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Abstract: This work reports a comprehensive study on poly (Ethylmethacrylate-
co-Acrylonitrile) Poly(EMA-AN) nanocomposites reinforced with a hybrid mix-
ture of nanoreiforcements based on nanocrystals of cellulose (NCC) (1 or 5% wt)
and halloysite nanotubes (HNTs) (1 or 5% wt). The morphology, thermal and
mechanical properties of these nanocomposites were characterized. Homogeneous
dispersion of the nanofillers has been shown by scanning electron microscopy. A
significant increase of the rubbery modulus and glass transition temperature were
obtained upon filler addition, due to the reduction of mobility of the matrix
macromolecular chains. On the other hand, compared with the neat Poly(EMA-
AN), the storage modulus of the nanocomposites increased by a factor 38 when
adding 5 wt% NCC and by 17 for the same concentration of HNTs. mechanical
properties of ternary nanocomposites were furthers increased resulting from a
synergistic effect of these two nanofillers.

Keywords: Poly(Ethylmethacrylate-co-Acrylonitrile); nanocrystals cellulose;
halloysite nanotubes; nanocomposites; hybrid; mechanical properties

1 Introduction

Polymer nanocomposites generally refer to organic/inorganic materials designed so that the matrix
consists of a polymer to which an inorganic nanoscale particle is physically added or in which an
inorganic species are grown under tightly controlled conditions to retain nanoscale dimensions and
minimize aggregation.

Nowadays, functional and smart materials based on renewable bioresources and eco-friendly processes
have attracted considerable attention. As the most abundant natural polymer in nature, cellulose is renewable,
biodegradable, and biocompatible. It can be extensively derivatized to form strong and stable stiff-chain
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homomolecular structure with fiber, film, and hydrogel-forming properties, which has the potential to be a
stable and robust carrier, matrix, or scaffold component for the fabrication of functional materials [1-3].

Nanocrystals of cellulose (NCC) are promising candidates for nanocomposites production, owing to
their large specific surface area, wide availability, biocompatibility and biodegradability, which may offer
great opportunities to develop environmentally friendly structural composites. The most common method
to extract NCC from natural fibers is sulfuric acid hydrolysis followed by centrifugation. The mechanism
to isolate NCC is to destroy and remove non-crystalline regions, which are present between cellulose
nanocrystals through chemical reactions. The sulfuric acid treatment introduces sulfate groups to the
surface of NCC. The negative charges on the NCC surfaces lead to high stability of aqueous NCC
suspension [4]. Favier et al. [5] were the first to explain the reinforcing effect of NCC in polymer
matrixes. Formation of a mechanical percolation network was reported to be responsible for improvement
of the mechanical properties. They investigated poly(styrene-co-butyl acrylate) latex/cellulose nanocrystal
extracted from tunicin composite films prepared by solution casting. They showed that the shear modulus
of the nanocomposites was improved over a wide temperature range above the glass transition
temperature (Tg) of the matrix. The reason was explained by the development of percolating network of
cellulose nanocrystals introduced by hydrogen bonding between neighboring cellulose nanocrystals.
Recently, the combination of NCC with other nanostructured materials such as silver nanoparticles or
nanosilica or clay mineral halloysite has been investigated as a promising strategy to further improve the
performance of nanocomposites such as thermal, mechanical and barrier properties [6-11].

Layered halloysite occurs mainly in two different polymorphs, the hydrated form (with interlayer
spacing of 10 Å) with the formula Al2Si2O5(OH)4 2H2O and the anhydrous form (with interlayer spacing
of 7 Å) with the same chemical composition as kaolinite, Al2Si2O5(OH)4. The intercalated water is
weakly held and can be readily and irreversibly removed [12,13]. Typically, HNTs are used in the
manufacture of high quality ceramic white-ware [14] and are used as nanotemplates or nanoscale reaction
vessels instead of carbon nanotubes (CNTs) or boron nitride nanotubes (BNNTs) [15,16]. Recently,
several research teams have tried to utilize HNTs as nanofiller to enhance the functional properties of
many polymers, such as natural rubber, nitrile rubber, polypropylene [17], ethylene-propylene-diene
monomer copolymer (EPDM) [18], poly(ε-caprolactone) [19], pectin/polyethylene glycol [20] and
polyvinyl alcohol (PVA) [10]. HNTs have drawn much attention also in the field of packaging due to
their use as nanocarrier for controlled release of active compounds [21-23].

Growing concerns over environmental issues and the high demand for advanced polymeric materials
with balanced properties have led to development of composite with hybrid natural reinforcement, of by
combining different sizes (micro and nano) and types (organic and inorganic), as an alternative to
synthetic fibers. The combination of nanofiller and natural fiber in the matrix demonstrate improved
mechanical properties and a reduction in water absorption properties [24-28]. On the other hand the
combination of nanofillers showed positive synergistic effects on mechanical and physical properties. For
example, Bendahou et al. [11] investigated the synergistic effect of montmorillonite (MMT) and CNCs on
the mechanical and barrier properties of natural rubber composites. However, the comparison of the effect
of OMMT (Organo-modified MMT) and CNCs on the к-carr films’ physicochemical properties, which
have SO3 groups, was investigated by Zakuwan et al. [29]. In this study, the addition of hybrid
reinforcement (CNC and OMMT) in к-carr polymer improved composite-polymer interfacial interaction
and the properties of the bionanocomposite.

A limited number of studies dealt with clay nanocomposites based on poly(ethyl methacrylate) and its
copolymers with acrylonitrile or other monomers such styrene, methyl methacrylate, butadiene, or 2-hydroxy
ethyl acrylate [30-40], but to the best of our knowledge, the preparation of nanocomposites based on poly
(ethyl methacrylate-co-acrylonitrile) in presence of a hybrid nanofiller of fibrous clay mineral halloysite
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and nanocrystals of cellulose (NCC), has not been reported. In the present work, thermal, physical, dielectric
and dynamic properties of poly (ethyl methacrylate-co-acrylonitrile) nanocomposites filled by halloysite
nanotubes and/or nanocrystals of cellulose (NCC) were studied. More importantly, the relationships
among microstructure, dispersion and mechanical properties of poly (ethyl methacrylate-co-acrylonitrile)
/NCC/HNTs nanocomposites were investigated. Halloysite nanotubes (HNTs), owing to their unique
cylindrical shape and low density of hydroxyl functional groups, can be easily dispersed in polymer
matrices even at high loading contents and do not require exfoliation like CNC and other nanoclays [41].
It’s expected that the combination of these two nanofillers in the same material might improve the
mechanical and physical properties and open perspectives of development of new active and materials of
high performances.

2 Experimental Section

2.1 Materials
Acrylonitrile (AN) (bp. 77°C), and Ethylmethacrylate (EM) (bp. 100.5°C) are commercially available

products (Fluka) and were distilled then stored below 25°C prior to use. Potassium Peroxodisulfate
(KPS), Sodium dodecyl sulfate (SDS), Sodium Bicarbonate (NaHCO3), Sulfuric acid (95%), N,N-
Dimethylformamide (DMF), all the chemicals were obtained from Sigma–Aldrich. Halloysite nanotubes
(HNTs) were kindly provided from Applied Mineral Incorporation and dried at 100°C under vacuum up
to 24 h. Cellulose nanocrystals (NCC) extracted from the rachis of the palm of the date palm tree as
described elsewhere [42-44].

2.2 Synthesis of Matrix
Into a glass reactor equipped with a mechanical stirring system and a reflux condenser, the surfactant

(sodium dodecyl sulphate, SDS), buffer (sodium hydrogen carbonate, NaHCO3), distilled water and the
monomer(s) (acrylonitrile (AN) or/and ethyl methacrylate (EMA)) are introduced. This mixture is purged
with nitrogen for 40 min and then placed in an oil bath, when the programmed temperature reaches 80°C,
the initiator (potassium persulfate, KPS) previously dissolved in distilled water is introduced at one time
and the polymerization starts. This mixture is left under mechanical stirring at 80°C, for 24 h to obtain
latex. The free radical copolymerization product of ethyl methacrylate with acrylonitrile is prepared from
an equimolar proportion of monomers (EMA/AN:50/50). The copolymer is prepared according to the
scheme of Fig. 1.

An aqueous solution of aluminum sulphate (10 wt%) is added to the latex in order to promote the
separation of the polymer from the aqueous phase, the polymer obtained is then filtered and washed with
distilled water to remove the residual surfactant, and then rinsed several times with methanol. The
resulting product is then dried under vacuum at 60°C for 24 hours and characterized by FTIR, Proton
Nuclear Magnetic Resonance spectroscopy (1H NMR), DSC and TGA analysis.

Figure 1: Synthetic scheme for poly(EMA-AN) (n = 50)
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2.3 Preparation of Nanocomposite Films
Poly(EMA-AN) nanocomposite films reinforced with NCC and HNTs were prepared by solvent casting

method in DMF. The aqueous suspension of cellulose nanocrystals was solvent-exchanged to acetone and
then to DMF by several successive centrifugation and redispersion operations.

Poly(EMA-AN) was dissolved in DMF with vigorous stirring at room temperature for 24 h. The
dissolved solution was poured into a Teflon Petri dish, and then allowed to dry for about one week at
room temperature. For the preparation of the binary nanocomposite system, predetermined amounts of
NCC (1&5 wt%) and HNTs (1&5 wt%) suspensions in DMF were mixed with the previously prepared
Poly(EMA-AN) solution. The mixtures were stirred for one day by magnetic stirring and then sonicated
by means of high power ultrasound disperser (Hielscher UIS250V ultrasound sonication equipment);
degassed, then poured into a Teflon mold and placed at room temperature for two weeks to allow slow
elimination of the solvent. Ternary composite films with 1 wt% or 5 wt% of NCC combined with 1 wt%
and 5 wt% of HNTs were produced following the same procedure as described above and were
subsequently characterized. All the systems were placed in a vacuum oven at 40°C for 2 weeks in order
to remove all remaining DMF before testing. The ternary nanocomposites materials are referred as:
Poly(EMA-AN)/NCC-x% /HNTs-y%, where x = 1 or 5 wt%, and y = 1 or 5 wt%; and the binary
nanocomposite materials are referred as: Poly(EMA-AN)/NCC-x% or poly(EMA-AN)/HNTs-y%, where
x = 1 or 5 wt%, and y = 1 or 5 wt%.

3 Characterization

3.1 Fourier Transform Infrared Spectrum (FTIR) Analysis
FTIR Spectra analyses were performed by Thermo Fischer Nicolet 6700 FTIR operated in Attenuated

Total Reflection mode. 32 scans were used to obtain in the spectral in the wave range between 4000 and 400
cm−1 at a resolution of 4 cm−1.

3.2 Differential Scanning Calorimetry (DSC)
DSC analysis was carried out using Mettler Toledo DSC1 equipped with Intracooler. A sample of 10 mg

loaded in Aluminum pan was heated under N2 flux from room temperature to 100°C at a heating rate of 10°
C/min followed by a cooling stage from 100 to −80°C at a cooling rate of 10°C/min. Finally, samples were
repeatedly heated to 100°C at a heating rate of 10°C/min. The data were analyzed to determine the glass
transition temperature Tg, from the second heating scan.

3.3 Thermogravimetric Analysis (TGA)
TGA was carried out with a Mettler Toledo TGA/DSC-1-SF apparatus at a heating rate of 10°C/min

from room temperature up to 600°C, under nitrogen as the purge gas (60 mL/min).

3.4 Dynamic Mechanical Analysis (DMA)
DMAwas performed using a dynamic mechanical analyzer (Mettler Toledo DMA/SDTA861). The data

was recorded from 20 to 100°C at a heating rate of 3°C/min and a frequency of 1 Hz.

3.5 Scanning Electron Microscopy (SEM)
The morphology of the brittle fractured surface of the nanocomposite films was observed with a

scanning electron microscope (FEI QUANTA 200F) at 5 kV and 10 A. the samples were fractured after
being cooled in N liquid during 20 min to unsure a brittle fracture. The fractured surface was put on a
conducting carbon tape stuck on the stub.
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3.6 Nuclear Magnetic Resonance (NMR)
1H NMR spectra were recorded under broad band decoupling on a Bruker AM 400 Mhz (pulse angle

70°, acquisition time 0.45 s, delay time 2 s), using deuterated chloroform as the solvents. The solvent
signal was used as the internal standard.

4 Results and Discussion

By changing the loading of NCC and/or HNTs, a series of transparent Poly(EMA-AN) nanocomposites
films were successfully prepared as shown in Fig. 2. It’s worthy emphasizing that even with high content of
nanofillers as 10 wt% (Fig. 2g) the nanocomposite is still transparent. This indicate a good dispersion of
nanofillers in Poly (EMA-AN) matrix.

FTIR spectra of pure halloysite nanotubes (HNTs), cellulose nanocrystals (NCC), Poly(EMA-AN)
copolymer and its nanocomposites materials are shown in Fig. 3. The spectrum of the NCC, Panel a of

Figure 2: Digital photos of transparent nanocomposite samples with different wt.% of nanocrystals of
cellulose and/or Halloysite Nanotubes. (a): neat matrix, (b): NCC-1%, (c): NCC-5%, (d): HNTs-1%, (e):
HNTs-5%, (f): NCC-1%-HNTs-1% and (g) NCC-5%-HNTs-5%
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Figure 3: FTIR spectra of neat Poly(EMA-AN) and Poly(EMA-AN) nanocomposites
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Fig. 3 shows the hydrogen- bonded stretching at 3320 cm−1, the C–H stretching at 2880 cm−1, the OH
bending of the adsorbed water at 1650 cm−1, the H–C–H and O–C–H in-plane bending vibrations at
1432 cm−1. In addition, the bands at 1160, 1110, and 1060–1030 cm−1 correspond to C–O–C
antisymmetric stretching, ring asymmetric stretching, and C–O stretching, respectively [45,46].

Figure 3b shows the characteristic peaks for HNTs. It was observed that the absorption band at 3616
cm−1 is the characteristic absorption of hydroxyl groups located on shared interfaces of layered structure
consisting of silicon-oxygen tetrahedron and aluminium-oxygen octahedron, and the band at 3689 cm−1

is the characteristic absorption of external hydroxyl groups located on non-shared surfaces of the layered
structure [47].The absorption bands nearby 1093 and 1020 cm−1 are assigned to stretching vibration of
Si–O bonds. The characteristic absorption band at 907 cm−1 is due to flexural vibrations of Al–OH. The
results confirm coexistence of hydroxyl groups and Si–O bonds at the surfaces of HNTs.

The spectrum of the neat Poly(EMA-AN), Figs. 3a and 3b, shows the formation of the copolymer due to
the appearance of the bands at 2248 cm−1 (C≡N) and 1719 cm−1 (C=O) identifying the presence of
acrylonitrile and ethyl methacrylate moieties of Poly(EMA-AN) respectively. The Poly(EMA-AN)
copolymer was also characterized by 1H NMR. Tab. 1 displays the 1H NMR chemical shifts for our
copolymer. Original 1H NMR spectrum of Poly(EMA-AN) is shown in Supplementary Fig. S1.

The chemical shift assignments of Poly(EMA-AN) copolymer recorded in chloroform-d6 were deduced
from the comparison with those of polymers based on AN [48, 49]. Tab. 1 shows the chemical shifts of
different protons in the copolymer. It also exhibits the absence of the vinyl peaks bound to the monomer
unit CH2 (5.5-6.15) of the EMA as well as that CH2 (5.8-6) of the AN and thus confirms the success of
such a copolymerization

The presence of cellulose nanocrystals and halloysite nanotubes in Poly(EMA-AN) matrix (Figs. 3a and
3b) leads to the appearance of the peak of –OH stretching (centered at 3616-3689 cm−1 for Poly(EMA-AN)/
HNTs and at 3375 cm−1 for Poly(EMA-AN)/NCC). Compared to the Poly(EMA-AN) binary films, the FTIR
spectra of ternary system Poly(EMA-AN)/NCC-HNTs (Fig. 3c) shows the shifted bands of carbonyl
groupments C=O to higher wave numbers with the different hybrids, indicating the presence of
interactions that occurred between the Poly(EMA-AN) and the NCC/HNTs as illustrated in the scale
expanded FTIR spectra in Fig. 3c. Smaller shifts of the two peaks of HNTs and NCC, ascribed to the
bending of OH groups, shift toward higher wavenumbers. This shift was explained by Aloui et al. [10] to
the establishment of specific interactions between NCC and HNT, i.e., H-bonding interactions between

Table 1: 1H NMR chemical shifts for Poly (EMA-AN) copolymer
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the hydroxyls of NCC with the more accessible ones of HNT particles, which avoid aggregations and allow a
good dispersion within the polymeric matrix. This could also indicate a mutual emulsification of the two
particles preventing their own aggregations [50,51].

The SEM images of binary and ternary nanocomposites fracture surfaces were observed in order to
evaluate the samples morphology and to analyze the dispersion of cellulose nanocrystals and halloysites
nanotubes inside the polymer matrix. SEM images in Figs. 4a–4e reveal micro-sized white domains on
the fracture surfaces of the Poly(EMA-AN)/HNTs nanocomposites. These fine white particles are HNTs
clusters and are evenly distributed in the matrix. The absence of parting lines, voids and cavities in the
micrographs suggest that there is a very good wetting and adhesion bonding among Poly(EMA-AN)/ and
HNTs. Whereas NCC aggregates during the evaporation of the solvent forming wrinkle features, ascribed
to the assembling of NCC. According to the Figs. 4f–4k, there was no evidence of micrometer scale
agglomerates of NCC. Good dispersion and percolating network structure formation of NCC were

Figure 4: Scanning electron microscopy images of (a) neat Poly(EMA-AN), (b) and (c) Poly(EMA-AN)/
HNTs-1%, (d) and (e) Poly(EMA-AN)/HNTs-5%, (f) and (g) Poly(EMA-AN)/NCC-1%, (h) and (k) Poly
(EMA-AN)/NCC-5%, (l) and (m) Poly(EMA-AN)/NCC-1%-HNTs-1%, (n) and (o) Poly(EMA-AN)/
NCC-5%,-HNTs-5% nanocomposites
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significant to the transparency of the investigated polymer/NCC nanocomposites. SEM micrographs of
ternary Poly(EMA-AN) nanocomposites show that the presence of NCC and HNTs allows a better
dispersion in the neat matrix without the formation of surface wrinkles in comparison to the binary
nanocomposite (Figs. 4l–4o). This can be attributed to specific interactions between NCC and HNTs, i.e.,
H-bonding interactions between the hydroxyls of NCC with the more accessible hydroxyls of HNT
particles, which avoid aggregations and allow a good dispersion within the polymeric matrix, which
testifies the synergistic action of HNTs coupled with NCC filler in the improvement of reciprocal
dispersion within polymeric nanocomposites.

To further investigate the interactions between the nanofiller and the host copolymer, DSC analyses were
performed for unfilled and filled samples. Tab. 2 gathers the thermal proprieties temperature of neat
Poly(EMA-AN) and its corresponding nanocomposites. Original DSC thermograms of Poly(EMA-AN)
and Poly(EMA-AN) nanocomposites are shown in Supplementary Fig. S2.

The DSC thermograms of the copolymer exhibit one glass transition temperature (Tg) suggesting a
random structure of EMA/AN copolymer. The Tg(s) of random EMA/AN copolymers were also studied
by Penzel et al. [52,53] showing good agreement with the Tg of the copolymers investigated in this research.

Globally, it was observed that the Tg onset values of binary and ternary nanocomposites are significantly
higher than that of the neat copolymer. This is due to the strong interactions between the copolymer and the
nanofiller via hydrogen bonding which restrict the mobility of the segments of the copolymer [54,55]. A
similar result of the increasing of glass transition of polymer after the introduction of rigid nanoparticles
was also reported for the nanocomposites of poly(propylenecarbonate) /cellulose nanocrystals [56], and
poly(3-hydroxybutyrate-co-3 hydroxyvalerate)/cellulose nanowhisker [57].

Table 2: DSC. TGA and DMA data for Poly (EMA-AN) nanocomposites and Poly(EMA-AN) reference.
Onset glass transition temperature (Tg onset), degradation temperature (Td1), char yield at 600°C, storage
modulus at 80°C (E´80°C), reinforcement factor Rf, and the synergy ratio. The values of the modulus were
normalized at low temperature.

DSC Data DMA Data TGA Data

Tg onset (°C) E’ (80°C)
(MPa)

Rf The Synergy
effect

Td1 (°C) Char yield at
600°C (wt%)

Neat Poly(EMA-AN) 58 6.49 1 – 280 1.40

Poly(EMA-AN)/NCC-1% 63 62.75 10 – 275- 2.72

Poly(EMA-AN)/NCC-5% 64 247.80 38 – 245 5.43

Poly(EMA-AN)/HNTs-1% 61 52.10 8 – 286 2.84

Poly(EMA-AN)/HNTs-5% 63 108.39 17 – 281 5.92

Poly(EMA-AN)/NCC-1%-
HNTs-1%

62 63.88 10 0.55 306 3.54

Poly(EMA-AN)/NCC-1%-
HNTs-5%

65 364.44 56 2.13 268 7.97

Poly(EMA-AN)/NCC-5%/
HNTs-1%

64 442.14 68 1.47 285 6.82

Poly(EMA-AN)/NCC-5%/
HNTs-5%

64 193.76 29 0.52 257 12.25

JRM, 2020, vol.8, no.3 309

http://dx.doi.org/10.32604/jrm.2020.08141/sf2


The thermal stability and degradation profiles of the nanocomposite films were assessed using
thermogravimetric analysis. Fig. 5 shows the TGA curves of binary and ternary nanocomposites with
different contents of NCC and HNTs. The data reveals that all nanocomposites demonstrated single-stage
thermal degradation. The pure copolymer displayed at 280°C; however, binary nanocomposites with 1
and 5% wt of NCC started degradation at 275 and 245°C, respectively. This shows a significant reduction
of thermal stability by inclusion of NCC as widely confirmed in literature [58,59]. In the case of
poly(EMA-AN)/HNTs binary nanocomposites, the thermal degradation occurs slightly at higher
temperature (i.e., 285°C for Poly(EMA-AN)/ HNTs-5% vs. 280°C for neat poly(EMA-AN).

Moreover, two-step weight loss process was observed for the combination of HNTs with NCC in the
copolymer matrix. The low temperature process starting from 45°C to 100°C is most probably ascribed to
the evaporation of residual water and the second weight loss process related to the decomposition of the
Poly(EMA-AN) copolymer with an observed decrease of Td1 with the presence of HNTs nanoparticles.
Samples with NCC-1%-HNTs-1% and NCC-5%-HNTs-1% started degradation at 306 and 285°C,

Figure 5: TGA curves of Poly(EMA-AN) and Poly(EMA-AN) nanocomposites. (a): Poly(EMA-AN)/NCC,
(b): Poly(EMA-AN)/NCC-HNTs
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respectively, thus demonstrating slightly higher thermal stability. The decomposition of samples continued
until temperatures rose above 500°C at which point a constant mass was achieved. The residue content at
600°C was also determined and is summarized in Tab. 2. Higher residual masses were observed in the
case of ternary systems, most likely due to the different degradation mechanism occurring in the case of
ternary systems.

The dynamical mechanical properties of the Poly(EMA-AN) and its nanocomposites studied by DMA
measurements are presented in Fig. 6 and Tab. 2. DMA is a very suitable tool to investigate the viscoelastic
properties of materials in a wide range of temperatures. Modulus values have been normalized at low
temperature to allow a better comparison.

First, it should be highlighted that the presence of the nanofillers had a remarkable effect on the
viscoelastic properties of the resulting nanocomposites, regardless the filler type (NCC or HNTs) and its
content. This was demonstrated by an increase of the rubbery storage modulus and a decrease in the
magnitude of the tanδ peak. Such improvement in dynamic mechanical properties of the produced
Poly(EMA-AN) nanocomposites could be attributed to the good interfacial adhesion between the

Figure 6: Storage modulus (E´) curves as a function of temperature of Poly(EMA-AN) and Poly(EMA-AN)
nanocomposites with different NCC and/or HNTs contents
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incorporated fillers and the copolymer matrix, along with their homogeneous dispersion in the polymeric
matrix which may result in an efficient load transfer between polymer chains and the nanofillers [60],
outlining the ability of these two nanofillers, either alone or in combination, to improve the plastic
response of the reinforced material.

We defined a reinforcing factor, Rf, as the ratio between the storage modulus for each nanocomposite
divided by the storage modulus of neat Poly(EMA-AN) at the same temperature, i.e., the Rf value
corresponds to the number of times the storage modulus was increased by the presence of the fibrils [61].
The Rf values estimated at 80°C are collected in Tab. 2 and presented in Fig. 7.

For each type of fibril, the Rf values dramatically increased with increasing fibril contents. For example,
the storage modulus of the Poly(EMA-AN) matrix increased by a factor of 38 when adding 5 wt% NCC vs.
17 for the same concentration of HNTs. This effect is attributed to the well-known reinforcing effect induced

Figure 7: Reinforcing factor (Rf) at 80°C of Poly(EMA-AN) and Poly(EMA-AN) nanocomposites with
different NCC and/or HNTs contents
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by the presence of the nanofibril network [43,44,62-65]. For ternary nanocomposites, the addition of NCC
into Poly(EMA-AN) matrix and Poly(EMA-AN)/HNTs nanocomposites significantly increases the
mechanical properties compared to neat copolymer and its nanocomposites. This is due to the unique
properties of cellulose fibers in enhancement of polymer mechanical properties [66,67]. The addition of
NCC to the Poly(EMA-AN)/HNTs nanocomposites is found to have a positive effect on storage modulus
when compared with unfilled Poly(EMA-AN)/HNTs nanocomposites.

This improvement in viscoelastic properties can be related to the enhanced NCC- matrix interface due to
the presence of HNT tubes. More interestingly, the presence of the fibrils also led to the gradual decreasing of
the tan δ peak with increasing fibrils contents. These effects are associated with the segmental motions of the
poly(EMA-AN) chains being increasingly restricted by the presence of the nanofillers network and their
strong interaction with the highly hydrophilic poly(EMA-AN).

When considering all nanocomposites at any given fibril content, the ternary system clearly showed the
highest Rf values at 80°C compared to poly(EMA-AN) and binary nanocomposites.

In fact, a synergistic effect between the fibril types was found for NCC-1%-HNTs-5% and NCC-5%-
HNTs-1% fibril loadings at 80°C. This is shown by a synergy ratio, defined as the Rf provided by the
NCC and HNTs divided by the sum of the individual Rfs due to the NCC and the HNTs, greater than 1
for these compositions (Tab. 2). As expected, this synergistic effect was more significant for hybrid
nanocomposites prepared with NCC-1%-HNTs-5% and NCC-5%-HNTs-with ratios around 2.13 and 1.47,
suggesting that the 6% wt of NCC-HNTs nanofillers form the most effective percolating network within
the poly(EMA-AN) matrix. As the fibril content increased, the synergistic effect was progressively
reduced and it vanished for nanocomposites with 10% wt (NCC-5%-HNTs-5%) (ratio < 1).

5 Conclusions

Poly(EMA-AN)/NCC and/or HNTs nanocomposites were prepared by solvent exchange and solution
casting techniques. The obtained Poly(EMA-AN)/NCC and/or HNTs films containing of 1 and 5 wt%
NCC and/or HNTs were highly transparent.

The nature and the amount of NCC and HNTs nanofillers markedly influenced the properties of the
Poly(EMA-AN) nanocomposites. The morphological studies indicated that NCC and/or HNTs were
uniformly dispersed in the copolymer matrix. Mechanical tests showed that the storage modulus of the
nanocomposites increased dramatically with increasing NCC and/or HNTs content. Compared with the
neat Poly(EMA-AN), the storage modulus of the Poly(EMA-AN) matrix increased by a factor 38 when
adding 5 wt% NCC vs. 17 for the same concentration of HNTs. Addition of NCC into Poly(EMA-AN)
matrix and Poly(EMA-AN)/HNTs nanocomposites significantly increased mechanical properties of
ternary nanocomposites.

The thermal analysis indicated that introduction of NCC and/or HNTs into Poly(EMA-AN) led to an
decrease in the thermal stability. However, the thermal stability of Poly(EMA-AN)/NCC-HNTs
nanocomposites is slightly higher than that of binary systems owing to the to the contribution of NCC-
HNTs as an effective nucleating agent.
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