
Computers, Materials & Continua CMC, vol.63, no.1, pp.521-536, 2020

CMC. doi:10.32604/cmc.2020.07982 www.techscience.com/journal/cmc

Self-Certificating Root: A Root Zone Security Enhancement
Mechanism for DNS

Wenfeng Liu1, *, Yu Zhang1, Wenjia Zhang1, Lu Liu1, Hongli Zhang1

and Binxing Fang1

Abstract: As a critical Internet infrastructure, domain name system (DNS) protects the
authenticity and integrity of domain resource records with the introduction of security
extensions (DNSSEC). DNSSEC builds a single-center and hierarchical resource
authentication architecture, which brings management convenience but places the DNS at
risk from a single point of failure. When the root key suffers a leak or misconfiguration,
top level domain (TLD) authority cannot independently protect the authenticity of TLD
data in the root zone. In this paper, we propose self-certificating root, a lightweight
security enhancement mechanism of root zone compatible with DNS/DNSSEC protocol.
By adding the TLD public key and signature of the glue records to the root zone, this
mechanism enables the TLD authority to certify the self-submitted data in the root zone
and protects the TLD authority from the risk of root key failure. This mechanism is
implemented on an open-source software, namely, Berkeley Internet Name Domain
(BIND), and evaluated in terms of performance, compatibility, and effectiveness.
Evaluation results show that the proposed mechanism enables the resolver that only
supports DNS/DNSSEC to authenticate the root zone TLD data effectively with minimal
performance difference.

Keywords: Domain name system, root zone security, single point of failure.

1 Introduction
DNS namespace is a tree-like structure with a single root at the top. Correspondingly, a
single-center hierarchical tree structure management and authentication architecture are
formed in DNS. The Internet Assigned Numbers Authority (IANA) manages root data
(root zone file) in DNS. The institution performs this function at present is the Internet
Corporation for Assigned Names and Numbers (ICANN). As an affiliate of ICANN, PTI
reviews the change request of TLD data submitted by the TLD authority and releases
TLD data with the approved change in the form of root zone file after signing by using
the private key of root authority. The public key for the initial certification of DNS is
called trust anchor, which is configured as the public key of the key signing key (KSK) of
the root by the recursive resolver by default and as the starting point for data source

1 School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
* Corresponding Author: Wenfeng Liu. Email: 15b903031@hit.edu.cn.
Received: 17 July 2019; Accepted: 02 August 2019.

 CMC, vol.63, no.1, pp.521-536, 2020 522

certification. Managing this trust anchor is now also the function of IANA.
Single-center root zone data management mode and domain name resource authentication
structure bring about convenience while also cause a single point of failure (SPOF) risk.
As root KSK in the root zone is selected as the only trust anchor, when the private key of
the root KSK is leaked, the recursive resolver cannot identify the TLD data forged by the
attacker who can then successfully perform DNS spoofing attack. During the attack, TLD
authority cannot implement any effective preventive countermeasure because the
authenticity of all TLD data is only validated by the root KSK of the root authority.
To help the TLD authority gain the capability to resist the single point of failure risk of
the root key, we propose self-certificating root, a security enhancement mechanism of
root zone resource certification compatible with DNSSEC. The mechanism can realize
the two following goals:
 TLD authority can gain the capability to resist the single point of failure risk. When

the private key of the trust anchor is leaked, the TLD authority can make the
recursive resolver authenticate TLD data submitted to the root zone.

 Self-certificating root scheme is backward compatible with the DNS/DNSSEC protocol
used by the current domain name system. Authoritative servers that apply self-
certificating root scheme will not impede the recursive resolver, which only uses DNS
and DNSSEC protocols, to query the domain name data and verify data authenticity.

Figure 1: Current root zone operation (DNSSEC) vs. self-certificating root zone operation
As shown in Fig. 1, to realize the abovementioned two goals, under the premise that the
data and public key in the current root zone are unchanged, the self-certification scheme
adds the signature of the TLD glue records (including TLD NS RRs and corresponding
A/AAAA RRs, defined in Hoffman et al. [Hoffman, Sullivan and Fujiwara (2019)]) to
the root zone. By protecting the authenticity of the TLD authoritative server’s IP address
(included in TLD glue records), the recursive resolver is guaranteed to obtain TLD data
from the correct data source. The main contributions of this study are as follows:
 The self-certificating root, a novel security enhancement mechanism of root zone

Self-Certificating Root: A Root Zone Security Enhancement Mechanism 523

data certification, is proposed. This mechanism endows the root authority with the
capability to resist the single point of failure risk. This scheme is compatible with
existing DNS and DNSSEC protocols.

 The self-certificating root is implemented by modifying the open-source DNS server
software-Berkeley Internet Name Domain (BIND). A domain name resolution tool-
Domain Information Groper (DIG) which only supports the DNS/DNSSEC protocol,
is used to prove that this scheme can protect the authenticity of TLD data in the root
zone and it is backward compatible. We also performed a performance evaluation of
the implemented solution, comparing the performance differences between the
DNSSEC and the self-certified root applied to the root server.

The remainder of this paper is organized as follows: In Section 2, we introduce the
background and related work. The background includes an introduction to the domain
name system and its usage protocols, focusing on how the DNSSEC protocol protects
data in DNS. The related work focuses on PKP, which is one of the core ideas of this
work, and other schemes to improve the domain name system from the perspectives of
performance, robustness, and security. Section 3 introduces the design of the self-
certification scheme. Section 4 describes how to implement a self-certification scheme by
modifying the BIND source. Section 5 evaluates the self-certification scheme of
implementation from three aspects: performance, compatibility, and effectiveness. We
conclude in Section 6.

2 Background and related work
DNS provides the mapping from domain name to value. According to different mapping
types, the value can be an IP address, a hostname, or any text character. The security of DNS
is the basis of multiple service security, and it also affects the security of cyberspace on the
mobile side [Cui, Zhang, Cai et al. (2018)]. The DNS protocol used by DNS does not
contain a cryptographic mechanism. Thus, the authenticity and integrity of resource records
(RRs) in response message cannot be protected. The subsequently proposed DNSSEC
protocol [Arends, Austein, Larson et al. (2005)] provides a solution for these defects.

Figure 2: DNSSEC authentication process: build a “chain of trust” from root ksk (trust
anchor) down the DNSSEC hierarchy to any zone’s resource record

 CMC, vol.63, no.1, pp.521-536, 2020 524

Fig. 2 displays how the DNSSEC protocol protects the authenticity of resource records
through digital signatures of resource records. To protect the authenticity and integrity of
the domain name RR in the response message, DNSSEC allows authorities of different
levels (root, top-level, second-level, etc.) creates a public/private key pair named by their
zone and then signs the data in the zone by using the private key. In the zone file, the
public key is saved by the resource records of DNSKEY type, which is divided into KSK
and zone signing key (ZSK). The signature is saved by the RR of RRSIG (resource
record set signature) type. When the recursive resolver acquires the resource records of a
domain name, the resolver must construct a chain of trust that follows the DNS hierarchy
from a trusted root zone key down to the key of the zone in question.
The construction process of the chain of trust is represented by the black arrow in Fig. 2.
The right half of Fig. 2 shows how DNSSEC builds a chain of trust from trust anchors to
arbitrary resource records across zones. To certificate the authenticity of the TLD A NS
resource record in the zone of TLD A, the recursive resolver first looks for a trust anchor
from the root zone consistent with the local configuration, which is usually configured
implicitly as the root KSK. Then verify the authenticity of root ZSK by verifying its
signature resource records using the public key of root KSK and verifying the
authenticity of TLD DS by using the public key of root ZSK. TLD DS is the hash of TLD
KSK, so the authenticity of TLD A KSK is also verified, which means that the
authenticity of all resource records in the TLD A zone can be verified.
In DNSSEC protocol, as TLD data (TLD DS in Fig. 2) in the root zone will be only
signed by the key in the root zone, the TLD authority cannot protect the authenticity of
TLD data in the root zone when the trust anchor becomes invalid. The trust anchor may
experience misconfiguration [Dai, Shulman, Waidner (2016)] [Pappas, Fältström, Massey
et al. (2004)], and this problem has been extensively investigated. The private key of the
trust anchor may also be leaked, and the attacker can implement a spoofing attack on the
recursive resolver by manipulating the root server once the private key of the trust anchor
is acquired; multiple manipulation cases have been found in related measurement works
[Kreibich, Weaver, Nechaev et al. (2010)] [Weaver, Kreibich and Paxson (2011)].
Public key pinning (PKP) Evans et al. [Evans, Palmer and Sleevi (2015)], a scheme
designed for HTTPS protocol, aims to greatly reduce the risks of man-in-the-middle
attack and other fake identity verification problems. PKP scheme allows the browser to
transfer trust from the public key of the root CA (certificate authority) to other trusted
public keys, such as local public key white-list or public keys acquired using the trust-on-
first-use (TOFU) mechanism. The idea of the PKP scheme is applied to DNS in this study
to establish a candidate trust anchor from the TLD authority for the local recursive
resolver. So that the TLD authority protects the authenticity of TLD data in the root zone
through the candidate trust anchor when the root trust anchor cannot be used.
By adding TLD keys in the root zone, TLD data are protected from the risk brought by a
single point of failure of the root key. Other schemes have also tried to optimize DNS from
angles of performance, robustness, and safety, similar to the present study. Cox et al. [Cox,
Muthitacharoen and Morris (2002)] firstly proposed applying P2P idea to the DNS
resolution service to implement a distributed domain name resolution. Freedman et al.
[Freedman, Freudenthal and Mazieres (2004)] designed a P2P-based DNS resolution

Self-Certificating Root: A Root Zone Security Enhancement Mechanism 525

service to support P2P-based CDN. Ramasubramanian et al. [Ramasubramanian and Sirer
(2004)] suggested a P2P-based distributed name resolution system, namely, CoDoNS, to
save domain name data by using a distributed hash table, thereby improving the robustness
of domain name data storage and resolution rate. Park et al. [Park, Pai, Peterson et al.
(2004)] proposed a DNS query plan, namely, CoDNS, under the collaboration of recursive
resolver to improve the resolution performance and reliability of the resolution result.
Cachin et al. [Cachin and Samar (2004)] presented a type of distributed DNS authoritative
server architecture, used a redundant state machine to cope with Byzantine fault, and
utilized threshold cryptography to manage the leakage of DNSSEC private key.

3 Design of self-certificating root
3.1 Overview
To endow the TLD authority with the capability to resist a single point of failure risk, the self-
certificating root scheme must enable the TLD authority to verify the authenticity of TLD
data saved in the root zone independently. Here, “independently” means that the recursive
resolver can verify the TLD data in the root zone without dependence on the root key.

Figure 3: High-level overview of data and key publishing procedure in self-certificating root
Fig. 3 displays the operation flow of the TLD authority issuing keys and data to the root
zone in the self-certificating root scheme, which is divided into two stages: 1) In Stage 1,
the TLD authority anchors its public key in the root zone. TLD authority submits the TLD
public key to the root authority, which writes the TLD key into the root zone file after
judging the TLD public key as credible and signing it by using the root private key; 2) In
Stage 2, TLD authority uses its own managed keys to protect the data about to submit to the
root zone. The TLD authority generates the RRSIG record corresponding to the resource
record by signing the TLD resource record with the private key corresponding to the TLD
public key in Step 1 and submits the TLD resource record together with the corresponding
RRSIG record to the root authority. After verifying the signature, the root authority writes
the content submitted by the TLD authority into the root zone file.

 CMC, vol.63, no.1, pp.521-536, 2020 526

In the two stages of the self-certificating root scheme, Stage 1 is the bootstrap stage in
which the TLD authority needs the certification of the root authority such that it can anchor
the TLD public key into the root zone. After the root authority has completed Step 1 once,
the TLD authority can independently realize the certification of TLD data and the update of
TLD key in the root zone by executing Step 2. The design idea “whoever submits the data
will be responsible for protecting such data” used by the self-certificating root scheme
enables the TLD authority to verify the authenticity of TLD data in the root zone without
dependence on the root authority to resist SPOF risk of the root key.

3.2 Enable TLD authority to protect authenticity of TLD RRs in root zone
The key to protecting TLD data in the root zone is that the key managed by the TLD
authority is used to sign the TLD data in the root zone and enable the recursive resolver
for obtaining the TLD public key, TLD data, and signature of TLD data from the root
zone. To meet these requirements, the three following elements are added to the root zone
in the self-certificating root scheme, as shown in Fig. 4.

Figure 4: Presentation of the root zone and the public key chain in the self-certificating
root design
TLD key singing key (KSK) resource record is the same as the TLD KSK stored in the
TLD zone file. It is a resource record of the DNSKEY-257 (defined in Section 2.2 of
Austein et al. [Austein, Larson, Massey et al. (2005)]) type currently used in the
DNSSEC protocol. The self-certification scheme stores a copy of the TLD KSK resource
record stored in the TLD zone to the root zone so that the recursive resolver obtains the
public key for verifying the TLD data from the root server and uses it as an alternative
trust anchor. In DNSSEC, only the public key of the root authority is saved in the root
zone. All data (e.g., data submitted from TLD: TLD DS resource record) in the root zone
are only signed by the private key of the root authority. Therefore, the recursive resolver
can only select the public key of the root authority (root KSK) as the starting point of the
certificating process. Consequently, when the root KSK is leaked or cracked, all data in
the root zone will be unsafe. TLD public key (TLD KSK) is added into the root zone in

Self-Certificating Root: A Root Zone Security Enhancement Mechanism 527

the self-certificating root scheme so that a private key, which is managed by the TLD
itself, is added to the root zone. The recursive resolver can save TLD KSK locally as an
alternative trust anchor in the way of TOFU. When the trust anchor undergoes a fault, the
recursive resolver rapidly switches the trust anchor to the alternative trust anchor to
protect the safety of TLD data in the root zone.
TLD glue singing key (GSK) in the root zone is a key used to sign TLD glue record.
Similar to the role of ZSK only for signing zone data, which is defined in DNSSEC. TLD
GSK is also only used to sign the data in the zone. The difference between GSK and ZSK
is that GSK only signs glue records, while ZSK is used to sign other data in a zone other
than glue records and DNSKEY records. The DNSSEC protocol does not distinguish
between different types of DNSKEYs. The motivation for setting different types of
DNSKEYs is simply to distinguish them from the operation and maintenance aspects.
The resolver does not distinguish between the types of DNSKEYs. To ensure optimal
compatibility, GSK uses the DNSKEY-256 type of resource record storage, which is
defined in the DNSSEC protocol. This design is also consistent with the DNSSEC
operation and maintenance practices (defined in Section 3.1 of Kolkman et al. [Kolkman,
Mekking and Gieben (2012)]).
KSK and GSK separated design is used in the self-certificating root scheme. TLD KSK is
utilized to certify TLD GSK that is used to protect the safety of TLD glue records in the
root zone. This separated design aims to guarantee the safety of TLD KSK as an
alternative trust anchor as much as possible. TLD KSK must only sign in the key rollover
process such that the number of use times of TLD KSK is reduced, which reduces the
possibility that KSK may be violently cracked. This idea is identical to the idea that of
separating KSK and ZSK in DNSSEC protocol (Section 3.1 in Kolkman et al. [Kolkman,
Mekking and Gieben (2012)]).
Signature of glue RR is generated by GSK which is independently managed by the TLD
authority and stored using the RRSIG-type resource record defined by DNSSEC. After
the glue record is signed, the TLD authority can protect the authenticity of the glue record.
As A or AAAA records in the glue record store the IP address of the TLD authoritative
server, the TLD authority can protect the authenticity of this IP address via GSK to
ensure that the recursive resolver can access the authentic TLD authoritative server and
acquire TLD data from the correct source.
Fig. 4 displays the certification chain of resource records in the root zone in the self-
certificating root scheme. The solid black arrow represents certification of RRs, which is
realized by generating the digital signature for the RR to be certified. A certification
chain from the trust anchor (root KSK) to the TLD private key (TLD KSK) exists in the
self-certificating root scheme. Thus, the authenticity of the public key of the TLD
authority can be certified by the root authority. Meanwhile, a certification chain from the
TLD authoritative private key (TLD KSK) to the TLD data in the root zone (TLD glue
RR) is created in the self-certificating root scheme, thereby protecting the authenticity of
TLD data in the root zone through the private key managed by the TLD authority.

3.3 Key rollover
For various reasons, keys in DNSSEC must be changed occasionally. The longer a key

 CMC, vol.63, no.1, pp.521-536, 2020 528

has been in use, the greater the probability that it has been compromised through
carelessness, accident, espionage, or cryptanalysis. On the basis of DNSSEC operating
practice (Section 3.3 in Kolkman et al. [Kolkman, Mekking and Gieben (2012)]), the
validity period of a reasonable private key is 13 months, and the administrator of the zone
should conduct a key rollover every 12 months.
Key rollover capability is an important factor guaranteeing the safety and robustness of
the self-certificating root scheme. In the root zone of self-certificating root scheme, keys
of the root and TLD authorities in the root zone must be updated regularly. The
compatibility of root KSK is exactly the same as DNSSEC, so the root KSK key rollover
scheme is fully compliant with root KSK update plan [Root Zone KSK Rollover Project
(2019)] published by ICANN.

Table 1: Stages of TLD KSK double-signature key rollover

DNS RR Type Initial Stage New DNSKEY Stage Removal DNSKEY Stage

SOA
SOA_1
RRSIG(root ZSK_1)

SOA_2
RRSIG(root ZSK_1)

SOA_3
RRSIG(root ZSK_1)

tld DS

tld DS_KSK_1
RRSIG(root ZSK_1)

tld DS_KSK_1
RRSIG(root ZSK_1) —

—
tld DS_KSK_2
RRSIG(root ZSK_1)

tld DS_KSK_2
RRSIG(root ZSK_1)

tld KSK

tld KSK_1
— / RRSIG(tld KSK_0)

tld KSK_1
— / RRSIG(tld KSK_0)

—

—
tld KSK_2
RRSIG(tld KSK_1)

tld KSK_2
RRSIG(tld KSK_1)

tld GSK
tld GKS_1
RRSIG(tld KSK_1)

tld GKS_1
RRSIG(tld KSK_2)

tld GKS_1
RRSIG(tld KSK_2)

The self-certification root scheme needs to additionally design the key updating process
for the TLD KSK in the root zone. The key rollover scheme adopts the Double-Signature
key rollover method, that is, the old key and the new key are simultaneously released in
the root zone, wait until the old key expires in the cache of a recursive resolver and then
remove the olds from the root zone. Tab. 1 shows the process of updating the TLD KSK
using this method. The process is divided into three stages, namely the initial stage, the
new DNSKEY stage, and the removal DNSKEY stage.
The initial Stage indicates that the key is in normal use, and this is the state before the
key rollover process. When the authority of the TLD KSK key starts the key rollover, it
immediately enters the new DNSKEY Stage in Tab. 1, which contains the following four
steps (Fig. 5):
1. The TLD authority generates a new TLD key signing key (tld KSK_2) and uses the

old TLD KSK (tld KSK_1) to generate the signing record of the new TLD KSK (tld
KSK_2) signature (RRSIG).

2. The TLD authority uses the new TLD KSK (tld KSK_2) from Step 1 to generate the
signature record of TLD GSK (RRSIG).

Self-Certificating Root: A Root Zone Security Enhancement Mechanism 529

3. The TLD authority uses the new TLD KSK (tld KSK_2) to generate the
corresponding TLD delegation of the signing record (tld DS_KSK_2).

4. The TLD authority submits the records generated in Steps 1-3 to the root authority,
which then signs the TLD DS record (tld_DS_KSK_2) generated in step 3 by using
root ZSK (root ZSK_1) to generate the signing record (RRSIG).

After the root authority adds the new resource record in Steps 1-4 to the root zone file, it
indicates that the new DNSKEY stage begins.
The root authority waits for a period until it is speculated that all the old KSK records, the
old DS records and related RRSIG records disabled in the cache of the recursive resolver
(usually the waiting period is the maximum value of the TTL of all replaced resource
records), then root authority can start the removal DNSKEY stage. In the removal
DNSKEY stage, the root authority immediately removes the old resource record of the
root zone file replaced by Steps 2-4 and completes the stage. At this point, the self-
certification scheme completes the key rollover process for the TLD KSK.

Figure 5: Changes in resource records during key rollover process of the self-
certificating root
After the recursive resolver finds that the alternative trust anchor (TLD KSK) is updated in
the root zone within the new DNSKEY stage (Stage 2). Only the old alternative trust
anchor saved in local storage is needed to verify the digital signature of the new alternative
trust anchor (upper right corner in Fig. 5) and save the authenticated new alternative trust
anchor in the local storage, thereby realizing trust anchor rollover of the recursive resolver.

4 Implementation
The self-certificating root scheme designed in Section 3 was implemented on the basis of
the BIND software. BIND, which was presented in the early stage of the 1980s, is a DNS
software with the most extensive used [DNS server survey (2015)] on the Internet. BIND
has implemented DNS and DNSSEC protocols. Newly added elements and mechanisms
in the self-certificating root scheme were implemented in BIND by modifying the source
code to enable the resolver to obtain TLD data in the root zone and verify its authenticity.

 CMC, vol.63, no.1, pp.521-536, 2020 530

4.1 Data model in BIND
Fig. 6 shows the domain name data storage model maintained by BIND. BIND utilizes
the viewzonenametype four-tier structure to save domain name data. For each view,
BIND maintains a red-black tree (structure dns_rbt_t in tier 2), which saves domain name
RRs under this view, and each red-black tree saves data of one zone. In one BIND
operation instance, BIND simultaneously provides authoritative responses for multiple
zones by maintaining multiple red-black trees. Each red-black tree saves pointer directing
at multiple nodes (structure dns_rbtnode_t in tier 3), and a node saves RRs with the same
name in this zone. Each node saves a pointer directing at multiple headers (structure
rdataheader_t in tier 4), and each header saves RRs with the same type in the same name.

Figure 6: Storage model of domain resource record data in memory when BIND
authoritative server is running

4.2 Enabling BIND to respond with the TLD data of the root zone
After receiving the DNS query request from the resolver, the BIND authoritative server
software retrieves the zone file data loaded to the memory. BIND filters the retrieved
results in accordance with matching rules and uses filtered data to construct the DNS
response message to respond to the resolver.
In the matching process, BIND checks whether different nodes meet the matching rules.
A critical rule is that the authoritative server in each zone can only respond to an RR in
this zone and a glue record in its sub-zone, wherein the signing records of private key
record (TLD KSK/GSK) and glue record in the sub-zone do not meet the matching rules.
To implement the design of self-certificating root, the matching mechanism should be
remodified (logic in algorithm 1) such that the authoritative server can respond to newly
added elements (TLD KSK, TLD GSK, and Glue RRSIG). The recursive resolver can
acquire all data needed to construct the trust chain and their signatures from the root
server to verify the authenticity of TLD glue RR in the root zone.

Self-Certificating Root: A Root Zone Security Enhancement Mechanism 531

Algorithm 1 Modify the filtering rules so that the BIND could respond with the
resource records added in self-certification root
Input：

Retrived zone data tree, zone_rbt;
Output：

Effective resource records, node_list;
1: global node_list = [∅]
2: zonename = TreeName (zone_rbt)
3: valid_nameserver = [∅]
4: if zonename != root
5: return node_list
6: currentnode = zone_rbt→root
7: while(currentnode != null){
8: nodename = NodeName(current)
9: if Labelcount(zonename) != 1

10: continue
11: currentheader = currentnode→rdatasetheader
12: while(currentheader != null){
13: if (Type(currentheader) == DNSKEY)
14: ListAppend(node_list, currentnode)
15: if (Type(currentheader) == NS)
16: ListAppend(node_list, currentnode)
17: ListAppend(valid_nameserver, RDATA(currentheader))
18: if (Type(currentheader) == A or AAAA)
19: if NodeName(currentnode) in valid_nameserver
20: ListAppend(node_list, currentnode)
21: if (Type(currentheader) == RRSIG)
22: if SigType(currentheader) == NS or A or DNSKEY
23: ListAppend(node_list, currentnode)
24: currentheader = Next(currentheader)}
25: currentnode = Next(currentnode)}
26: return node_list

5 Evaluation
The self-certificating root scheme is implemented by modifying the open-source DNS
software BIND (version 9.12.3). The implemented scheme is evaluated from three
aspects-performance, compatibility, and effectiveness: 1) Performance evaluation focuses
on the performance impact of modifying source codes to BIND. 2) The effectiveness
evaluation focuses on whether the self-certification scheme has the ability to enable the

 CMC, vol.63, no.1, pp.521-536, 2020 532

resolver to verify the authenticity of the root zone TLD data, which corresponds to the
first design goal mentioned in Section 1. 3) Compatibility evaluation focuses on whether
the self-certificating root scheme is backward compatible with the DNS/DNSSEC
protocols used by the existing domain name system, that is, the second design goal
mentioned in Section 1.
The system testing environment is configured with two physical hosts: an authoritative
server machine and a resolver machine. The physical machines used are allocated with 12
vCPUs and 32 GB of memory. All machines are connected to a local network with 1000
Mbps. The physical machine used as an authoritative server is deployed with Docker
containers (Nos. A and B) of two BIND operation cases. A runs BIND software without
any modification, and B runs BIND software which modifies BIND source code and
implements the design of self-certificating root. The physical machine used as the
resolver operates the DIG software, which is an open-source domain name resolution tool
that can send query message that supports the DNSSEC protocol and verify whether the
digital signature of RR is valid.

5.1 Evaluation of performance
Based on the BIND software with unchanged source code, the resolution performances
after the self-certificating root scheme was implemented by modifying the source code
were comparatively tested. Resolver tool-DIG was used to send the query request of
resolving the same domain name and type simultaneously to docker containers A
(DNSSEC) and B (self-certificating root) (command: dig @<dns-server addr>-p
<port>name type+sigchase+trusted-key=<trust-anchor>). Time delays needed to
resolve the domain name successfully from two containers were recorded and set as one
group of test data. Fig. 7 shows 5000 groups of tests of the DNSSEC and self-
certificating root schemes. Relative to unmodified BIND, the performance difference
brought by the self-certificating root scheme was minimal. In the 5000 groups of
comparative tests, the average resolution time delay of DNSSEC is 11.34 ms, that of the
self-certificating root scheme is 11.09 ms. The difference is no more than 2.2%. From the
perspective of delay composition (Fig. 8), implementing a self-certification root will
bring a 0.3 ms delay (from 0.80 ms to 1.18 ms) to the authoritative server but will reduce
the resolver authentication delay (from 10.63 ms to 10.13 ms). In total, the self-
certificating root scheme brought small performance impact to the root server.

Self-Certificating Root: A Root Zone Security Enhancement Mechanism 533

Figure 8: Three components of the domain name resolution delay of the DNSSEC and
self-certificating scheme: server response delay, network communication delay, parser
verification delay

5.2 Evaluation of compatibility
In Section 1, the design goals of self-certificating root scheme with compatibility were
proposed, namely, the self-certificating root scheme should be backward compatible with
the DNS and DNSSEC protocols used by the existing DNS. The use of the self-
certificating root scheme must not impede the recursive resolver that only supports DNS
and DNSSEC protocols to query the domain name data and verify data authenticity.
The compatibility of the self-certificating root scheme was evaluated and proven from
two aspects: 1) The changed RR in the root zone file. As shown in Tab. 2, the first
column is the resource record in the root zone file of the DNSSEC protocol, and the
second column is the resource record in the root zone file of the self-certification root
scheme. By comparing the two columns, it can be found that the self-certificating root
scheme neither deleted any RRs used by DNSSEC protocol nor changed the use of
existing RRs in the current root zone. Instead, only the necessary TLD RRs was added to
protect the authenticity of TLD glue record. The resolver that only supports the DNSSEC
protocol only needs to ignore the newly added TLD DNSKEY RR in the root zone and
verify in accordance with the original logic. 2) The authentication results of DIG resolver.
The DIG resolver that is unmodified and only supports DNS/DNSSEC protocols were
utilized to acquire and verify the digital signatures of TLD data successfully from the
authoritative server. This process proved that the self-certificating root scheme is
backward compatible with resolvers that only support DNS and DNSSEC.

 CMC, vol.63, no.1, pp.521-536, 2020 534

Table 2: Compare the resource records in root zone between the DNSSEC scheme and
the self-certification root scheme (NSEC resource record has been omitted)

Root Zone of DNSSEC Root Zone of Self-certificating root

. IN TTL SOA RDATA(...) . IN TTL SOA RDATA(...)

. IN TTL RRSIG RDATA(SOA ...) . IN TTL RRSIG RDATA(SOA ...)

. IN TTL NS RDATA(root-server) . IN TTL NS RDATA(root-server)

. IN TTL RRSIG RDATA(NS ...) . IN TTL RRSIG RDATA(NS ...)

. IN TTL DNSKEY RDATA(256 ...) //root ZSK . IN TTL DNSKEY RDATA(256 ...) //root ZSK

. IN TTL DNSKEY RDATA(257 ...) //root KSK . IN TTL DNSKEY RDATA(257 ...) //root KSK

. IN TTL RRSIG RDATA(DNSKEY ... zskID ...) . IN TTL RRSIG RDATA(DNSKEY ... zskID ...)

. IN TTL RRSIG RDATA(DNSKEY ... kskID ...) . IN TTL RRSIG RDATA(DNSKEY ... kskID ...)
tld IN TTL DS RDATA(...) tld IN TTL DS RDATA(...)
tld IN TTL RRSIG RDATA(DS ...) tld IN TTL RRSIG RDATA(DS ...)
tld IN TTL NS RDATA(tld-server) tld IN TTL NS RDATA(tld-server)

—— tld IN TTL RRSIG RDATA(NS ...)
tld-server IN TTL A RDATA(ip_address) tld-server IN TTL A RDATA(ip_address)

—— tld IN TTL RRSIG RDATA(A ...)

—— tld IN DNSKEY RDATA(256 ...) //used as tld GSK

—— tld IN DNSKEY RDATA(257 ...) //used as tld KSK

—— tld IN TTL RRSIG RDATA(DNSKEY ... gskID ...)

—— tld IN TTL RRSIG RDATA(DNSKEY ... kskID ...)
root-server IN TTL A RDATA(ip_address) root-server IN TTL A RDATA(ip_address)

5.3 Evaluation of effectiveness
In Section 1, the goal that the self-certificating root scheme should enable the TLD
authority to gain the capability to resist the single point of failure risk was proposed.
When the root key was leaked, the TLD authority could independently and effectively
protect the authenticity of TLD data in the root zone.
As shown in Fig. 4, regardless of whether the root trust anchor (root KSK, orange) or
alternative trust anchor of the TLD authority (TLD KSK, green) is used, a certification
chain from the trust anchor to the signature of TLD glue record exists in the self-
certificating root scheme. Thus, authenticity can be proven by verifying the signature of
the TLD glue record in the root zone to ensure that the self-certificating root scheme can
effectively protect TLD data in the root zone. Meanwhile, as the alternative trust anchor
is independently managed by the TLD authority, the TLD authority can realize the goal
of independently protecting the authenticity of glue records in the root zone only if the
resolver is switched to the alternative trust anchor.
By measuring all TLDs in the domain name system, the authenticity of the glue records
of some TLDs is still not protected. Among them, there are 20.58% of the TLDs, the A-
type records in the glue records do not have corresponding digital signatures. There are
15.50% of the TLDs, the AAAA-type records in the glue records do not have
corresponding digital signatures. In all TLDs, only 22.29% of them, their glue records are

Self-Certificating Root: A Root Zone Security Enhancement Mechanism 535

all protected with signature (including both NS, A, AAAA type resource records). One of
the reasons for the phenomenon is that DNSSEC is not deployed in the second-level
domain where these domain names are located. Although the top-level domain supports
DNSSEC, the second-level domain authority that store the A-type and AAAA-type does
not support DNSSEC, which still makes the authenticity of glue records cannot be
protected. These TLD authorities who want to protect the authenticity can reach this goal
by applying self-certificating root schemes.

Figure 9: Percentage of the authenticity of glue records protected in all TLD of the
current domain name system

6 Conclusion
A lightweight security enhancement mechanism, namely, self-certificating root, which
protects TLD data in the root zone, is proposed in this study for the single point of failure
risk brought by the central governance structure in the DNS. The self-certificating root
scheme enables the TLD authority to resist the single point of failure risk, and it is
compatible with DNS and DNSSEC protocols used by the existing DNS. This
mechanism is implemented by modifying the open-source software BIND, and its
performance, compatibility, and effectiveness are evaluated. The evaluation results
indicate that the self-certificating root scheme endows the resolver that only supports
DNS and DNSSEC protocols with the capability to verify TLD data in the root zone only
with minimal performance influence.

Acknowledgement: This work is partially supported by the National Key Research and
Development Program (2018YFB1800702).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

 CMC, vol.63, no.1, pp.521-536, 2020 536

References
Arends, R.; Austein, R.; Larson, M.; Massey, D.; Rose, S. (2005): Protocol modifications
for the DNS security extensions, RFC 4035. Internet Society.
Austein, R.; Larson, M.; Massey, D.; Rose, S. (2005): Resource records for the DNS
security extensions. RFC 4034. Internet Engineering Task Force.
Cachin, C.; Samar, A. (2004): Secure distributed DNS. International Conference on
Dependable Systems and Networks, pp. 423-432.
Cox, R.; Muthitacharoen, A.; Morris, R. T. (2002): Serving DNS using a peer-to-peer
lookup service. International Workshop on Peer-To-Peer Systems, pp. 155-165.
Cui, J.; Zhang, Y.; Cai, Z.; Liu, A.; Li, Y. (2018): Securing display path for security-sensitive
applications on mobile devices. Computers, Materials and Continua, vol. 55, no. 1, pp. 17.
Dai, T.; Shulman, H.; Waidner, M. (2016): DNSSEC misconfigurations in popular
domains. International Conference on Cryptology and Network Security, pp. 651-660.
DNS Server Survey (2015): http://mydns.bboy.net/survey.
Evans, C.; Palmer, C.; Sleevi, R. (2015): Public key pinning extension for HTTP. RFC
7469. Internet Engineering Task Force.
Freedman, M. J.; Freudenthal, E.; Mazieres, D. (2004): Democratizing content
publication with coral. USENIX Symposium on Networked Systems Design and
Implementation, vol. 4, pp. 18-18.
Hoffman, P.; Sullivan, A.; Fujiwara, K. (2019): DNS terminology. RFC 8499. Internet
Engineering Task Force.
Kolkman, O.; Mekking, W.; Gieben, R. (2012): DNSSEC operational practices version
2. RFC 6781. Internet Engineering Task Force.
Kreibich, C.; Weaver, N.; Nechaev, B.; Paxson, V. (2010): Netalyzr: illuminating the
edge network. Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, pp. 246-259.
Pappas, V.; Fältström, P.; Massey, D.; Zhang, L. (2004): Distributed DNS
troubleshooting. Proceedings of the ACM SIGCOMM Workshop on Network
Troubleshooting: Research, Theory and Operations Practice Meet Malfunctioning
Reality, pp. 265-270.
Park, K.; Pai, V. S.; Peterson, L. L.; Wang, Z. (2004): CoDNS: improving DNS
performance and reliability via cooperative lookups. USENIX Symposium on Operating
Systems Design and Implementation, vol. 4, pp. 14.
Ramasubramanian, V.; Sirer, E. G. (2004): The design and implementation of a next
generation name service for the Internet. ACM SIGCOMM Computer Communication
Review, vol. 34, no. 4, pp. 331-342.
Root Zone KSK Rollover Project (2019): https://www.icann.org/resources/pages/ksk-
rollover.
Weaver, N.; Kreibich, C.; Paxson, V. (2011): Redirecting DNS for Ads and profit.
FOCI, no. 2, pp. 2-3.

	Self-Certificating Root: A Root Zone Security Enhancement Mechanism for DNS
	Wenfeng Liu0F , *, Yu Zhang1, Wenjia Zhang1, Lu Liu1, Hongli Zhang1
	and Binxing Fang1

	References

