis major 102.5 3.0 21.3 144.30 144.34 28.0 1.18 0.8 43.1 56.9 
pectoralis minor 55.6 6.0 13.5 123.60 123.56 21.0 1.13 0.8 50.0 50.0 
teres minor 26.3 3.0 10.4 75.80 75.79 15.0 1.17 0.8 50.0 50.0 
pronator quadratus 14.0 1.5 4.0 105.00 105.00 6.0 1.14 0.8 50.0 50.0 
pronator teres 29.8 6.0 7.0 127.71 127.71 14.0 1.18 0.8 50.0 50.0 
romboid major 43.8 4.0 11.4 115.07 115.07 17.0 1.15 0.8 50.0 50.0 
romboid minor 29.8 4.0 7.9 113.63 113.63 13.0 1.17 0.8 50.0 50.0 
supraspinatus 42.0 2.5 8.6 146.11 146.11 12.0 1.11 0.8 50.0 50.0 
subscapularis 129.7 4.0 12.2 319.32 319.32 18.0 1.16 0.8 50.0 50.0 
subclavius 18.0 2.0 7.6 70.87 70.87 11.5 1.26 0.8 50.0 50.0 
upper trapezius 85.1 6.0 12.5 204.29 204.29 19.0 1.06 0.8 50.0 50.0 
lower trapezius 211.9 3.0 20.7 307.87 307.87 24.0 1.02 0.8 50.0 50.0 
middle trapezius 95.5 8.0 12.7 225.69 225.69 21.0 1.05 0.8 50.0 50.0 
lateral head of triceps brachii 50.1 18.0 8.4 179.04 179.04 27.1 1.18 0.8 32.5 67.5 
long head of triceps brachii 70.6 24.5 10.2 207.65 207.65 36.3 1.26 0.8 65.5 34.5 
medial head of triceps brachii 41.0 9.5 6.3 195.33 195.33 17.0 1.26 0.8 32.5 67.5 

Tab. C represent the physiological parameters of muscles used in the simulation of VM. 
The main variables are described as follows Mass (g): Mass of the muscle fascia in grams. 
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- x0(cm): Average length of the fascicles in the muscle fascia, when the muscle is at its 
optimal length for production of isometric tetanic force. -PCSA cm2: Physiological cross-
sectional area of the muscle. - 𝜙𝜙0 N: The maximal amount of force that the muscle can 
produce isometrically. -x0

T cm: Length of the tendon at the muscle’s optimal force. xpath 
cm: Maximum length of the whole- muscle (i.e., entire musculotendon path length) at the 
most extreme anatomical position. -xmax(x0): The maximal length of the fascicles at 
extreme anatomical position of the skeleton, measured in terms of the optimal fascicle 
length. -Ur: Fractional excitation level at which all motor units for a given muscle are 
recruited. -Number_unit: The number of motor units assigned to each slow twitch and 
fast twitch fiber type. -%s.f.: percentage of slow twitching fibers -%f.f.: Percentage of 
fast twitching fibers. 
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