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Abstract: In array signal processing, number of signals is often a premise of estimating 
other parameters. For the sake of determining signal number in the condition of strong 
additive noise or a little sample data, an algorithm for detecting number of wideband 
signals is provided. First, technique of focusing is used for transforming signals into a 
same focusing subspace. Then the support vector machine (SVM) can be deduced by the 
information of eigenvalues and corresponding eigenvectors. At last, the signal number 
can be determined with the obtained decision function. Several simulations have been 
carried on verifying the proposed algorithm. 
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1 Introduction 
Determining signal number is an important and tricky content in the signal parameter 
estimation, moreover, it is also applied in radar signal processing [Nielsen and Dall 
(2015); Ebihara, Kimura and Shimomura (2015); Takahashi, Inaba and Takahashi (2018); 
Oh, Ju and Nam (2016); Khabbazibasmenj, Hassanien and Vorobyov (2014)], underwater 
acoustic engineering [Saucan, Chonavel and Sintes (2016); Gholipour, Zakeri and 
Mafinezhad (2016); Lim, Boon and Reddy (2017)] and internet of things [David, Hector 
and Sanchez (2016); Zhang, Wang and Lu (2016); Mohamedatni, Fergani and Laheurte 
(2015); Han, Wan and Shu (2017)].  
In general, before calculating other signals’ parameters, we need to acquire their number. 
The early algorithm is based on hypothesis test [Schmidt (1981)], but it is often 
influenced by subjectivity. The information theoretic criterion [Wax and Kailath (1985)] 
is a kind of objective means relatively, the most famous is minimum description length 
(MDL) [Rissanen (1978)]. After this Gerschgorin Radii criterion (GDE) [Wu, Yang and 
Chen (1995)] was presented by Wu, it is appropriate for colored noise. Both of the 
methods above have improved the determining performance greatly. In recent years, this 
topic has also been studied by many other scholars: Liu et al. [Liu, Sun and Wang (2012)] 
estimated signal number, as well as their directions concurrently based on spatial 
difference with uniform linear array (ULA). Han et al. [Han and Nehorai (2013)] did the 
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same job with resampling and nested arrays, increasing the array aperture to some extent. 
In order to differentiate the sources which were close to one another, Liu et al. [Liu and 
So (2013)] designed Monte-Carlo method to determine the effective source number and 
distinguished the signals in the circumstance of high-level noise. Zhao et al. [Zhao, 
Zhang and Zhao (2011)] constructed an effective algorithm based on machine learning in 
2009, he employed Gerschgorin disk algorithm by the orthotropic of the array manifold 
and the noise vector to construct a support vector machine (SVM), obtaining a good 
result. But the methods for wideband signals are still rare, a classic approach is coherent 
signal method (CSM) [Wang and Kaveh (1985)], which transforms the sources on the 
focusing point, then employs MDL to obtain the final result. All the mentioned 
algorithms need high SNR or many samples, or they will be invalid. Thus, there are still 
some troubles in practical engineering application: on one hand, time of sampling is 
always restricted severely, for instance, transmitted pulses of sonar is usually very narrow, 
there is only a little data can be utilized; on the other hand, high SNR can not be 
guaranteed, both of them have hindered the application of above algorithms. 
This paper provides a new idea for determining wideband signal number, it is based on 
SVM, and the signal characteristics of received array data are fully exploited. First, 
technique of focusing is used for transforming signals into a same subspace. Then the 
SVM can be deduced by the information of eigenvalues and corresponding eigenvectors. 
At last, the signal number can be determined with the obtained decision function. 

2 Array signal model 
Signal model is represented as Fig. 1, consider that there is a ULA formed by M elements 
and the first one is the origin, d is the interval between sensors, then B far-field wideband 
signals ( )( 1,2, , )bs t b B=   arrive at the array from directions 1 2, , , Bθ θ θ . Assume that the 
observed time is T, then at time t, we can receive a serious of observed data for ( )Tt ,0∈ , 
where ( )mx t  is the response of the corresponding sensor at time t, c is transmission rate of 
the targets, ( )mn t  is white noise subjecting to Gaussian distribution ) ,0( 2σCN . 

 
 

 
 
 
 

Figure 1: Signal model 
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Define that signal frequency is limited in [ , ]L Hf f , sampling times at every frequency is 
U, then the array response can be demonstrated as 
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Here, L g Hf f f≤ ≤  for 1,2, ,g G=  ,
T

1( , ) ( , ) ( , ) ( , )g g m g M gf u x f u x f u x f u =  X   , and ( , )m gx f u is 
the received data on the mth sensor of gf at sample u, 

1( , ) ( , ),  , ( , ), , ( , )g g g b g Bf f f fθ θ θ =  A θ a a a   is the array steering, where 
T

( , ) 1, ,exp j 2π sin , ,exp j( 1)2π sing b g b g b
d df m f M f
c c

θ θ θ    = − − −        
a                                       (3) 

signal ( )gfS ( 1,2, ,g G=  ) are normal distributed and independent with ( )gfN  
( 1, 2, ,g G=  ). 

3 Proposed method 
3.1 Focusing 
The covariance of the received data at gf is 

H1ˆ ( ) ( ) ( )g g gf f f
U

=R X X         1, 2, ,g G=                                            (4) 

Then we can obtain the focused matrix )(ˆ
0fR  by transforming the signals at every 

frequency bin into a single covariance at 0f with two-sided correlation transformation 
(TCT) [Valaee and Kabal (1995)], here 0f can be chosen from 1, , Gf f

, then the 
eigenvalues 1 0 0 1 0 0( ) ( ) ( ) ( )B B Mf f f fλ λ λ λ+> > > = = 

 and corresponding eigenvector 
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0 1 0 0 1 0 0( ) [ ( ), , ( ), ( ), , ( )]B B Mf f f f f+=E e e e e   can be acquired too, here 0 1 0 0( ) [ ( ), , ( )]Si Bf f f=E e e  
belongs to signal subspace and 0 1 0 0( ) [ ( ), , ( )]No B Mf f f+=E e e  corresponds to the noise one. 

3.2 Weighting 
Since 0( , )f θa and 0( )Si fE both correspond to the signal subspace, 0( , )f θa  can be 
expressed 

0 0 0
1

( , ) ( ) ( )
B

b b
b

f f fθ β
=

= ∑a e                                                             (5) 

Here, 0( )b fβ  is the relevant coefficient, define the following variables 
H

0 0 0( ) ( , ) ( ) ,m mf f fµ θ= a e   1,  2, ,m M=                                              (6) 

Due to the orthogonality between signal and noise subspace, we have              
H

0 0( , ) ( ) 0bf fθ =a e , 1,  ,b B M= +                                                  (7) 

referencing Eq. (5), Eq. (7), Eq. (6) can be transformed as 
H
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Now we can only use eigenvalues to determine signal number [Han and Nehorai (2013); 
Liu and So (2013)], but when the samples is small, we need to take full advantage of the 
eigenvectors to enhance the detecting performance, fuse 0( )m fµ  with 0( )m fς  

1/2
0 0 0( ) ( ) ( ),m m mf f fξ ς µ=  1,  2, , 1m M= −                                           (9) 

Then the classifying characteristic vector [ ]T0 1 0 0 1 0( ) ( ), , ( ), , ( )m Mf f f fξ ξ ξ −=ξ    is evaluated. 
According to Viberg et al. [Viberg, Ottersten and Kailath (1991)], the optimal 0( )m fς  
( 1,  2, , 1)m M= −   are chosen as 

( )2
0 0

0
0

( ) ( )
( ) ,
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m M

m
m

f f
f

f
λ λ
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−
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3.3 Theory of SVM 
Theory of SVM [Vapnik (1995)] can be simply described as a binary classification 
problem: that is to determine a hyperplane satisfying the classifying requirement through 
training. If the set 1Φ  and 2Φ  are linear separable, namely existing ),( bω , they satisfy the 
purpose of classification is to determine ),( bω to separate 1Φ  and 2Φ  optimally. In order 
to avoid duplication of the hyperplane, we constrain ),( bω as follows: 

10,n nx b xω + > ∀ ∈Φ , 20,n nx b xω + < ∀ ∈Φ                                                      (11) 

1,2, ,
min 1nn N

x bω
=

+ =


                                                                   (12) 
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SVM solves nonlinear classification problem by introducing kernel function a proper kernel 
function ( , )K p q can transform the nonlinear problem into a linear one in higher dimensional 
space, then the complexity of corresponding dual problem depends on sampling times rather 
than space dimensionality. The maximal classification distance is written: 

1
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1 , 1

1

1max ( ) ( , ),  0,  1, 2, ,
2

s.t.                              0

N N

i i j i j i j i
i i j

N

i i
i

W y y K x x i N

y

α α α α α

α

= =

=

= − ≥ =

=

∑ ∑

∑



                          (14) 

Then the optimal decision function can be obtained: 

1
( ) sgn ( , )

N

i i i
i

f x y K x x bα
=

 = + 
 
∑                                                          (15) 

The SVM can be deduced according to (13) and (14), where  

( )2
( , ) exp 0.5i j i jK x x x x= − −                                                        (16) 

3.4 Proposed algorithm 
Here, SVM will be employed for the classification of signal and noise to determine 
source number, then the input information need to include characteristic of signal and 
noise, thus, estimation performance can be effectively improved under the circumstance 
of small samples or low SNR. Signals and noise is separated on the basis of the elements 
in the vector 0( )fξ , they contain the information not only the eigenvalues but also the 
eigenvectors, where the larger ones correspond to sources, and there are greater 
distinctions between them; While the others are smaller and close to each other, they 
correspond to the noise. Then as the classification characteristic, 0( )fξ  can be chosen to 
be the input data. 
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When 0( )fξ is used for training, we can preset its output as [1, ,1, -1, , -1]y =   , where 
[1, ,1]  represents signal vector, and the amount of 1 is B, it means there is B signal; 
While [-1, , -1]  denotes noise vector, so { }yf ),( 0ξ  is selected to be the training data. 

Here, we define 
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The proposed algorithm has used the course of focusing, fusion and SVM, so it can be 
called FFSVM for short. Now let us generalize the derivation process above: 
(1) Collect array signal as the training data, source number ranges from1,2, , 1M − ; SNR 
varies from -20 dB to 20 dB, step size is 4 dB; 
(2) Decompose covariance matrix of every frequency, then focusing them on a reference 
frequency by CSM;  
(3) Calculate classification characteristic vector 1/2 1/2 T

0 1 0 1 0 1 0 1 0( ) [ ( ) ( ), , ( ) ( )]M Mf f f f fς µ ς µ− −=ξ 
 

according to eigenalues and eigenvectors; 
(4) Construct SVM through (14)-(16); 
(5) Take{ }yf ),( 0ξ  into the SVM for the training; 

(6) Modify the weighting parameters in the light of training effect properly; 
(7) Estimate signal number in line with the testing data. 

4 Simulations 
Now we will test this algorithm, some examples are provided in the following, several 
linear frequency modulation signals arrive at a ULA with 10 omni-directional sensors, 
the bandwidth is 30% of center frequency (1 GHz), signals are divided into 40 frequency 
bins, and )1012/(103 98 ×××=d m. Here, FFSVM, MDL based on CSM (CSM-MDL) and 
GDE based on CSM (CSM-GDE) are compared with one another, 500 trials, where 300 
ones are used for training and 200 ones are exploited for the testing. 

In the first example, the model is shown as Fig. 1, signals are respectively from 6 , 
14 , 21 , 29 and 37 synchronously, background of Gaussian white noise (GWN), Fig. 2 

shows the accuracy versus SNR when number of samples is 60, while Fig. 3 presents that 
of number of samples when SNR is 6 dB. 
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Figure 2: Accuracy vs. SNR for uncorrelated signals in GWN 
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Figure 3: Accuracy vs. number of samples for uncorrelated signals in GWN 

It can be seen in Fig. 2, all the accuracy of the three algorithms are raising versus the 
increasing of SNR, and FFSVM performs better than CSM-GDE and CSM-MDL, it can 
achieve 100% if SNR is -4 dB, while CSM-GDE and CSM-MDL can reach 100% when 
SNR is 4 dB and 0 dB respectively. And we see from Fig. 3, when the samples are small, 
FFSVM is also better than the other two algorithms, it can achieve 100% when the 
sample number is 39, while CSM-GDE and CSM-MDL reach 100% when their sample 
numbers reach 48. 
For this example, we investigate the performance under the circumstances of colored 
noise, suppose the noise model in this section and [Stoica and Cedervall (1997)] obey the 
same distribution, other conditions are the same with the first example, then Fig. 4 shows 
the accuracy versus SNR when samples at every frequency is 60, while Fig. 5 presents 
that of samples at every frequency when SNR is 6 dB. 
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Figure 4: Accuracy vs. SNR for uncorrelated signals in colored noise 
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Figure 5: Accuracy vs. number of samples for uncorrelated signals in colored noise 

From Fig. 4 we know accuracies of the three algorithms are getting better versus SNR 
raising, and all of them can estimate signal number successfully completely at last. And 
from Fig. 5 it is seen that due to the colored noise, CSM-MDL is shaking all the time, 
that of the CSM-GDE and FFSVM are improving, and they are nearly the same, so the 
proposed FFSVM can also apply to the circumstances of colored noise. 
In the final example, we investigate the performance for coherent sources, suppose that 
signals are respectively from 6 , 14 , 21 , 29 and 37  simultaneously, other conditions 
are the same as the first example, then Fig. 6 and Fig. 7 have shown the results. Owing to 
the process of focusing, the coherence of these sources has been eliminated, so these 
algorithms are also appropriate for coherent signals, and Figs. 6 and 7 demonstrate that 
their performances are almost identical to that of uncorrelated sources. 
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Figure 6: Accuracy vs. SNR for coherent signals in GWN 
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Figure 7: Accuracy vs. number of samples for coherent signals in GWN 

5 Conclusion 
This paper proposes an algorithm for detecting number of wideband signals based on 
SVM, after transforming the signals on the focusing frequency, we deduce the SVM 
according to the information of eigenvalues and their eigenvectors of received data. Then 
signal number can be estimated by the acquired decision function. The simulation 
examples have shown that the proposed algorithm performs better than that of MDL and 
GDE based on CSM in the condition of strong additive noise or a little sample data, and it 
is also suitable for colored noise.  
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