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Abstract: Temporal variation of rock mass properties, especially the strength 
degradation due to drying-wetting cycles as well as the acidic wetting fluid (rainfall or 
reservoir water) is crucial to stability of reservoir rock slopes. Based on a series of 
drying-wetting cycling and experiments considering the influences of pH values, the 
degradation degree models of the reduced cohesion 𝑐𝑐′, friction angle 𝜑𝜑′ are developed. 
2D stability analysis of the slope is subsequently carried out to calculate the factor of 
safety (Fs) via limit equilibrium method (LEM) and a predictive model of Fs is built 
using multivariate adaptive regression splines (MARS), revealing the effect of the drying-
wetting cycles and pH value. The reliability analysis by Monte Carlo simulation is 
performed to rationally consider the uncertainty and the temporal variation of the shear 
strength parameters of rock mass. Results indicate that the MARS-based model can 
estimate the Fs accurately. The Fs and the reliability index β decrease with increase of 
drying-wetting cycles, and the temporal variation of rock mass properties has significant 
influence on the slope reliability. Overlooking the temporal variation of rock properties 
may overestimate the Fs and reliability index β in the longer term. 
 
Keywords: Reservoir slope stability, pH value, reliability analysis, temporal variation, 
strength degradation. 

1 Introduction 
The rock slope failure generally results in serious disasters, great property losses and 
casualties. The early studies on slope stability could be traced back to the 1970s [Matsuo 
and Kuroda (1974); Tang, Yucemen and Ang (1976)]. Recently, with the completion of 
Three Gorges Reservoir (TGR) Project, the reservoir rock slope stability assessment has 
attracted increasing attentions in geotechnical and geological engineering throughout the 
world. The reservoir water levels rise and fall repeatedly within 145-175 m levels all year 
round, as a result of which the rock-soil mass in the hydro-fluctuation zone of the 
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reservoir area will experience the alternation of drying-wetting cycles once or several 
times a year. Liu et al. [Liu, Zhang and Fu (2014)] demonstrated that the temporal 
variation of the shear strength parameters exists in argillaceous sandstones and the acidic 
environment can accelerate the damage or the degradation of the rock-soil mass 
properties with time. 
Numerical methods are a good substitute to study the slope stability, which are more 
cost-effective than experiments and can provide physical perceptions difficult to obtain 
via ‘pure’ experiments [Zhou, Zhuang, Zhu et al. (2018); Zhou, Zhuang and Rabczuk 
(2019, 2018a); Zhou, Rabczuk and Zhuang (2018b)]. To provide a relatively accurate 
estimation of slope stability, lots of attempts have been made to develop the deterministic 
computational models to evaluate slope stability using numerical methods [Merifield, 
Lyamin and Sloan (2006); Li, Lyamin and Merifield (2009); Shen and Karakus (2013)] 
and simplified analytical approaches, such as the limit equilibrium method (LEM) [Sun, 
Zhao, Shang et al. (2012); Zhao, Tong and Lü (2014)] as well as the limit analysis theory 
[Viratjandr and Michalowski (2006); Drescher and Michalowski (2009); Yang and Pan 
(2015); Pan, Xu and Dias (2017)]. The deterministic analysis with the factor of safety 
(Fs) is commonly utilized to evaluate the slope stability. The rock slope is assumed to be 
homogeneous and rock mass properties are selected to be of representative values to 
calculate the Fs in deterministic analysis. This may not be the real condition in 
geotechnical engineering. And many studies have shown that the factor of safety cannot 
fully evaluate the stability of slope since some slopes with a high factor of safety still 
ultimately fail [Zhang, Wang, Huang et al. (2017); Oguz, Yalcin and Huvaj (2017); Liu 
and Cheng (2018)]. Furthermore, there are uncertainty and inherent variability in the rock 
mass. Reliability analysis is usually required for rock slope engineering [Griffiths, Huang 
and Fenton (2009); Phoon and Kulhawy (1999a, 1999b); Ghasemi, Brighenti, Zhuang et 
al. (2015); Zhang and Goh (2018)] and the probabilistic assessment [Ghasemi, Rafiee, 
Zhuang et al. (2014)] is conducted through Monte Carlo simulation [Park, West and Woo 
(2005); Li, Cassidy, Wang et al. (2012); Johari, Momeni and Javadi (2015)]. In addition, 
the spatial variability of rock-soil mass is usually considered in the slope stability 
analysis [Cho (2007); Li, Wang, Cao et al. (2013); Liu, Wang and Li (2019)]. However, 
the temporal variation of the shear strength parameters for rock mass properties is seldom 
taken into consideration, which has significant influence on the slope stability. 
Furthermore, few literatures have reported the reliability analysis on the slope stability 
simultaneously considering the effect of the temporal variation of the shear strength 
parameters and the pH value of the acidic environment. Thus, how to rationally consider 
the temporal variation of rock properties and the pH value of the acidic environment in 
the reliability analysis of slope stability remains a challenging task.  
This study intends to investigate the effect of the temporal variation of rock properties on 
the reliability analysis of slope stability. Firstly, the fitting formulas of the degradation 
degree of the reduced cohesion 𝑐𝑐′, friction angle 𝜑𝜑′ in the rock mass are established on 
the basic of the experimental results by Liu et al. [Liu, Zhang and Fu (2014)]. Then, a 
deterministic analysis is carried out to explore the effects of the pH value and drying-
wetting cycles on the safety factor (Fs) of the slope. Next, a predictive model based on 
multivariate adaptive regression splines (MARS) is developed to relate the factor of 
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safety (Fs) to pH value and the drying-wetting cycles N. Afterwards, the influences of the 
coefficient of variations of cohesion and friction angle (𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐  and 𝐶𝐶𝐶𝐶𝐶𝐶𝜑𝜑 ) on the 
reliability index β of reservoir rock slope are investigated, followed by the analysis on the 
impacts of the pH value, the drying-wetting cycles and the correlation coefficient 𝜌𝜌𝑐𝑐,𝜑𝜑. 
Comparisons are also made to investigate the effect of these influential factors on the 
stability of the argillaceous sandstone slope. The obtained results of this paper can 
provide reference for theoretical analysis and practical application of slope stability in the 
field of water-rock interaction and related fields under acidic environment. 

2 Numerical model of slope 
Numerical Software Slide2 [Rocscience Inc (2018)] is adopted to carry out the reliability 
analysis of slope stability. The prototype slope illustrated in Fig. 1 is based on the study 
by Xiao et al. [Xiao, Guo and Zeng (2017)], with slope angle of 27°, width of 60 m, 
height of 10 m, and constant unit weight of 24 kN/m3. 

 
Figure 1: Geometry of the slope 

Based on the results by Liu et al. [Liu, Zhang and Fu (2014)], a drying-wetting cycle last 
for one day and the values of cohesion c, friction angle φ of the argillaceous sandstone at 
different drying-wetting cycles can be obtained. Tabs. 1, 2 and 3 show values of c, φ with 
different drying-wetting cycles for three typical pH values. The factor of safety for slope 
of the same dimension as that in Fig. 1 analyzed by Xiao et al. [Xiao, Guo and Zeng 
(2017)] is calculated by Bishop’s simplified method [Bishop (1955)], based on the mean 
value of shear strength parameters. The obtained value is 0.987, almost equal to 0.988 
that computed by the Software Slide2. Therefore, the slope numerical model in Fig. 1 has 
been validated to be appropriate to conduct the following analysis. 

Table 1: Strength degradation with drying-wetting cycles for pH=7 

Cycles c (MPa) φ (°) 𝑐𝑐′(kPa) 𝜑𝜑′(°) 
0 
5 
10 
15 
20 

10.07  
5.35  
4.79  
4.44  
4.19  

45.14  
33.02  
31.36  
30.33  
29.58  

170.41  
 

90.46  
81.00  
75.18  
70.93  

38.37  
 

28.06  
26.65  

 

25.78  
25.14  
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30 
40 
45 
50 

100 
150 
200 
250 
300 
350 
400 
450 
500 
550 
600 
650 
700 
750 
800 
850 

 

3.83  
3.56  
3.45  
3.35  
2.68  
2.28  
1.98  
1.75  
1.56  
1.40  
1.26  
1.13  
1.02  
0.91  
0.82  
0.73  
0.65  
0.58  
0.51  
0.44  

 

28.49  
27.69  
27.36  
27.06  
25.04  
23.82  
22.94  
22.24  
21.67  
21.18  
20.76  
20.38  
20.04  
19.73  
19.45  
19.19  
18.95  
18.72  
18.51  
18.31  

 

64.77  
60.28  
58.41  
56.73  
45.38  
38.51  
33.54  
29.63  
26.41  
23.66  
21.26  
19.13  
17.22  
15.48  
13.89  
12.42  
11.06  
9.78  
8.59  
7.46  

 

24.21  
23.54  
23.25  
23.00  
21.28  
20.25  
19.50  
18.91  
18.42  
18.00  
17.64  
17.32  
17.03  
16.77  
16.53  
16.31  
16.11  
15.91  
15.73  
15.56  

 

Table 2: Strength degradation with drying-wetting cycles for pH=5 

Cycles c (MPa) φ (°) 𝑐𝑐′(kPa) 𝜑𝜑′(°) 
0 
5 

10 
15 
20 
30 
40 
45 
50 
100 
150 
200 
250 
300 

10.07  
5.13  
4.58  
4.25  
4.00  
3.65  
3.39  
3.28  
3.18  
2.53  
2.13  
1.85  
1.62  
1.44  

45.14  
32.86  
30.76  
29.45  
28.49  
27.09  
26.07  
25.65  
25.26  
22.68  
21.11  
19.98  
19.10  
18.37  

170.41 
 

86.82 
77.55 
71.86 
67.71 
61.69 
57.32 
55.50 
53.86 
42.80 
36.11 
31.27 
27.47 
24.33 

38.37 
 

27.93 
26.15 
25.04 
24.22 
23.03 
22.16 
21.80 
21.47 
19.27 
17.95 
16.99 
16.23 
15.61 
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Table 3: Strength degradation with drying-wetting cycles for pH=3 

In rock slope stability analysis, rock mass shear strength parameters are the most 
important index. Based on the intact rock strength, the strength of the rock mass can be 
derived via the Fesinke method [Zhou, Liu, Shang et al. (2012)], as shown in Eqs. (1)-(3). 
𝑐𝑐′ = 𝑐𝑐 × 𝐼𝐼                                                                                                                          (1) 

𝐼𝐼 = 1

1+𝑎𝑎𝑎𝑎𝑎𝑎𝐻𝐻𝐿𝐿
                                                                                                                         (2) 

𝜑𝜑′ = 𝜑𝜑 × 0.85                                                                                                                   (3) 
where c, φ is cohesion, friction angle of the intact rock. 𝑐𝑐′, 𝜑𝜑′ are the reduced cohesion, 
friction angle of the rock mass and I is the reduction coefficient. a is the characteristic 
coefficient determined by the strength of the rock and the distribution of the structural 
plane of the rock mass. H is the height of slope while L is discontinuities spacing, both in 
meters. The derived strength parameters are listed in Tabs. 1, 2 and 3. Based on the 
values in these tables, the degradation degree for the rock mass can be calculated, the 
fitting formulas for which are determined by MATLAB program, with expressions 
presented in Tabs. 4 and 5. The fitting curves for degradation degree of cohesion 𝑐𝑐′, 
friction angle 𝜑𝜑′ are plotted in Fig. 2. 

 

 

350 
400 
450 
500 
550 
600 
650 

 

1.28  
1.14  
1.02  
0.91  
0.81  
0.72  
0.63  

 

17.75  
17.21  
16.73  
16.30  
15.91  
15.55  
15.22  

 

21.65 
19.32 
17.25 
15.39 
13.70 
12.15 
10.71 

 

15.09 
14.63 
14.22 
13.85 
13.52 
13.22 
12.94 

 

Cycles c (MPa) φ (°) 𝑐𝑐′(kPa) 𝜑𝜑′(°) 
0  
5  

10  
15  
20  
30  
40  
45  
50  

 

10.07  
4.08  
3.02  
2.36  
1.88  
1.17  
0.66  
0.44  
0.25  

 

 45.14 
 30.77 
 28.04 
 26.34 
 25.09 
 23.27 
 21.94 
 21.38 
 20.89 

 

170.41 
 

69.09 
51.16 
39.99 
31.77 
19.82 
11.09 
7.46 
4.19 

 

38.37 
 

26.15 
23.84 
22.39 
21.33 
19.78 
18.65 
18.18 
17.75 
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Table 4: Degradation degree fitting formulas (%) for cohesion 𝑐𝑐′ 

pH Fitting formulas (%) 
7 y=9.695ln(x+0.04786)+29.480   R2=0.9993 
5 y=9.329ln(x+0.03083)+32.551   R2=0.9994 
3 y=16.528ln(x+0.1529)+32.221   R2=0.9996 

where y is the degradation degree of the reduced cohesion 𝑐𝑐′, and x is the number of 
drying-wetting cycles. 

Table 5: Degradation degree fitting formulas (%) for friction angle 𝜑𝜑′ 

where y is the degradation degree of the reduced friction angle 𝜑𝜑′, and x is the number of 
drying-wetting cycles. 

 

Figure 2: Degradation degree fitting curves for: (a) cohesion 𝑐𝑐′, (b) friction angle 𝜑𝜑′ 

It is obvious that the degradation degree of the reduced cohesion 𝑐𝑐′, friction angle 𝜑𝜑′ 
increases with the drying-wetting cycles, in the pattern of logarithmic function. The 
degradation degree of the strength parameters in argillaceous sandstone slopes at specific 
drying-wetting cycles can be easily determined through the fitting formulas.  

3 Rock slope stability analysis 
3.1 Traditional deterministic analysis 
To carry out the probabilistic analysis in this study, preliminary deterministic analysis has 
been implemented assuming a homogeneous rock slope. The factor of safety (Fs) is 
commonly utilized in traditional slope stability. The values of pH and drying-wetting 
cycles are considered when calculating the slope factor of safety. For the slope illustrated 
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pH Fitting formulas (%) 
7        y=6.503ln(x+0.09875)+15.080  R2=0.9992 
5 y=8.251ln(x+0.2277)+12.260   R2=0.9992 
3 y=9.658ln(x+0.1991)+15.600   R2=0.9999 
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in Fig. 1, the Fs values can be obtained via the limit equilibrium method (i.e., Simplified 
Bishop Method in this context) to give the data in Tab. 6. The plots in Fig. 3 indicate that 
the effects of the pH value and drying-wetting cycles on slope safety factor are significant. 

Table 6: Fs values when for different pH values  

        pH 
Cycles 

7 5 3 

0 
5 
10 
15 
20 
30 
40 
45 
50 

100 
150 
200 
250 
300 
350 
400 
450 
500 
550 
600 
650 
700 
750 
800 

 

7.534  
4.367  
3.985  
3.751  
3.581  
3.334  
3.156  
3.081  
3.014  
2.561  
2.284  
2.083  
1.926  
1.796  
1.681  
1.582  
1.493  
1.414  
1.341  
1.272  
1.208  
1.147  
1.088  
1.034  

 

7.534 
4.248 
3.848 
3.603 
3.424 
3.166 
2.979 
2.902 
2.832 
2.363 
2.078 
1.872 
1.709 
1.576 
1.462 
1.361 
1.271 
1.189 
1.116 
1.048 

- 
- 
- 
- 

 

7.534 
3.592 
2.895 
2.454 
2.131 
1.646 
1.270  
1.101 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
-   
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Figure 3: Effect of pH and dry-wet cycles on the safety factor (Fs) of slope 

As shown in Fig. 3(a), the factor of safety decreases continuously with the number of 
drying-wetting cycles. For instance, the factor of safety decreases from 7.534 to 1.034 
after 800 cycles when pH=7 while Fs decreases from 7.534 to 1.048 after 600 cycles 
when pH=5. By contrast, Fs decreases from 7.534 to 1.101 after 45 cycles when pH=3. 
Obviously, the lower the pH value is, the fewer cycles the slope can sustain before an 
impending failure. For simplicity, Fig. 3(b) only plots the results of the first 40 cycles as 
an example to illustrate the effect of the pH value on the factor of safety (Fs). In the 
process of gradual decrease of pH, the significant change appears in the influence of pH 
on the factor of safety of slope stability at any cycle, and this influential zone occurs 
between pH=3.0 and pH=5.0 (Fig. 2(b)), indicating that the Fs of argillaceous sandstone 
slope is sensitive to the pH value within this range. By contrast, the pH value between 5.0 
and 7.0 has less significant impact on Fs for the argillaceous sandstone slope.  

3.2 Influence of temporal variation of rock properties 
As mentioned above, the drying-wetting cycles and the pH values will accelerate the 
shear strength degradation. However, few efforts have been made to systematically reveal 
the effect of this type of temporal variation of rock properties on the slope stability in the 
previous researches. Thus, this section intends to deal with this problem based on the 
calculated results from the Software Slide2. To show how the safety factors (Fs) of slip 
surfaces at various depths change with drying-wetting cycles in different pH values and 
to approximately estimate the Fs of the slip surface at certain depth, twelve typical plots 
of Fs as well as the slip surfaces after different drying-wetting cycles are shown in Fig. 4. 
In Fig. 4, the label is filled with different colors from top to bottom. And blue elements 
represent high Fs values while red elements correspond to low Fs values. 
Without considering the temporal variation of rock mass properties, the Fs value will keep 
constant at 7.534. After comparison among these twelve trend charts, it is worth noting that 
the safety factors of the slip surfaces at the same depth decrease with the drying-wetting 
cycles in three typical pH values, which reveals a pattern of degradation of Fs. In the early 
period of the drying-wetting cycling, the slip surfaces with various Fs values at different 
depths display several layers with different colors, such as in Figs. 4(b), 4(c) and 4(f). As 
shown in Figs. 4(b), 4(c) and 4(d), the scale of the slip surfaces with low Fs values becomes 
bigger and bigger with the increase of the drying-wetting cycles with the passage of time. 
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And in Figs. 4(f), 4(g) and 4(h) (or Figs. 4(j), 4(k) and 4(l)), there exist the similar 
phenomena.  
Therefore, the temporal variation of rock mass properties has significant influence on the 
safety factor (Fs) of the slopes, and it cannot be overlooked in the stability analysis of the 
reservoir rock slopes.  

 
Figure 4: Fs of the slip surfaces at various depths in different drying-wetting cycles for 
pH=3.0, 5.0, 7.0, respectively. (a) 0 cycles in pH=7.0; (b) 300 cycles in pH=7.0; (c) 600 
cycles in pH=7.0; (d) 800 cycles in pH=7.0; (e) 0 cycles in pH=5.0; (f) 200 cycles in 
pH=5.0; (g) 400 cycles in pH=5.0; (h) 600 cycles in pH=5.0; (i) 0 cycles in pH=3.0; (j) 
10 cycles in pH=3.0; (k) 30 cycles in pH=3.0; (l) 45 cycles in pH=3.0 

4 MARS-based approach for further slope stability analysis 
To better understand the effect of pH value and drying-wetting cycles on the safety factor 
(Fs), multivariate adaptive regression splines (MARS) are used in this section for the 
surrogate model development. MARS was first proposed by Friedman [Friedman (1991)], 
as a nonlinear and nonparametric regression methodology that approximate the 
relationship between the inputs and the outputs. And there is no need for MARS to 
explore the form of the numerical function in advance, which is similar with neural 
networks [Zhang and Goh (2016); Zhang, Goh, Zhang et al. (2015); Guo, Zhuang and 
Rabczuk (2019); Goh, Zhang, Wang et al. (2019)]. 
Let y be the target dependent responses and X=(𝑋𝑋1  ,..., 𝑋𝑋𝑃𝑃 ) be a vector of P input 
variables. Then it is hypothesized that the data are generated on the basic of an unknown 
“true” model. For a continuous response, this would be: 
𝑦𝑦 = 𝑓𝑓(𝑋𝑋1 , . ,𝑋𝑋𝑃𝑃) +  𝑒𝑒 =  𝑓𝑓(𝑋𝑋) +  𝑒𝑒                                                                                 (4) 
where e is the fitting error. f is the model built by MARS, being made up of basic 
functions (BFs) that are splines piecewise polynomial functions. For simplicity, only the 
piecewise linear function is considered in this context. And the piecewise linear functions 
are in the form of max(0, x-t).This means that only the positive part is utilized, otherwise 
the value zero will be given to it. The max(0, x-t) is defined as follows: 
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𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑥𝑥 − 𝑡𝑡) = �𝑥𝑥 − 𝑡𝑡, 𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ 𝑡𝑡  
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                                                    (5) 

Based on the MARS, the model f(x) can be defined as follows: 
𝑓𝑓(𝑥𝑥) = 𝑎𝑎0 + ∑ 𝑎𝑎𝑖𝑖𝐵𝐵𝑖𝑖(𝑋𝑋)𝑀𝑀

𝑖𝑖=1                 (6) 
where the coefficients 𝑎𝑎𝑖𝑖 in Eq. (6) are constants, obtained by the least-squares method. 
And each 𝐵𝐵𝑖𝑖(𝑋𝑋) is a basic function or the combination of two or more spline functions 
(Higher orders can be utilized only when the data warrants it. For simplicity, at most 
second-order is adopted).  
According to MARS, it is achieved by a two-phase process. The forward phase adds 
functions and finds potential knots to improve the performance, producing a complicated 
and overfit model. And the backward phase is used to prune the least effective BFs. 
Considering that a current model is with M basis functions, and the next pair is added to 
the model as follows:  
𝑎𝑎�M+1𝐵𝐵𝑚𝑚(𝑋𝑋)max(0, 𝑥𝑥𝑗𝑗 − 𝑡𝑡)+ 𝑎𝑎�M+2𝐵𝐵𝑚𝑚(𝑋𝑋)max(0, 𝑡𝑡 − 𝑥𝑥𝑗𝑗)                                                    (7) 
where 𝑎𝑎�M+1 and 𝑎𝑎�M+2 are estimated by the methodology of the least-squares method and 
𝐵𝐵𝑚𝑚(𝑋𝑋) is the formerly determined BF with 0 ≤ 𝑚𝑚 ≤ 𝑀𝑀. The process of adding BFs will 
not stop until the model reaches some maximum number, generally producing a 
purposely over-fitted model. 
In order to minimize the number of terms, a process called backward deletion follows. 
The backward procedure optimizes the model by pruning the redundant basis functions 
which have the lowest contribution to the model until the best sub-model is found. Then, 
the optimal MARS model is regarded as the sub-model which has the smallest value of 
GCV (generalized cross-validation) [Zhang and Goh (2013); Zhang, Zhang and Goh 
(2017); Goh, Zhang, Zhang et al. (2018); Zhang, Zhang, Wang et al. (2019); Liu, Zhang, 
Cheng et al. (2019)]. For a training data set with N observations, GCV is computed as: 

𝐺𝐺𝐺𝐺𝐺𝐺= 
1
N
∑ [yi− f(xi)]2N

i=1

�1−
M+d×M-1

2
N

�
2                              (8) 

where M is the number of basic functions; d is the penalizing parameter, according to 
Friedman [Friedman (1991)], it has a default value of 3; N is the number of observations, 
and 𝑓𝑓(𝑥𝑥𝑖𝑖) is the predictive values of the MARS model. 
Based on the factor of safety (Fs) of the slope at different drying-wetting cycles 
considering the effect of the pH value, the MARS-based mathematical equation of Fs is 
expressed as: 
𝑦𝑦 = 𝛼𝛼0 + ∑ 𝛼𝛼𝑖𝑖𝐵𝐵𝐵𝐵𝑖𝑖14

𝑖𝑖=1                  (9) 
where y denotes the factor of safety, the values of the coefficients for the equation above 
are shown in Tab. 7 and BFi (i=1, 2, 3, ···, 14) are basic functions, the equations of which 
shown in Tab. 8 below. Fig. 5 shows the plot of the factor of safety estimated by using Eq. 
(9) vs. the 163 calculated Fs values through Software Slide2. Eq. (9) is reasonably 
accurate with a high coefficient of determination (R2) of 0.9995. Therefore, it can be used 
to predict the Fs of the slope at certain drying-wetting cycles under a given pH value.  
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Table 7: The values of the coefficients 𝛼𝛼𝑖𝑖 (i=0, 1, 2, ···, 14) 

Table 8: The basic functions and corresponding equations of MARS model 

where X1 denotes the number of drying-wetting cycles, and X2 denotes the pH value. 

 
Figure 5: Predicted factor of safety 𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 versus the calculated 𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 

5 Reliability analysis of rock slope stability 
There exist uncertainty and temporal variations in the rock mass properties, which cannot 
be considered in the deterministic analysis in Section 3. Hence, a reliability-based approach 
is taken into consideration in this section to evaluate the reliability of rock slope stability. 
The cohesion and friction angle are assumed to be random variables. In this study, shear 
strength parameters are assumed to be characterized statistically by a normal distribution. In 
conventional analyses of slope reliability based on the LEM, the reliability index of slopes 
is generally calculated [Faravelli (1989); Duzgun, Yucemen and Karpuz (2003); Griffiths 
and Fenton (2004); Griffiths, Huang and Fenton (2009)] and the safety factor of the slope is 
utilized to calculate the integrated failure probability of the slope. When the factor of safety 
(Fs) equals to or greater than the unity, the slope is stable (safe), and when the factor of 
safety is less than 1.0, the slope is unstable (impending failure). Hence, the failure 
performance function of the slope is defined as follows:  

𝐺𝐺(𝑖𝑖) = �
0, 𝐹𝐹𝐹𝐹(𝑖𝑖) ≥ 1.0
1, 𝐹𝐹𝐹𝐹(𝑖𝑖) < 1.0                                                                                                  (10)      
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where i =1, ···, N, and N is the number of the samples to be calculated. 
Then, the failure probability and the reliability index [Ghasemi, Kerfriden, Bordas et al.  
(2015)] of the slope can be computed as follows: 

𝑃𝑃𝑓𝑓 = 1
𝑁𝑁
∑ 𝐺𝐺(𝑖𝑖)𝑁𝑁
𝑖𝑖=1                (11) 

𝛽𝛽 = Ф−1�1− 𝑃𝑃𝑓𝑓�                                                                                                            (12) 
where Ф−1(x) is the inverse function of the standard normal distribution function. Herein, 
a histogram of the factor of safety (Fs) in Fig. 6 is taken as an example to graphically 
illustrate the probability of failure (𝑃𝑃𝑓𝑓 ), which is equal to the highlighted black area 
(FS<1) of the histogram divided by the total area of the histogram. And the statistics of 
the highlighted data are listed on the diagram. In this example, it reveals that 103/1000 
points have a safety factor less than 1. This means the probability of failure equals 10.3%. 

 
Figure 6: Histogram of the factor of safety (Fs) 

In this section, three kinds of changing trends of 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 and 𝐶𝐶𝐶𝐶𝐶𝐶𝜑𝜑 are hypothesized (Tab. 
9). Furthermore, different values of correlation coefficient 𝜌𝜌𝑐𝑐,𝜑𝜑 are also considered in the 
following (𝜌𝜌𝑐𝑐,𝜑𝜑=-0.5, 0, 0.5). In the reliability analysis of slope stability, the analysis 
process is repeated until stable statistics of the outputs are obtained using 1000 Monte 
Carlo runs [Malkawi, Hassan and Sarma (2001); Park, West and Woo (2005); Li, Cassidy, 
Wang et al. (2012); Johari, Momeni and Javadi (2015)] to ensure that the calculated 
failure probability 𝑃𝑃𝑓𝑓 can reach convergence. 
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Table 9: Three kinds of changing trends of COVc and COVφ 

 

 

Figure 7: Effect of pH and correlation coefficient 𝜌𝜌𝑐𝑐,𝜑𝜑 on the reliability index of slope in Case 1 

 

Figure 8: Effect of pH and correlation coefficient 𝜌𝜌𝑐𝑐,𝜑𝜑 on the reliability index of slope in Case 2 

     Cycles 
COV 

0 10 20 30 40 45 50 

Case 1 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐   
𝐶𝐶𝐶𝐶𝐶𝐶𝜑𝜑  

   0.3 
0.1 

   

Case 2 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 0.10 0.13 0.16 0.19 0.22 0.25 0.30 
𝐶𝐶𝐶𝐶𝐶𝐶𝜑𝜑 0.05 0.06 0.07 0.075 0.08 0.09 0.10 

Case 3 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 0.10 0.13 0.16 0.19 0.22 0.25 0.30 
𝐶𝐶𝐶𝐶𝐶𝐶𝜑𝜑 0.10 0.09 0.08 0.075 0.07 0.06 0.05 
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Figure 9: Effect of pH and correlation coefficient 𝜌𝜌𝑐𝑐,𝜑𝜑 on the reliability index of slope in Case 3 

Figs. 7-9 illustrate the variation of the reliability index β with respect to various pH 
values and changing trends of 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐, 𝐶𝐶𝐶𝐶𝐶𝐶𝜑𝜑, and these three cases all take the effect of the 
correlation coefficient 𝜌𝜌𝑐𝑐,𝜑𝜑 into consideration. Fig. 7 demonstrates the effect of the value 
of pH and correlation coefficient 𝜌𝜌𝑐𝑐,𝜑𝜑 on the reliability index of slope in Case 1 (Tab. 9), 
where 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 = 0.3, 𝐶𝐶𝐶𝐶𝐶𝐶𝜑𝜑 = 0.1. And Figs. 8 and 9 illustrate the influence of the pH 
value and correlation coefficient 𝜌𝜌𝑐𝑐,𝜑𝜑 on the reliability index of slope stability in Cases 2 
and 3 (Tab. 9), respectively.  
It can be seen from Figs. 7-9 that the reliability index β decreases with the drying-wetting 
cycles. And after the same cycle, the lower the value of pH is, the lower the reliability 
index β will be. According to Figs. 7(a) and 7(b), the reliability index β decreases only a bit 
in general. Fig. 7(c) shows that the reliability index β declines obviously with drying-
wetting cycles. This phenomenon reveals that the reliability index β is less sensitive to the 
pH range of 5.0-7.0 than that from 3.0 to 5.0 when both 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 and 𝐶𝐶𝐶𝐶𝐶𝐶𝜑𝜑 keep constant. 
Also, the changing trend line of the reliability index β (𝜌𝜌𝑐𝑐,𝜑𝜑=-0.5) almost parallels with that 
of the reliability index β (either 𝜌𝜌𝑐𝑐,𝜑𝜑=0 or 𝜌𝜌𝑐𝑐,𝜑𝜑=0.5). To some extent, this may be consistent 
with the results in Section 3.1 that the pH value from 5.0 to 7.0 has slighter effect on the Fs 
of the argillaceous sandstone slope compared to the pH value between 3.0 and 5.0. 
According to Figs. 8 and 9 where 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 and 𝐶𝐶𝐶𝐶𝐶𝐶𝜑𝜑 change with the drying-wetting cycles, 
the difference between reliability index β at certain cycle seems to show opposite 
tendency towards the difference between 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 and 𝐶𝐶𝐶𝐶𝐶𝐶𝜑𝜑. To be specific, however each 
of 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐  and 𝐶𝐶𝐶𝐶𝐶𝐶𝜑𝜑  changes, as long as the difference between them gets greater, the 
difference in reliability index β of 𝜌𝜌𝑐𝑐,𝜑𝜑=-0.5, 0, 0.5 becomes less significant with the 
increase of the drying-wetting cycles.   
Based on the analysis above, it can be concluded that the reliability index β is lower when 
the slope is in the acidic environment with a smaller pH value, which is consistent with 
the results in Section 3.1 in that the Fs of the argillaceous sandstone slope varies a lot in 
the pH value range of 3.0-5.0. It should also be noted that β declines with 𝜌𝜌𝑐𝑐,𝜑𝜑 changing 
from -0.5 to 0.5 when 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 , 𝐶𝐶𝐶𝐶𝐶𝐶𝜑𝜑 , the value of pH and drying-wetting cycles keep 
unchanged. It is well organized that reservoir water level fluctuation may affect the 
stability of reservoir rock slope. Although this study focuses on the temporal variation of 
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rock-mass properties on the slope stability, it can be extended to consider the effect of 
water level fluctuation by solving the corresponding partial differential equations of 
seepage modeling with the aid of advanced numerical methods [Ghasemi, Park and 
Rabczuk (2017); Ghasemi, Park and Rabczuk (2018)]. 

6 Summary and conclusions 
In this study, both the deterministic and probabilistic analysis are conducted to explore 
the influence of the temporal variation of rock properties on the slope stability. A MARS-
based predictive model is developed to relate Fs to the pH value and the drying-wetting 
cycles N. The following conclusions can be drawn from this study: 
(1) The relationships among the pH value, drying-wetting cycles N and factor of safety 

(Fs) in temporally variable rocks can be well estimated using MARS. The proposed 
MARS-based predictive model is able to calculate the Fs accurately and efficiently. 

(2) Both the Fs and the reliability index β decline with the decrease of the pH value. The 
Fs of the argillaceous sandstone slope is more sensitive to the pH value between 3.0 
and 5.0 than that between 5.0 and 7.0. Hence, the pH value should be properly 
considered in the reservoir rock slope stability analysis.  

(3) The spatial variations of rock properties (i.e., 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 , 𝐶𝐶𝐶𝐶𝐶𝐶𝜑𝜑  and the correlation 
coefficient 𝜌𝜌𝑐𝑐,𝜑𝜑 ) have significant effect on the reliability analysis of rock slope 
stability. And there exist different reliability index values in the slope with the same 
shear strength parameters when 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐, 𝐶𝐶𝐶𝐶𝐶𝐶𝜑𝜑 and 𝜌𝜌𝑐𝑐,𝜑𝜑 are different.  

(4) Ignoring the temporal variation of rock properties may overestimate the Fs and the 
reliability index β of the rock slope. Therefore, the temporal variations of rock mass 
properties should be taken into consideration in the reliability analysis of rock slope 
stability. 
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