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Abstract: As a critical Internet infrastructure, domain name system (DNS) protects the 
authenticity and integrity of domain resource records with the introduction of security 
extensions (DNSSEC). DNSSEC builds a single-center and hierarchical resource 
authentication architecture, which brings management convenience but places the DNS at 
risk from a single point of failure. When the root key suffers a leak or misconfiguration, 
top level domain (TLD) authority cannot independently protect the authenticity of TLD 
data in the root zone. In this paper, we propose self-certificating root, a lightweight 
security enhancement mechanism of root zone compatible with DNS/DNSSEC protocol. 
By adding the TLD public key and signature of the glue records to the root zone, this 
mechanism enables the TLD authority to certify the self-submitted data in the root zone 
and protects the TLD authority from the risk of root key failure. This mechanism is 
implemented on an open-source software, namely, Berkeley Internet Name Domain 
(BIND), and evaluated in terms of performance, compatibility, and effectiveness. 
Evaluation results show that the proposed mechanism enables the resolver that only 
supports DNS/DNSSEC to authenticate the root zone TLD data effectively with minimal 
performance difference. 
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1 Introduction 
DNS namespace is a tree-like structure with a single root at the top. Correspondingly, a 
single-center hierarchical tree structure management and authentication architecture are 
formed in DNS. The Internet Assigned Numbers Authority (IANA) manages root data 
(root zone file) in DNS. The institution performs this function at present is the Internet 
Corporation for Assigned Names and Numbers (ICANN). As an affiliate of ICANN, PTI 
reviews the change request of TLD data submitted by the TLD authority and releases 
TLD data with the approved change in the form of root zone file after signing by using 
the private key of root authority. The public key for the initial certification of DNS is 
called trust anchor, which is configured as the public key of the key signing key (KSK) of 
the root by the recursive resolver by default and as the starting point for data source 

 
1 School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China. 
* Corresponding Author: Wenfeng Liu. Email: 15b903031@hit.edu.cn. 
Received: 17 July 2019; Accepted: 02 August 2019. 



                                                                             CMC, vol.63, no.1, pp.521-536, 2020 522 

certification. Managing this trust anchor is now also the function of IANA. 
Single-center root zone data management mode and domain name resource authentication 
structure bring about convenience while also cause a single point of failure (SPOF) risk. 
As root KSK in the root zone is selected as the only trust anchor, when the private key of 
the root KSK is leaked, the recursive resolver cannot identify the TLD data forged by the 
attacker who can then successfully perform DNS spoofing attack. During the attack, TLD 
authority cannot implement any effective preventive countermeasure because the 
authenticity of all TLD data is only validated by the root KSK of the root authority. 
To help the TLD authority gain the capability to resist the single point of failure risk of 
the root key, we propose self-certificating root, a security enhancement mechanism of 
root zone resource certification compatible with DNSSEC. The mechanism can realize 
the two following goals: 
 TLD authority can gain the capability to resist the single point of failure risk. When 

the private key of the trust anchor is leaked, the TLD authority can make the 
recursive resolver authenticate TLD data submitted to the root zone. 

 Self-certificating root scheme is backward compatible with the DNS/DNSSEC protocol 
used by the current domain name system. Authoritative servers that apply self-
certificating root scheme will not impede the recursive resolver, which only uses DNS 
and DNSSEC protocols, to query the domain name data and verify data authenticity. 

 

Figure 1: Current root zone operation (DNSSEC) vs. self-certificating root zone operation 
As shown in Fig. 1, to realize the abovementioned two goals, under the premise that the 
data and public key in the current root zone are unchanged, the self-certification scheme 
adds the signature of the TLD glue records (including TLD NS RRs and corresponding 
A/AAAA RRs, defined in Hoffman et al. [Hoffman, Sullivan and Fujiwara (2019)]) to 
the root zone. By protecting the authenticity of the TLD authoritative server’s IP address 
(included in TLD glue records), the recursive resolver is guaranteed to obtain TLD data 
from the correct data source. The main contributions of this study are as follows: 
 The self-certificating root, a novel security enhancement mechanism of root zone 
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data certification, is proposed. This mechanism endows the root authority with the 
capability to resist the single point of failure risk. This scheme is compatible with 
existing DNS and DNSSEC protocols. 

 The self-certificating root is implemented by modifying the open-source DNS server 
software-Berkeley Internet Name Domain (BIND). A domain name resolution tool-
Domain Information Groper (DIG) which only supports the DNS/DNSSEC protocol, 
is used to prove that this scheme can protect the authenticity of TLD data in the root 
zone and it is backward compatible. We also performed a performance evaluation of 
the implemented solution, comparing the performance differences between the 
DNSSEC and the self-certified root applied to the root server. 

The remainder of this paper is organized as follows: In Section 2, we introduce the 
background and related work. The background includes an introduction to the domain 
name system and its usage protocols, focusing on how the DNSSEC protocol protects 
data in DNS. The related work focuses on PKP, which is one of the core ideas of this 
work, and other schemes to improve the domain name system from the perspectives of 
performance, robustness, and security. Section 3 introduces the design of the self-
certification scheme. Section 4 describes how to implement a self-certification scheme by 
modifying the BIND source. Section 5 evaluates the self-certification scheme of 
implementation from three aspects: performance, compatibility, and effectiveness. We 
conclude in Section 6. 

2 Background and related work 
DNS provides the mapping from domain name to value. According to different mapping 
types, the value can be an IP address, a hostname, or any text character. The security of DNS 
is the basis of multiple service security, and it also affects the security of cyberspace on the 
mobile side [Cui, Zhang, Cai et al. (2018)]. The DNS protocol used by DNS does not 
contain a cryptographic mechanism. Thus, the authenticity and integrity of resource records 
(RRs) in response message cannot be protected. The subsequently proposed DNSSEC 
protocol [Arends, Austein, Larson et al. (2005)] provides a solution for these defects. 

 

Figure 2: DNSSEC authentication process: build a “chain of trust” from root ksk (trust 
anchor) down the DNSSEC hierarchy to any zone’s resource record 
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Fig. 2 displays how the DNSSEC protocol protects the authenticity of resource records 
through digital signatures of resource records. To protect the authenticity and integrity of 
the domain name RR in the response message, DNSSEC allows authorities of different 
levels (root, top-level, second-level, etc.) creates a public/private key pair named by their 
zone and then signs the data in the zone by using the private key. In the zone file, the 
public key is saved by the resource records of DNSKEY type, which is divided into KSK 
and zone signing key (ZSK). The signature is saved by the RR of RRSIG (resource 
record set signature) type. When the recursive resolver acquires the resource records of a 
domain name, the resolver must construct a chain of trust that follows the DNS hierarchy 
from a trusted root zone key down to the key of the zone in question.  
The construction process of the chain of trust is represented by the black arrow in Fig. 2. 
The right half of Fig. 2 shows how DNSSEC builds a chain of trust from trust anchors to 
arbitrary resource records across zones. To certificate the authenticity of the TLD A NS 
resource record in the zone of TLD A, the recursive resolver first looks for a trust anchor 
from the root zone consistent with the local configuration, which is usually configured 
implicitly as the root KSK. Then verify the authenticity of root ZSK by verifying its 
signature resource records using the public key of root KSK and verifying the 
authenticity of TLD DS by using the public key of root ZSK. TLD DS is the hash of TLD 
KSK, so the authenticity of TLD A KSK is also verified, which means that the 
authenticity of all resource records in the TLD A zone can be verified. 
In DNSSEC protocol, as TLD data (TLD DS in Fig. 2) in the root zone will be only 
signed by the key in the root zone, the TLD authority cannot protect the authenticity of 
TLD data in the root zone when the trust anchor becomes invalid. The trust anchor may 
experience misconfiguration [Dai, Shulman, Waidner (2016)] [Pappas, Fältström, Massey 
et al. (2004)], and this problem has been extensively investigated. The private key of the 
trust anchor may also be leaked, and the attacker can implement a spoofing attack on the 
recursive resolver by manipulating the root server once the private key of the trust anchor 
is acquired; multiple manipulation cases have been found in related measurement works 
[Kreibich, Weaver, Nechaev et al. (2010)] [Weaver, Kreibich and Paxson (2011)]. 
Public key pinning (PKP) Evans et al. [Evans, Palmer and Sleevi (2015)], a scheme 
designed for HTTPS protocol, aims to greatly reduce the risks of man-in-the-middle 
attack and other fake identity verification problems. PKP scheme allows the browser to 
transfer trust from the public key of the root CA (certificate authority) to other trusted 
public keys, such as local public key white-list or public keys acquired using the trust-on-
first-use (TOFU) mechanism. The idea of the PKP scheme is applied to DNS in this study 
to establish a candidate trust anchor from the TLD authority for the local recursive 
resolver. So that the TLD authority protects the authenticity of TLD data in the root zone 
through the candidate trust anchor when the root trust anchor cannot be used. 
By adding TLD keys in the root zone, TLD data are protected from the risk brought by a 
single point of failure of the root key. Other schemes have also tried to optimize DNS from 
angles of performance, robustness, and safety, similar to the present study. Cox et al. [Cox, 
Muthitacharoen and Morris (2002)] firstly proposed applying P2P idea to the DNS 
resolution service to implement a distributed domain name resolution. Freedman et al. 
[Freedman, Freudenthal and Mazieres (2004)] designed a P2P-based DNS resolution 
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service to support P2P-based CDN. Ramasubramanian et al. [Ramasubramanian and Sirer 
(2004)] suggested a P2P-based distributed name resolution system, namely, CoDoNS, to 
save domain name data by using a distributed hash table, thereby improving the robustness 
of domain name data storage and resolution rate. Park et al. [Park, Pai, Peterson et al. 
(2004)] proposed a DNS query plan, namely, CoDNS, under the collaboration of recursive 
resolver to improve the resolution performance and reliability of the resolution result. 
Cachin et al. [Cachin and Samar (2004)] presented a type of distributed DNS authoritative 
server architecture, used a redundant state machine to cope with Byzantine fault, and 
utilized threshold cryptography to manage the leakage of DNSSEC private key. 

3 Design of self-certificating root 
3.1 Overview 
To endow the TLD authority with the capability to resist a single point of failure risk, the self-
certificating root scheme must enable the TLD authority to verify the authenticity of TLD 
data saved in the root zone independently. Here, “independently” means that the recursive 
resolver can verify the TLD data in the root zone without dependence on the root key. 

 

Figure 3: High-level overview of data and key publishing procedure in self-certificating root 
Fig. 3 displays the operation flow of the TLD authority issuing keys and data to the root 
zone in the self-certificating root scheme, which is divided into two stages: 1) In Stage 1, 
the TLD authority anchors its public key in the root zone. TLD authority submits the TLD 
public key to the root authority, which writes the TLD key into the root zone file after 
judging the TLD public key as credible and signing it by using the root private key; 2) In 
Stage 2, TLD authority uses its own managed keys to protect the data about to submit to the 
root zone. The TLD authority generates the RRSIG record corresponding to the resource 
record by signing the TLD resource record with the private key corresponding to the TLD 
public key in Step 1 and submits the TLD resource record together with the corresponding 
RRSIG record to the root authority. After verifying the signature, the root authority writes 
the content submitted by the TLD authority into the root zone file. 
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In the two stages of the self-certificating root scheme, Stage 1 is the bootstrap stage in 
which the TLD authority needs the certification of the root authority such that it can anchor 
the TLD public key into the root zone. After the root authority has completed Step 1 once, 
the TLD authority can independently realize the certification of TLD data and the update of 
TLD key in the root zone by executing Step 2. The design idea “whoever submits the data 
will be responsible for protecting such data” used by the self-certificating root scheme 
enables the TLD authority to verify the authenticity of TLD data in the root zone without 
dependence on the root authority to resist SPOF risk of the root key. 

3.2 Enable TLD authority to protect authenticity of TLD RRs in root zone 
The key to protecting TLD data in the root zone is that the key managed by the TLD 
authority is used to sign the TLD data in the root zone and enable the recursive resolver 
for obtaining the TLD public key, TLD data, and signature of TLD data from the root 
zone. To meet these requirements, the three following elements are added to the root zone 
in the self-certificating root scheme, as shown in Fig. 4. 

 
Figure 4: Presentation of the root zone and the public key chain in the self-certificating 
root design 
TLD key singing key (KSK) resource record is the same as the TLD KSK stored in the 
TLD zone file. It is a resource record of the DNSKEY-257 (defined in Section 2.2 of 
Austein et al. [Austein, Larson, Massey et al. (2005)]) type currently used in the 
DNSSEC protocol. The self-certification scheme stores a copy of the TLD KSK resource 
record stored in the TLD zone to the root zone so that the recursive resolver obtains the 
public key for verifying the TLD data from the root server and uses it as an alternative 
trust anchor. In DNSSEC, only the public key of the root authority is saved in the root 
zone. All data (e.g., data submitted from TLD: TLD DS resource record) in the root zone 
are only signed by the private key of the root authority. Therefore, the recursive resolver 
can only select the public key of the root authority (root KSK) as the starting point of the 
certificating process. Consequently, when the root KSK is leaked or cracked, all data in 
the root zone will be unsafe. TLD public key (TLD KSK) is added into the root zone in 
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the self-certificating root scheme so that a private key, which is managed by the TLD 
itself, is added to the root zone. The recursive resolver can save TLD KSK locally as an 
alternative trust anchor in the way of TOFU. When the trust anchor undergoes a fault, the 
recursive resolver rapidly switches the trust anchor to the alternative trust anchor to 
protect the safety of TLD data in the root zone. 
TLD glue singing key (GSK) in the root zone is a key used to sign TLD glue record. 
Similar to the role of ZSK only for signing zone data, which is defined in DNSSEC. TLD 
GSK is also only used to sign the data in the zone. The difference between GSK and ZSK 
is that GSK only signs glue records, while ZSK is used to sign other data in a zone other 
than glue records and DNSKEY records. The DNSSEC protocol does not distinguish 
between different types of DNSKEYs. The motivation for setting different types of 
DNSKEYs is simply to distinguish them from the operation and maintenance aspects. 
The resolver does not distinguish between the types of DNSKEYs. To ensure optimal 
compatibility, GSK uses the DNSKEY-256 type of resource record storage, which is 
defined in the DNSSEC protocol. This design is also consistent with the DNSSEC 
operation and maintenance practices (defined in Section 3.1 of Kolkman et al. [Kolkman, 
Mekking and Gieben (2012)]). 
KSK and GSK separated design is used in the self-certificating root scheme. TLD KSK is 
utilized to certify TLD GSK that is used to protect the safety of TLD glue records in the 
root zone. This separated design aims to guarantee the safety of TLD KSK as an 
alternative trust anchor as much as possible. TLD KSK must only sign in the key rollover 
process such that the number of use times of TLD KSK is reduced, which reduces the 
possibility that KSK may be violently cracked. This idea is identical to the idea that of 
separating KSK and ZSK in DNSSEC protocol (Section 3.1 in Kolkman et al. [Kolkman, 
Mekking and Gieben (2012)]). 
Signature of glue RR is generated by GSK which is independently managed by the TLD 
authority and stored using the RRSIG-type resource record defined by DNSSEC. After 
the glue record is signed, the TLD authority can protect the authenticity of the glue record. 
As A or AAAA records in the glue record store the IP address of the TLD authoritative 
server, the TLD authority can protect the authenticity of this IP address via GSK to 
ensure that the recursive resolver can access the authentic TLD authoritative server and 
acquire TLD data from the correct source. 
Fig. 4 displays the certification chain of resource records in the root zone in the self-
certificating root scheme. The solid black arrow represents certification of RRs, which is 
realized by generating the digital signature for the RR to be certified. A certification 
chain from the trust anchor (root KSK) to the TLD private key (TLD KSK) exists in the 
self-certificating root scheme. Thus, the authenticity of the public key of the TLD 
authority can be certified by the root authority. Meanwhile, a certification chain from the 
TLD authoritative private key (TLD KSK) to the TLD data in the root zone (TLD glue 
RR) is created in the self-certificating root scheme, thereby protecting the authenticity of 
TLD data in the root zone through the private key managed by the TLD authority. 

3.3 Key rollover 
For various reasons, keys in DNSSEC must be changed occasionally. The longer a key 
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has been in use, the greater the probability that it has been compromised through 
carelessness, accident, espionage, or cryptanalysis. On the basis of DNSSEC operating 
practice (Section 3.3 in Kolkman et al. [Kolkman, Mekking and Gieben (2012)]), the 
validity period of a reasonable private key is 13 months, and the administrator of the zone 
should conduct a key rollover every 12 months. 
Key rollover capability is an important factor guaranteeing the safety and robustness of 
the self-certificating root scheme. In the root zone of self-certificating root scheme, keys 
of the root and TLD authorities in the root zone must be updated regularly. The 
compatibility of root KSK is exactly the same as DNSSEC, so the root KSK key rollover 
scheme is fully compliant with root KSK update plan [Root Zone KSK Rollover Project 
(2019)] published by ICANN. 

Table 1: Stages of TLD KSK double-signature key rollover 

DNS RR Type Initial Stage New DNSKEY Stage Removal DNSKEY Stage 
    

SOA 
SOA_1 
RRSIG(root ZSK_1) 

SOA_2 
RRSIG(root ZSK_1) 

SOA_3 
RRSIG(root ZSK_1) 

tld DS 

tld DS_KSK_1 
RRSIG(root ZSK_1) 

tld DS_KSK_1 
RRSIG(root ZSK_1) — 

— 
tld DS_KSK_2 
RRSIG(root ZSK_1) 

tld DS_KSK_2 
RRSIG(root ZSK_1) 

tld KSK 

tld KSK_1 
— / RRSIG(tld KSK_0) 

tld KSK_1 
— / RRSIG(tld KSK_0)  

— 

— 
tld KSK_2 
RRSIG(tld KSK_1) 

tld KSK_2 
RRSIG(tld KSK_1) 

tld GSK 
tld GKS_1 
RRSIG(tld KSK_1) 

tld GKS_1 
RRSIG(tld KSK_2) 

tld GKS_1 
RRSIG(tld KSK_2) 

 
The self-certification root scheme needs to additionally design the key updating process 
for the TLD KSK in the root zone. The key rollover scheme adopts the Double-Signature 
key rollover method, that is, the old key and the new key are simultaneously released in 
the root zone, wait until the old key expires in the cache of a recursive resolver and then 
remove the olds from the root zone. Tab. 1 shows the process of updating the TLD KSK 
using this method. The process is divided into three stages, namely the initial stage, the 
new DNSKEY stage, and the removal DNSKEY stage. 
The initial Stage indicates that the key is in normal use, and this is the state before the 
key rollover process. When the authority of the TLD KSK key starts the key rollover, it 
immediately enters the new DNSKEY Stage in Tab. 1, which contains the following four 
steps (Fig. 5): 
1. The TLD authority generates a new TLD key signing key (tld KSK_2) and uses the 

old TLD KSK (tld KSK_1) to generate the signing record of the new TLD KSK (tld 
KSK_2) signature (RRSIG). 

2. The TLD authority uses the new TLD KSK (tld KSK_2) from Step 1 to generate the 
signature record of TLD GSK (RRSIG). 



Self-Certificating Root: A Root Zone Security Enhancement Mechanism                 529 

3. The TLD authority uses the new TLD KSK (tld KSK_2) to generate the 
corresponding TLD delegation of the signing record (tld DS_KSK_2). 

4. The TLD authority submits the records generated in Steps 1-3 to the root authority, 
which then signs the TLD DS record (tld_DS_KSK_2) generated in step 3 by using 
root ZSK (root ZSK_1) to generate the signing record (RRSIG).  

After the root authority adds the new resource record in Steps 1-4 to the root zone file, it 
indicates that the new DNSKEY stage begins. 
The root authority waits for a period until it is speculated that all the old KSK records, the 
old DS records and related RRSIG records disabled in the cache of the recursive resolver 
(usually the waiting period is the maximum value of the TTL of all replaced resource 
records), then root authority can start the removal DNSKEY stage. In the removal 
DNSKEY stage, the root authority immediately removes the old resource record of the 
root zone file replaced by Steps 2-4 and completes the stage. At this point, the self-
certification scheme completes the key rollover process for the TLD KSK. 

 

Figure 5: Changes in resource records during key rollover process of the self-
certificating root 
After the recursive resolver finds that the alternative trust anchor (TLD KSK) is updated in 
the root zone within the new DNSKEY stage (Stage 2). Only the old alternative trust 
anchor saved in local storage is needed to verify the digital signature of the new alternative 
trust anchor (upper right corner in Fig. 5) and save the authenticated new alternative trust 
anchor in the local storage, thereby realizing trust anchor rollover of the recursive resolver. 

4 Implementation 
The self-certificating root scheme designed in Section 3 was implemented on the basis of 
the BIND software. BIND, which was presented in the early stage of the 1980s, is a DNS 
software with the most extensive used [DNS server survey (2015)] on the Internet. BIND 
has implemented DNS and DNSSEC protocols. Newly added elements and mechanisms 
in the self-certificating root scheme were implemented in BIND by modifying the source 
code to enable the resolver to obtain TLD data in the root zone and verify its authenticity. 
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4.1 Data model in BIND 
Fig. 6 shows the domain name data storage model maintained by BIND. BIND utilizes 
the viewzonenametype four-tier structure to save domain name data. For each view, 
BIND maintains a red-black tree (structure dns_rbt_t in tier 2), which saves domain name 
RRs under this view, and each red-black tree saves data of one zone. In one BIND 
operation instance, BIND simultaneously provides authoritative responses for multiple 
zones by maintaining multiple red-black trees. Each red-black tree saves pointer directing 
at multiple nodes (structure dns_rbtnode_t in tier 3), and a node saves RRs with the same 
name in this zone. Each node saves a pointer directing at multiple headers (structure 
rdataheader_t in tier 4), and each header saves RRs with the same type in the same name. 

 
Figure 6: Storage model of domain resource record data in memory when BIND 
authoritative server is running 

4.2 Enabling BIND to respond with the TLD data of the root zone 
After receiving the DNS query request from the resolver, the BIND authoritative server 
software retrieves the zone file data loaded to the memory. BIND filters the retrieved 
results in accordance with matching rules and uses filtered data to construct the DNS 
response message to respond to the resolver. 
In the matching process, BIND checks whether different nodes meet the matching rules. 
A critical rule is that the authoritative server in each zone can only respond to an RR in 
this zone and a glue record in its sub-zone, wherein the signing records of private key 
record (TLD KSK/GSK) and glue record in the sub-zone do not meet the matching rules. 
To implement the design of self-certificating root, the matching mechanism should be 
remodified (logic in algorithm 1) such that the authoritative server can respond to newly 
added elements (TLD KSK, TLD GSK, and Glue RRSIG). The recursive resolver can 
acquire all data needed to construct the trust chain and their signatures from the root 
server to verify the authenticity of TLD glue RR in the root zone. 
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Algorithm 1 Modify the filtering rules so that the BIND could respond with the 
resource records added in self-certification root 
Input： 

Retrived zone data tree, zone_rbt; 
Output： 

Effective resource records, node_list; 
1: global node_list = [∅] 
2: zonename = TreeName (zone_rbt) 
3: valid_nameserver = [∅] 
4: if zonename != root 
5: return node_list 
6: currentnode = zone_rbt→root 
7: while(currentnode != null){ 
8: nodename = NodeName(current) 
9: if Labelcount(zonename) != 1 

10: continue 
11: currentheader = currentnode→rdatasetheader 
12: while(currentheader != null){ 
13: if (Type(currentheader) == DNSKEY) 
14: ListAppend(node_list, currentnode) 
15: if (Type(currentheader) == NS) 
16: ListAppend(node_list, currentnode) 
17: ListAppend(valid_nameserver, RDATA(currentheader)) 
18: if (Type(currentheader) == A or AAAA) 
19: if NodeName(currentnode) in valid_nameserver 
20: ListAppend(node_list, currentnode) 
21: if (Type(currentheader) == RRSIG) 
22: if SigType(currentheader) == NS or A or DNSKEY 
23: ListAppend(node_list, currentnode) 
24: currentheader = Next(currentheader)} 
25: currentnode = Next(currentnode)} 
26: return node_list 

5 Evaluation 
The self-certificating root scheme is implemented by modifying the open-source DNS 
software BIND (version 9.12.3). The implemented scheme is evaluated from three 
aspects-performance, compatibility, and effectiveness: 1) Performance evaluation focuses 
on the performance impact of modifying source codes to BIND. 2) The effectiveness 
evaluation focuses on whether the self-certification scheme has the ability to enable the 
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resolver to verify the authenticity of the root zone TLD data, which corresponds to the 
first design goal mentioned in Section 1. 3) Compatibility evaluation focuses on whether 
the self-certificating root scheme is backward compatible with the DNS/DNSSEC 
protocols used by the existing domain name system, that is, the second design goal 
mentioned in Section 1. 
The system testing environment is configured with two physical hosts: an authoritative 
server machine and a resolver machine. The physical machines used are allocated with 12 
vCPUs and 32 GB of memory. All machines are connected to a local network with 1000 
Mbps. The physical machine used as an authoritative server is deployed with Docker 
containers (Nos. A and B) of two BIND operation cases. A runs BIND software without 
any modification, and B runs BIND software which modifies BIND source code and 
implements the design of self-certificating root. The physical machine used as the 
resolver operates the DIG software, which is an open-source domain name resolution tool 
that can send query message that supports the DNSSEC protocol and verify whether the 
digital signature of RR is valid. 

5.1 Evaluation of performance 
Based on the BIND software with unchanged source code, the resolution performances 
after the self-certificating root scheme was implemented by modifying the source code 
were comparatively tested. Resolver tool-DIG was used to send the query request of 
resolving the same domain name and type simultaneously to docker containers A 
(DNSSEC) and B (self-certificating root) (command: dig @<dns-server addr>-p 
<port>name type+sigchase+trusted-key=<trust-anchor>). Time delays needed to 
resolve the domain name successfully from two containers were recorded and set as one 
group of test data. Fig. 7 shows 5000 groups of tests of the DNSSEC and self-
certificating root schemes. Relative to unmodified BIND, the performance difference 
brought by the self-certificating root scheme was minimal. In the 5000 groups of 
comparative tests, the average resolution time delay of DNSSEC is 11.34 ms, that of the 
self-certificating root scheme is 11.09 ms. The difference is no more than 2.2%. From the 
perspective of delay composition (Fig. 8), implementing a self-certification root will 
bring a 0.3 ms delay (from 0.80 ms to 1.18 ms) to the authoritative server but will reduce 
the resolver authentication delay (from 10.63 ms to 10.13 ms). In total, the self-
certificating root scheme brought small performance impact to the root server. 
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Figure 8: Three components of the domain name resolution delay of the DNSSEC and 
self-certificating scheme: server response delay, network communication delay, parser 
verification delay 

5.2 Evaluation of compatibility 
In Section 1, the design goals of self-certificating root scheme with compatibility were 
proposed, namely, the self-certificating root scheme should be backward compatible with 
the DNS and DNSSEC protocols used by the existing DNS. The use of the self-
certificating root scheme must not impede the recursive resolver that only supports DNS 
and DNSSEC protocols to query the domain name data and verify data authenticity. 
The compatibility of the self-certificating root scheme was evaluated and proven from 
two aspects: 1) The changed RR in the root zone file. As shown in Tab. 2, the first 
column is the resource record in the root zone file of the DNSSEC protocol, and the 
second column is the resource record in the root zone file of the self-certification root 
scheme. By comparing the two columns, it can be found that the self-certificating root 
scheme neither deleted any RRs used by DNSSEC protocol nor changed the use of 
existing RRs in the current root zone. Instead, only the necessary TLD RRs was added to 
protect the authenticity of TLD glue record. The resolver that only supports the DNSSEC 
protocol only needs to ignore the newly added TLD DNSKEY RR in the root zone and 
verify in accordance with the original logic. 2) The authentication results of DIG resolver. 
The DIG resolver that is unmodified and only supports DNS/DNSSEC protocols were 
utilized to acquire and verify the digital signatures of TLD data successfully from the 
authoritative server. This process proved that the self-certificating root scheme is 
backward compatible with resolvers that only support DNS and DNSSEC. 
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Table 2: Compare the resource records in root zone between the DNSSEC scheme and 
the self-certification root scheme (NSEC resource record has been omitted) 

Root Zone of DNSSEC Root Zone of Self-certificating root 
  

.  IN  TTL  SOA  RDATA(...) .  IN  TTL  SOA  RDATA(...) 

.  IN  TTL  RRSIG  RDATA(SOA ...) .  IN  TTL  RRSIG  RDATA(SOA ...) 

.  IN  TTL  NS  RDATA(root-server)  .  IN  TTL  NS  RDATA(root-server)  

.  IN  TTL  RRSIG  RDATA(NS ...) .  IN  TTL  RRSIG  RDATA(NS ...) 

.  IN  TTL  DNSKEY  RDATA(256 ...) //root ZSK .  IN  TTL  DNSKEY  RDATA(256 ...) //root ZSK 

.  IN  TTL  DNSKEY  RDATA(257 ...) //root KSK .  IN  TTL  DNSKEY  RDATA(257 ...) //root KSK 

.  IN  TTL  RRSIG  RDATA(DNSKEY ... zskID ...) .  IN  TTL  RRSIG  RDATA(DNSKEY ... zskID ...) 

.  IN  TTL  RRSIG  RDATA(DNSKEY ... kskID ...) .  IN  TTL  RRSIG  RDATA(DNSKEY ... kskID ...) 
tld  IN  TTL  DS  RDATA(...) tld  IN  TTL  DS  RDATA(...) 
tld  IN  TTL  RRSIG RDATA(DS ...) tld  IN  TTL  RRSIG RDATA(DS ...) 
tld  IN  TTL  NS  RDATA(tld-server) tld  IN  TTL  NS  RDATA(tld-server) 

—— tld  IN  TTL  RRSIG RDATA(NS ...) 
tld-server  IN  TTL  A RDATA(ip_address) tld-server  IN  TTL  A RDATA(ip_address) 

—— tld  IN  TTL  RRSIG RDATA(A ...) 

—— tld  IN  DNSKEY RDATA(256 ...) //used as tld GSK 

—— tld  IN  DNSKEY RDATA(257 ...) //used as tld KSK 

—— tld  IN  TTL  RRSIG  RDATA(DNSKEY ... gskID ...) 

—— tld  IN  TTL  RRSIG  RDATA(DNSKEY ... kskID ...) 
root-server  IN  TTL  A  RDATA(ip_address) root-server  IN  TTL  A  RDATA(ip_address) 

5.3 Evaluation of effectiveness 
In Section 1, the goal that the self-certificating root scheme should enable the TLD 
authority to gain the capability to resist the single point of failure risk was proposed. 
When the root key was leaked, the TLD authority could independently and effectively 
protect the authenticity of TLD data in the root zone. 
As shown in Fig. 4, regardless of whether the root trust anchor (root KSK, orange) or 
alternative trust anchor of the TLD authority (TLD KSK, green) is used, a certification 
chain from the trust anchor to the signature of TLD glue record exists in the self-
certificating root scheme. Thus, authenticity can be proven by verifying the signature of 
the TLD glue record in the root zone to ensure that the self-certificating root scheme can 
effectively protect TLD data in the root zone. Meanwhile, as the alternative trust anchor 
is independently managed by the TLD authority, the TLD authority can realize the goal 
of independently protecting the authenticity of glue records in the root zone only if the 
resolver is switched to the alternative trust anchor. 
By measuring all TLDs in the domain name system, the authenticity of the glue records 
of some TLDs is still not protected. Among them, there are 20.58% of the TLDs, the A-
type records in the glue records do not have corresponding digital signatures. There are 
15.50% of the TLDs, the AAAA-type records in the glue records do not have 
corresponding digital signatures. In all TLDs, only 22.29% of them, their glue records are 
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all protected with signature (including both NS, A, AAAA type resource records). One of 
the reasons for the phenomenon is that DNSSEC is not deployed in the second-level 
domain where these domain names are located. Although the top-level domain supports 
DNSSEC, the second-level domain authority that store the A-type and AAAA-type does 
not support DNSSEC, which still makes the authenticity of glue records cannot be 
protected. These TLD authorities who want to protect the authenticity can reach this goal 
by applying self-certificating root schemes. 

 

Figure 9: Percentage of the authenticity of glue records protected in all TLD of the 
current domain name system 

6 Conclusion 
A lightweight security enhancement mechanism, namely, self-certificating root, which 
protects TLD data in the root zone, is proposed in this study for the single point of failure 
risk brought by the central governance structure in the DNS. The self-certificating root 
scheme enables the TLD authority to resist the single point of failure risk, and it is 
compatible with DNS and DNSSEC protocols used by the existing DNS. This 
mechanism is implemented by modifying the open-source software BIND, and its 
performance, compatibility, and effectiveness are evaluated. The evaluation results 
indicate that the self-certificating root scheme endows the resolver that only supports 
DNS and DNSSEC protocols with the capability to verify TLD data in the root zone only 
with minimal performance influence. 
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