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A Differentially Private Data Aggregation Method Based on
Worker Partition and Location Obfuscation for Mobile
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Abstract: With the popularity of sensor-rich mobile devices, mobile crowdsensing (MCS)
has emerged as an effective method for data collection and processing. However, MCS
platform usually need workers’ precise locations for optimal task execution and collect
sensing data from workers, which raises severe concerns of privacy leakage. Trying to
preserve workers’ location and sensing data from the untrusted MCS platform, a
differentially private data aggregation method based on worker partition and location
obfuscation (DP-DAWL method) is proposed in the paper. DP-DAWL method firstly use
an improved K-means algorithm to divide workers into groups and assign different privacy
budget to the group according to group size (the number of workers). Then each worker’s
location is obfuscated and his/her sensing data is perturbed by adding Laplace noise before
uploading to the platform. In the stage of data aggregation, DP-DAWL method adopts an
improved Kalman filter algorithm to filter out the added noise (including both added noise
of sensing data and the system noise in the sensing process). Through using optimal
estimation of noisy aggregated sensing data, the platform can finally gain better utility of
aggregated data while preserving workers’ privacy. Extensive experiments on the synthetic
datasets demonstrate the effectiveness of the proposed method.

Keywords: Mobile crowdsensing, data aggregation, differential privacy, K-means,
kalman filter.

1 Introductions

The market of hand-held mobile devices (e.g., smartphones and wearable devices) is
proliferating rapidly in recent years. These devices possess powerful computation and
communication capabilities, and are equipped with various functional built-in sensors.
Along with users round-the-clock, mobile devices have become an important information
interface between users and environments. These advances have enabled and stimulated the
development of mobile sensing technologies, among which mobile crowdsensing catches
more and more attention owing to its capability of completing complex social and
geographical sensing applications. Mobile crowdsensing (MCS) is defined as a new sensing
paradigm that empowers ordinary citizens to contribute data sensed or generated from their
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mobile devices and aggregates and fuses the data in the cloud for crowd intelligence
extraction and human centric service delivery [Guo, Zhang and Zhou (2014)]. Different
from traditional physical sensors based sensing paradigm, MCS needs large number of
participants with smart phones to sense the surrounding environment. The smart phone can
collect the useful information about the user such as location or GPS. Users can use the
smart phone to collect the useful information of the environment such as images. Through
using and analyzing the multi-modal sensing information, it is possible to update the
development of public security, smart cities, location based services, etc. Overall, MCS is
an emerging computing paradigm that tasks everyday mobile devices to form participatory
sensor networks. However, every coin has its two sides. Although with the above
advantages, the new sensing paradigm also encounters new challenges such as privacy
concerns. In MCS application scenario, participants contribute their sensing data to the
MCS platform for further aggregation and analysis, which may carry sensitive information
related to users and expose users to the risk of personal privacy leakage. As people pay
more attention to personal privacy issues, this becomes a key challenge hindering
individuals (workers) from participation, more than the consumption of the limited system
resources (e.g., battery and computing power) of their mobile devices. Therefore, the
success of MCS hinges upon the design of efficient privacy preserving mechanisms to
protect workers’ privacy and stimulate workers’ participation.

In many MCS applications such as urban road planning and making business decision,
platform needs participants’ precise locations for optimal task allocation and execution.
However, the exposure of their locations raises privacy concerns. Especially for those
participants who are not eventually selected for any task, their location privacy is
sacrificed in vain. Besides, the MCS platform that collects the sensing data is not
trustworthy, it may be curious or even malicious to the participants’ location or sensing
data for special purpose. The participants may get discouraged and leave the MCS
platform, downsizing the candidate worker pool and impairing the performance of the
whole platform. Therefore, location and sensing data privacy need to be carefully
considered in the phase of data aggregation.

The main contributions of this paper are summarized as follows:

(i) Trying to preserve workers’ location and sensing data from the untrusted MCS
platform, a differentially private data aggregation method based on worker partition and
location obfuscation (DP-DAWL method) is proposed in the paper. Considering that the
number of workers in different regions can be various and workers may have diverse
privacy requirements, DP-DAWL method adopts an improved K-means algorithm to
divide workers into groups. The K-means clustering algorithm is improved by
normalizing worker location and adaptively selecting the optimal number of clusters by
contour coefficients. Each group will be assigned privacy budget according to the group
size (the number of workers), worker intensive group will be assigned more privacy
budget and vice versa.

(i1) Since each worker’s location is obfuscated and his/her sensing data is perturbed by
adding Laplace noise before uploading to the platform, DP-DAWL method adopts an
improved Kalman filter algorithm to filter out the added noise (including both added
noise of sensing data and the system noise in the sensing process) during the data
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aggregation phase, the added noise. Improve process noise of system model based on
system process noise affected by population density. The greater the population density,
the greater the process noise of the sensing system. Through using optimal estimation of
noisy aggregated sensing data, the platform can finally gain better utility of aggregated
data while preserving workers’ privacy. Privacy analysis proves DP-DAWL method
satisfy differential privacy. Besides, Computational Complexity of DP-DAWL method is
also provided.

(ii1) To validate the effectiveness of DP-DAWL method, synthetic datasets with various
size (the number of workers) are generated and compared. The results of experiment
show that DP-DAWL method achieves good data utility in condition of preserving
worker’ privacy.

2 Preliminary and related works
2.1 Differential privacy

Differential privacy is a privacy protection method proposed by Dwork [Dwork (2011)].
Simply to say, a mechanism is differentially private if its outcome is not significantly
affected by the removal or addition of a single user. An adversary thus learns
approximately the same information about any individual user, irrespective of his/her
presence or absence in the original database.

Definition 2-1 (Differential Privacy). Given a random algorithm A/ and an adjacent data

set D and D', P, indicates the range of values of M , S, is any subset of P, ,

indicating that A7 outputs an arbitrary result on the adjacent data sets Dand D'. If the
inequality (1) is satisfied, the random algorithm A7 is said to satisfy the &- differential
privacy.
PrfM(D)e S, ] <
Pr[M(D")eS, ]

exp(¢) (1)

where Pr[M(D)eS,,] is the probability that the data D output is S, under the

algorithm A/ , and is also the risk of privacy disclosure. The privacy parameter & (also
called the privacy budget) specifies the degree of privacy offered. Intuitively, a lower
value of & implies stronger privacy guarantee and a larger perturbation noise, and a
higher value of & means higher accuracy and lower privacy guarantees.

Definition 2-2 (Sequence Combination Theorem). With algorithm M,,M,,...M, , the

privacy budgets are respectively &,¢,,...,&,, then for the same data set D, the combined
algorithm composed of these algorithms M (M, (D),M,(D),..M (D)) provides

(an &)-differential privacy.

Definition 2-3 (Post-Processing Property) Given 4,(¢) that satisfies €- differential privacy,
then for any (possibly randomized) algorithm 4, , the composition of 4, and 4,, i.e.,
A,(A4,()) satisfies &-differential privacy.
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2.2 Laplace mechanism

Laplace mechanism is the first generalized noise addition mechanism proposed by Dwork
[Dwork (2011)]. This mechanism is suitable for handling privacy protection of numerical
results. By injecting independent noise obeying the Laplacian distribution into the
numerical data or the statistical result, the noise disturbance query result satisfies the
constraint condition shown in (1).

Definition 2-3 (Laplace Mechanism). Given a data set D, with a function f: D — R? and

a sensitivity of Af, the random algorithm M (D)= f(D)+Y provides &- differential

privacy, where Y ~ Lap(b) is random noise that obeys the Laplace distribution with the
scale parameterb = Af / €.

2.3 Kalman filter algorithm

For linear filtering and prediction problems, Kalman filter algorithm is an algorithm that
can optimally estimate the state of the system from a series of data with measurement
noise when the measurement variance is known. As it is convenient for programming and
the collected data can be processed in real time, Kalman filtering algorithm is widely
applied in communication, navigation, sensing data fusion and other fields.

The system’s state equation and measurement equation are given as follows:
X(k)=AX(k-1)+BU(k)+ (k) 2)

Z(k)= HX (k) +v(k) 3)

where X (k) , Z(k) and U(k) respectively represent the system state, measured value,
and system control amount at time k. 4 and B represent system parameters and / is the
measurement system parameter, @(k) and v(k) are the process noise and measurement

noise of the system respectively.
The Kalman filter algorithm is described by the following five equations.

X(k|k—-1)=AX(k—1|k—1)+ Bu(k) 4)
The covariance prediction equation in this state at time k is defined in (5).
P(k|k-1)=AP(k-1|k-1)4 +0 (5)
System filter estimation equation is given in (6).
X(k|k)=Xk|k-1)+Kg(k)Z(k)—HX(k|k—-1)) (6)
Kalman filter gain equation is defined in (7).

Kg(k) =i @
Filter covariance update equation is given in (8).

P(k| k)= —-Kg(k)H)P(k|k—1) ®)
2.4 Related works

At present, with the emergence of privacy protection algorithms for location data and
sensing data in the MCS environment, how to ensure the accuracy of the results to meet
the needs of relevant applications while satisfying privacy requirements, and how to
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improve the algorithm performance while maintaining acceptable computational
overhead and resisting various attacks have become research hotspots. In order to solve
the above problems, researchers have proposed many methods for privacy protection.
According to the different protection strategies and ideas adopted, the algorithms can be
roughly divided into three categories: data anonymity technology, data encryption
technology and data perturbation technology.

The privacy protection algorithms based on data anonymity technology achieve the
purpose of privacy protection by transplanting and generalizing data. K-anonymity
[Sweeney (2002)] and 1-diversity [Machanavajjhala, Gehrke, Kifer et al. (2006)] are two
well-known data anonymization models. Based on the expansion of Merkle tree, Li et al.
proposed a privacy protection mechanism that can control the other leaf nodes of the
Merkle tree, authenticate participants anonymously without the trusted third-party [Li and
Cao (2014)]. The proposed mechanism effectively realizes incentive schemes under the
anonymous mechanism and avoids the single-point failure of the trusted third-party, the
revealed data content of participants and the malicious attacks. Wang et al. [Wang, Cheng,
Mohapatra et al. (2014)] proposed a privacy protection policy based on trust management
and designed the trust classification levels of participants and privacy information
sensitivity levels, where the platform cannot deduce the node identity when evaluating
node behaviors. Eventually, the anonymity of the participant credibility assessment,
privacy protection and data trust management can be achieved. Chen et al. [Chen, Wu, Li
et al. (2014)] introduced a privacy protection technology based on k-anonymity that
generalizes users. It is impossible for the server to distinguish which of the k users has
completed the crowd sensing task, thus protecting the user’s privacy.

The privacy protection algorithms based on data encryption technology commonly use
homomorphic encryption to aggregate the ciphertext directly and the intermediate node can
aggregate the ciphertext directly without decrypting the data, thereby achieving privacy
preservation. IPHCDA [Ozdemir and Xiao (2011)] uses homomorphic encryption model
which is based on elliptic curve and relevant information authentication codes to deal with
external attacks and internal attacks. TTP-free method [Li and Cao (2013)] uses pseudonym
and bling signature to protect user privacy, but its encryption operations may bring a burden
of cost. Besides, trusted third-party node were used to verify the information uploaded by the
participants. Through the establishment of various private and shared keys among the
participants, the global public key can remove the association between participants and the
server, and the MAC address conversion and network coding are considered to prevent P
address attacks [Shin, Cornelius, Peebles et al. (2011)]. Lv et al. [Lv, Mu and Li (2014)] puts
forward a kind of non-interactive public key exchange mechanism utilizing the time-
evolving topology model as well as two-channel cryptography: the time-evolving topology
model is used to simulate the predicable periodic motion of nodes in Interstellar network,
thus the nodes can predict when it conduct the public key exchange with whom; two-channel
cryptography algorithm is used for non-interactive public key exchange and guarantees its
reliability. Although, this mechanism can realize effective spreading of node public key and
guarantee the confidentiality of data transmission in MCS, it requires that the nodes have
relatively fixed orbit like stars in Interstellar networks which limits its application scope.
Basudan et al. [Basudan, Lin and Sankaranarayanan (2017)] propose a lightweight
certificateless scheme of signcryption based on which a privacy-preserving protocol is



228 CMC, vol.63, no.1, pp.223-241, 2020

designed for enhancing security in data transmission. With respect to privacy preserving, all
the sensing data are encrypted. By introducing the certificateless scheme of signcryption,
malicious roadside units (can be considered as the edge nodes) are prohibited from
modifying the sensing data provided by the participants. Nevertheless, this work does not
take into consideration the case when some participants become malicious. Fan et al. [Fan,
Li and Cao (2015)] proposed a privacy-aware and trustworthy data aggregation protocol to
preserve the privacy of the participants and restrict the behavior of malicious participants.
Similar to Basudan et al. [Basudan, Lin and Sankaranarayanan (2017)], the goal of
preserving privacy is fulfilled by encrypting the sensing data. To deal with malicious
participants, Fan et al. [Fan, Li and Cao (2015)] propose the novel concept of a data value
vector from which the participants pick one value to be their sensing result. Then a privacy-
aware data validation technique is derived to validate whether each participant has submitted
valid data from the data value vector. Via this operation, the influence of malicious
participants will be limited. However, the accuracy of the sensing result can be degraded.

The privacy protection algorithms based on data perturbation technology are to add specific
random noise in the original data or to perturb the real data through data slice
recombination to achieve the purpose of privacy protection. SMAPT [He, Liu, Nguyen et al.
(2007)] is a classic representative of data slice recombination technology. The basic idea is
that the sensor node randomly splits the perceived data into multiple data slices, and the
split data slice itself does not carry any valid information. The data slice can be reorganized
to obtain the original sensory data, and the data slices are randomly exchanged between the
nodes. The received slice is summed to eliminate the distinguishability of data slices, and
then sent the sum results to the base station node for further fusion operation. Tang et al.
[Tang and Ren (2015)] exploited the time-domain data transmission delay to achieve the
data privacy protection. Firstly, the data is fragmented and the forwarding nodes are
randomly selected to transmit the data slices to the sensing platform, thus the data
processing server and the source nodes are separated to prevent the server from deducting
the trueness and identity of participants. In the data transmission process, the participants
are assigned with pseudonyms dynamically. The proposed algorithm can balance the
relationship among security, delay rate and delivery rate. However, cutting off the
connection between the source node and destination node completely makes the node
evaluation impossible, resulting in the system performance degradation. Chen et al. [Chen,
Ma and Zhao (2017)] designed a data privacy protection method especially for the
untrusted server. The data are divided into multiple slices and forwarded to neighbor
participants. The carrying participants send the fragment information directly to the server
when the hop count reaches the threshold. Xiao et al. [Xiao, Li and Yuan (2010)] and
Cormode et al. [Cormode, Procopiuc, Srivastava et al. (2012)] adopted the method of
quadtree and kd-tree to evenly divide the space of user data distribution. Adding noise that
satisfies the Laplace distribution to the statistical results, and releasing the statistical result
after perturbation, so as to achieve the purpose of protecting the user’s location privacy
information. From the perspective of the generative antagonistic neural network and
combining with the differential privacy protection mechanism, Hitaj et al. [Hitaj, Ateniese
and Perez-Cruz (2017)] generated internal attack data and challenged the security of
collaborative deep learning. Based on random response and Bloom-Filter, Fanti et al. [Fanti,
Pihur and Erlingsson (2015)] and Erlingsson et al. [Erlingsson and Korolova (2014)]



A Differentially Private Data Aggregation Method Based on Worker Partition 229

achieved the collection of statistical information of user strings and long-term privacy
protection of multiple data collection. Avent et al. [Avent, Korolova, Zeber et al. (2017)]
proposed a hybrid model BLENDER with high availability and privacy protection by
combining local privacy protection and centralized data mode. Nguyén et al. [Nguyén, Xiao,
Yang et al. (2016)] addressed the privacy data collection problem of Samsung’s smart
mobile terminals, the accurate and efficient Harmony system is built by using the local
differential privacy protection mechanism, which realizes the statistical analysis and
machine learning functions supporting LDP. Chen et al. [Chen, Yu and Chirkova (2015)]
perturbed relevant parameters in the wavelet transformation process to solve the privacy
leakage problem in the process of wavelet clustering algorithm, protecting users’ location
privacy by distorting the number of data points in different equal-width networks through
Laplace mechanism and exponential mechanism. To et al. [To, Ghinita and Shahabi (2014)]
proposed a personalized localized differential privacy technology to solve the problem of
location privacy protection. The concept of security zone is proposed according to the
requirements of different privacy protection requirements of each user. Each user specifies a
security zone that they can tolerate, then the localized differential privacy technology is used
to perturb the user’s security zone, so that the attacker can recognize that the concept of a
user’s security zone is less than a certain threshold. Chen et al. [Chen, Li, Qin et al. (2016)]
proposed an architecture for location data acquisition using LDP technology. The user sends
the data to a trusted atomic service provider, which is responsible for collecting and updating
the location data with privacy parameters € according to meet the difference of Private
Spatial Division (PSD) way. Then the PSD information is stored on the server side and the
user responds to requests from the requester.

In summary, each type of technology has its own advantages and disadvantages and
performance for different application requirements. There is no way to solve all the
problems of privacy protection. The choice of specific methods depends on the
application scenarios and the participants’ personalized privacy requirements. Usually the
tasks published by the MCS platform are sensitive to time and location. Therefore, facing
the location sensitive and personalized privacy requirements of participants, how to
improve the availability of sensing data on the basis of preserving participants’ privacy is
an urgent problem to be solved.

3 A data aggregation method based on worker partition and location obfuscation
3.1 System model

Consider an MCS system consisting of a centralized platform, a set of participating
workers {1, ..., N}, N is the number of workers, as illustrated in Fig. 1. The task requires
workers to report to the platform their local sensing data of a specific object or
phenomenon (e.g., spectrum sensing and environmental monitoring). To enhance the
reliability of the result, the platform will aggregate the sensing data, as the reliability of
each worker’s sensing data may be different due to different sensor qualities.
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Figure 1: System model of MCS

In this paper, we assume that the MCS platform is untrusted and may be curious to
workers’ sensing data. We also assume that all workers involved in responding to sensing
tasks have been selected under a certain incentive mechanism. In other words, workers
are the winners of all participants according to a certain incentive mechanism. And that
the sensor has a certain systematic error. Besides, due to various privacy concerns, each
worker may have his/her own privacy protection requirements and is not willing to send
their precise location and sensing data to the MCS platform directly. Moreover, in this
paper, we assume that the number of tasks is smaller than that of participants on the MCS
platform, so no selected worker needs to perform more than one task in one snapshot of
the task allocation. This assumption is reasonable as today’s milestone MCS applications
have already attracted millions of users (e.g., Waze [Waze (2016)]), and limiting the
number of tasks for each user can benefit both the quality of task performing and user
fairness. Last but not the least, further process and analysis of the aggregated data on the
MCS platform will be not considered in this paper.

3.2 The framework of the data aggregation method

DP-DAWL method is based on worker partition and location obfuscation. The overall
idea of the proposed method is to provide aggregated sensing data to the untrusted MCS
platform, while preventing workers’ location and original sensing data from acquiring by
the platform. Considering that the number of workers in different regions can be various
and workers may have his/her privacy requirements, the DP-DAWL method firstly uses
improved K-means algorithm to divide workers into several groups according to worker
density, then adopts differential privacy as the privacy preserving model and assign
different privacy budget to the groups, the assigned privacy budget depend on group
density (the number of workers in a group). To protect workers’ privacy, each worker’s
location was obfuscated and sensing data is perturbed by adding Laplace noise. The
obfuscated location and perturbed sensing data then are uploaded to the platform, and
data aggregation is performed by the platform. Since aggregated data is perturbed and
data utility has been decreased, the platform uses improved Kalman filter algorithm to
filter out the added noise in best effort without losing workers’ privacy. After data
filtering, the utility of aggregated data can be improved for further process and analysis.
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Figure 2: Data flow of DP-DAWL method

The data flow diagram of the proposed data aggregation method in this paper is shown in
Fig. 2 and can be described as follows. The MCS platform firstly publish application
scenario and sensing data requirements. All workers first perform a simple linear
transformation (here relative position shift) of their original location data. And then all
workers upload their transformed location data to the platform (here we assume workers
have been successfully selected from candidate participants according a certain incentive
mechanism). The platform divides the worker into different groups (clusters) according to
their location information by using an improved K-means clustering algorithm, detailed
clustering process description is presented in the next section. Based on the clustering
result and combined with differential privacy model, different privacy budgets are
allocated for different groups. Workers in the same group have the same privacy budget,
and sensing data of workers will be perturbed before uploading to the platform, the added
noise of sensing data depends on the assigned privacy budget. At the same time,
according to the privacy budget allocated by different clustering, works in the different
group will have different radius and workers in the same group will have same radius.
Then take the original location of each worker as the center, and randomly generate four
positions within this radius ([Labrador, Wightman and Perez (2011)] recommend N=4 in
order to maintain acceptable variability in the final noise, while increasing the average
distance from the original point compared with using just one sample). Finally, the
farthest location from the center is selected to obfuscate the original location data of the
worker. After finishing these two things, workers upload both the obfuscated location
data and the perturbed sensing data to the platform. The platform uses am improved
Kalman filter algorithm to filter out the added noise in best effort, the added noise
includes both added noise of sensing data and the system noise in the sensing process.
Through filtering step, the platform can finally gain better utility of aggregated data while
preserving workers’ privacy.

As mentioned before, we assume that the MCS platform is untrusted. During the whole
process of the method, the platform only gets the knowledge of the simple linear
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transformed location of workers to perform group partition and cluster center of each
group (cluster). Since workers move during the task execution phase and each worker’s
real location was obfuscated and sensing data is perturbed, worker’s privacy can be
preserved, strict privacy analysis is presented in Section 3.6.

In summary, the process flow of DP-DAWL method is described as follows:
The DP-DAWL Algorithm

Input: worker set W and each worker’s initial location /;, the initial number of
cluster iNum, privacy budget £, max iteration time 7

Output: filtered aggregated sensing data D’, root mean square error

Step 1. Divide workers into different groups by using the improved clustering
algorithm based on Euclidean distance, each group is assigned a privacy
budget according to group size. / the improved clustering algorithm is
given in Section 3.3

Step 2. Add Laplace noise into each worker’s sensing data and obfuscate each
worker’s location.

Step 3. Upload the obfuscated location and the perturbed sensing data to the
MCS platform.

Step 4. Filtering the noisy aggregated data by using the improved Kalman filter

algorithm. // the improved Kalman filter algorithm is given in Section 3.5

Step 5. Calculate the optimal estimation of filtered data and root mean square error

3.3 Worker partition using improved K-means algorithm

Since the MCS platform is untrusted and workers may personalize privacy requirements,
we firstly partition the worker into different groups before they begin to execute the task.
We do this step for the following reason. It is natural that different regions have various
population density. Workers in the population intensive region commonly require more
strict privacy preservation while workers in the population sparse region require less.
According to the distribution of workers, workers can be classified into different groups,
workers in the intensive group will be assigned more privacy budget and workers in the
sparse group will be assigned less privacy budget. Workers in the same group will have
same privacy budget.

We use an improved K-means algorithm to classify workers into different groups, each
group is a cluster of K-means algorithm. K-means classification algorithm is widely used
because of its simple implementation and good clustering effect for unsupervised learning.
However, there are some disadvantages of K-means such as being sensitive to the selection
of initial class cluster center and easily falling into local optimum. To overcome these
disadvantages, we improve the K-means algorithm by using contour coefficient to
adaptively select of optimal cluster number, thus the clustering result can be optimized.

In stage of data pre-processing, workers’ location is normalized to the range of [0, 1]. In
the stage of data clustering, the contour coefficient mechanism is introduced to adaptively
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select the number of clusters. Firstly, the contour coefficients of all the workers’ locations
are found and have to be averaged. The average value of contour coefficients has a range
of [-1, 1], the larger value of average contour coefficient means better clustering result.
The final step is to select the number of clusters with the largest average contour
coefficient as the optimal value through multiple iterations.

Combined with the above description, the execution flow of the improved K-means
algorithm is described as follows:

The improved K-means Algorithm

Input. Sensing data D, Initial cluster number INum, Iterations T

Output. Optimal cluster number K and its cluster center, the number of workers
contained in each cluster

Step 1. Randomly select a location data from the sensing data D as the initial
cluster center G,

Step 2. Normalize the location data, calculate the shortest distance Dis(x)
between each location data and the current existing cluster center, and
select the location data with the largest distance as the new cluster
center by contour coefficients.

Step 3. Repeat Step 2 to determine the optimal number of -clusters
K= {Glans"'Gk}
Step 4. Calculate the distance of each location data to the K cluster centers and

cluster them into the class corresponding to the cluster center with the
smallest distance.

Step 5. For each category G,, recalculate the centroid of all location data for
that class to update the cluster center

3.4 The noise mechanism

The NRand algorithm consists of generating N uniformly distributed random points
within a circular domain that is centred on the original coordinates, in order to select the
farthest one from the original point; this point will be reported to the service provider as
the user’s location. Labrador et al. [Labrador, Wightman and Perez (2011)] recommend
N=4 in order to maintain acceptable variability in the final noise, while increasing the
average distance from the original point compared with using just one sample. In this
paper, the NRand algorithm is used to obfuscate the original sensing position of workers
based on the results of worker clustering. According to the privacy budget allocated by
different clustering, works in the different group will have different radius and workers in
the same group will have same radius. Then take the original location of each workers as
the center in group, and randomly generate four positions within this radius. Finally, the
four positions are located furthest from the center of the circle to obfuscate the original
sensing position and upload it to the platform.

As mentioned above, workers located in different areas may need diverse levels of
privacy preservation. After we use the improved K-means algorithm to classify workers
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into different groups (clusters), each group will be assigned a privacy budget, and
according to this assigned privacy budget, the noise that are added to the sensing data of
workers in the same group can also be calculated. The main idea of assignment is that
workers in the population intensive group will be assigned more privacy budget and
workers in the population sparse group will be assigned less privacy budget. Workers in
the same group will have same privacy budget. We adopt Differential Privacy model as
our privacy preservation method since Differential Privacy gives a strict, quantitative
representation and proof of the privacy risk.

We use Laplace mechanism to add different noise perturbations to workers in different
groups (clusters). The specific implementation ideas are as follows:

Assume that m is the number of clusters and € is the total privacy budget, &; is the

privacy budget of i-th group (cluster) Gi, € and &; satisfy thate = ZZZI &, and g =7,

where », is the number of workers in the group Gi, and N is the total number of workers
participating the sensing task.

Then the Laplace noise added to workers’ sensing data in different groups can be
expressed in the following equation:

(X)) = f(Xg )+ Lap(2) ©)

where f(X;,) represents the original sensing data of worker wj in group Gi, and Lap(%)
represents the added noise. Af is global sensitivity and / (X;,) is the perturbed sensing data.

Only after the noise was added to workers’ sensing data, the perturbed sensing data can
be uploaded to the MCS platform for further process and analysis.

3.5 Data aggregation using kalman filter

Sensing data of each worker is added Laplace noise according to the assigned privacy
budget and each worker’s location is obfuscated. Then both perturbed sensing data and
obfuscated location are uploaded to the untrusted MCS platform. However, noisy
aggregated sensing data may greatly reduce the utility of sensing data. In order to
improve the data utility, DP-DAWL method adopts the improved Kalman filter algorithm
to filter out noise without compromising workers’ privacy.

Since the workers participating in the sensing task are traveling around certain region rather
than fixing at one point during phase of task execution, when sensors of a worker collect
sensing data, the process noise is also not fixed but changes with time. For example, in
remote areas, the sensor signal is weak, the interference signal is small, and the process
noise is small. In the bustling downtown area, there are many interference signals. Based on
this, improve process noise of system model based on system process noise affected by
worker density. The greater the worker density, the greater the process noise of the sensing
system. Specifically, larger process noise is set when worker is in a worker intensive area,
and smaller process is set when worker is in a worker sparse area. The improve Kalman
filter algorithm firstly establishes the sensor system model with noisy sensing data as state
quantity. Then the true value of the current moment can be estimated using the state of the
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previous moment. That is, if the sensor system is at time k, the state of time k can be
predicted and updated by the state of k-1 according to Eq. (4). After updating the system
state information, the covariance of the system state can be predictive updated by Eq. (5),
where P(k |k —1) is the covariance corresponding to system state X (k|k—1), and O is
the covariance of system process state noise @(k) . From the previous steps, the prediction
result of the state at the current time k can be calculated according to the system state of the
previous time k-1. Then, according to the measured value of state k and combined with the
predicted value, the state k at the current moment can be estimated according to Eq. (6),
where Kg is the Kalman Gain corresponding to the Kalman filter algorithm, which is
updated by Eq. (7) itself. And R is the covariance of the system’s measured state noise
v(k) . At this point, the prediction and update of the current state k of the untrusted MCS
platform can be realized. Since Kalman filter algorithm is an iteratively updated algorithm,
it is necessary to further estimate the state covariance of X (k| k) at the current time k
according to Eq. (8), so as to perform the covariance update at time k+1. Thus, when the
state covariance P(k | k) is obtained at the current moment and after the system enters the
time k+1, P(k|k) is P(k—1|k—1)in Eq. (6). In this way, the algorithm can perform
autoregressive and iterative operations to obtain filtered sensing data.

In summary, the execution flow of the improved Kalman filtering algorithm is given
as follows:

The improved Kalman Algorithm

Input: Perturbed sensing data p', Sensing data record count N
Output:  Filtered and aggregated of sensing data and root mean square error

Step 1. The sensor system model is established and the parameters are set by
using the sensing data after the perturbation as the state quantity by the
Egs. (2) and (3).

Step 2. Improve process noise of system model based on system process noise
affected by population density. The greater the population density, the
greater the process noise of the sensing system.

Step 3. Predicting state X (k|k—1) at time k according to the state at time k-1 by
Eq. (4).
Step 4. Estimating the system prediction error P(k|k—1) at time k according to

the system prediction error at time k-1 by Eq. (5).
Step 5. Calculating the Kalman gain Kg by Eq. (7).
Step 6. Calculating the optimal estimate X (k| k) of the system by Eq. (6).

Step 7. Calculating the system prediction error P(k|k) of the current moment of
the system by Eq. (8).
Step 8. After reaching N times, the algorithm ends, otherwise it will return to

Step 3 to continue execution.
Step 9. Output filtered and aggregated of sensing data and root mean square error.
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3.6 Privacy analysis

In this section, we will prove DP-DAWL method satisfy & -differential privacy
according to the sequence combination theorem and post-processing property.

The total privacy budget is €, and according to the execution flow of DP-DAWL
method, workers are firstly divided into groups and the number of groups is N, the

privacy budget assigned to the group Gi is &, , and satisfied zzla‘i =¢ . Since different

groups are all come from the same worker set, according to the sequence combination
theorem of differential privacy, if we want prove that the DP-DAWL method satisfies & -
differential privacy under any adjacent datasets D and D', we firstly need to prove that

DP-DAWL method satisfies &, -differential privacy for adjacent datasets Gi and G, ".

The proof process is as follows. For adjacent datasets G; and G, , the number of different

l

workers between G, and G, can be expressed by global sensitivity. The global

sensitivity is defined as Af =| Count(G.) — Count(G,) |.

Probability ratio of output 0 on adjacent sets G,and G, is as follows.

&, f}'.\Coum(G,- )l

Pr[b[G,]=0] 2Af
Pr b G' = N _& ount ,
[6lG:1=0] g G
2Af

Ei
Af\Count(Gl-)\ (10)
e

&; '
Af\Count(Gi )|

e

& NG ]
A (|Count (G; )—Count (G;)|)

=e
<e

From the above proof, it can be seen that DP-DAWL method satisfies &, -differential

privacy for adjacent datasets G, and G,. According to the sequence combination theorem,

1

DP-DAWL method satisfies € -differential privacy before the stage of Kalman filter.

As we know, the input of the improved Kalman filter algorithm is output of the previous
algorithm which satisfies & -differential privacy as above analysis. According to the
post-processing property of differential privacy, we can prove that DP-DAWL method
satisfies & -differential privacy.

3.7 Computational complexity analysis

The main computation overhead of DP-DAWL method are clustering process and data
aggregation process using Kalman filter. Firstly, the normalized preprocessing is added to
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the data of the traditional K-means algorithm to eliminate the influence of different
orders of magnitude data. Secondly, according to the contour coefficient, the optimal
number of clusters is selected adaptively in the algorithm, which makes the selection
method and number constraint of cluster center more reasonable. The complexity of the
algorithm is O(k*k*m™*n) . Where k is the number of clusters, n is the number of
workers in the dataset, and m is the spatial dimension of the dataset. The data aggregation
process filters the added noise of the sensing data and the error noise of the sensing
system according to the process noise of the improved Kalman filter algorithm to
improve the utility of sensing data. The complexity of data aggregation process
is Om>"°+n®) . The total complexity of the algorithm in this paper

isO(k*k*m*n)+0O(m*>"® +n”) . Since n is very large in the sensing data, k and m are

much smaller than n. So the final complexity of the algorithm is O(n”).

4 Experiment analysis

The experimental hardware environment is Intel (R) Xeon (R) CPU E5-2650 v4 @ 2.20
GHz 2.20 GHz (4 processor), 32 G memory, 930 G hard disk storage space. The software
environment is Windows 10 operating system, Eclipse2017, related algorithms are
realized in Java language. The experimental data is randomly generated by a pseudo-
random number generator to generate six sets of synthetic datasets with different number
of workers. Each dataset contains a considerable number of workers, each worker’s initial
location, and sensing data for a task, where the worker ID range is [O,N-1] (N is the
number of workers) and the worker’s initial location is a two-dimensional array with data
range of [-500,500], and the sensing data range of a task is [0,1000]. Results of the
improved K-means algorithm are analyzed by clustering compactness (CP) and clustering
separation (SP). Perturbed sensing data is aggregated and filtered by the improved
Kalman filter algorithm, and the utility of the filtered data is analyzed by using root mean
square error and mean absolute error.

4.1 Clustering result analysis

This experiment uses datasets with various workers to verify the clustering results of the
improved K-means algorithm. Because the datasets used in the experiment is randomly
generated by the pseudo-random number generator, there is no cluster evaluation tag.
Therefore, we use clustering compactness (CP) and clustering separation (SP) as internal
evaluation indexes of clustering to evaluate the utility of clustering results. Lower value
of CP means the closer distance of intra-cluster, higher value of SP means the further
distance of inter-cluster. Different datasets with size of 2000, 4000, 6000, 8000, and
10000 respectively, are used to verify the improved K-means algorithm and calculate CP
& SP. The experimental result is given in Tab. 1.
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Table 1: Clustering result analysis

Evaluation Dataset Size (workers)

Index 2000 4000 6000 8000 10000
CP 0.043 0.052 0.082 0.082 0.023
SP 0.757 0.734 0.779 0.707 0.706

It can be seen from the above Tab. 1 that the clustering result is more accurate by
optimizing the data normalization preprocessing and the contour system adaptively
selecting the optimal number of clusters. Among the clustering results of different
datasets, the clustering distance in the same group (cluster) are very close, and the
optimal value is 0.023. The clustering distance between the different groups (cluster) is
very far, and the optimal value is 0.779.

4.2 Data aggregation result analysis

The experiment uses two sets of datasets with 5000 and 10000 workers respectively, to
verify the utility of aggregated sensing data after filtering in the untrusted MCS platform.
In the process of aggregation filtering, the sensor system model is established by using
perturbation sensor data as a state variable. Based on the clustering results, the utility of
data aggregation is compared by assigning different privacy budgets. Considering that the
process noise of the system increases with the increase of workers, with a total privacy
budget of 0.1, 0.3, 0.5, 0.7, and 0.9, the process noise of the system is set to 0.1, 0.3, 0.5,
0.7, and 0.9, respectively. Finally, using the improved Kalman filter algorithm, the utility
of the filtered data is verified by the root mean square error and the mean absolute error
under different privacy budgets and process noises. Root mean square error is shown in
Fig. 3 and mean absolute error is shown in Fig. 4.

RMSE under different datasets size (workers)

=—#— 5000 Workers 10000 Workers

RMSE

0.24 g L

0.1 0.3 0.5 0.7 0.9

Privacy budget

Figure 3: Root mean square error of data aggregation under different datasets
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MAE under different datasets size (workers)

5000 Workers 10000 Workers
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0.19
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Figure 4: Mean absolute error of data aggregation under different datasets

Observing the above experimental results, it can be found that with the increase of the
privacy budget, root mean square error and average absolute error of the datasets are
getting smaller and smaller. That is, the data aggregation accuracy is getting higher and
higher. With a total privacy budget of 0.1, root mean square error reached 0.334 and
average absolute error reached 0.287. With a total privacy budget of 0.9, the root means
square error reached 0.241 and the average absolute error reached 0.2. These results
demonstrate that DP-DAWL method achieves good data utility without compromising
workers’ privacy.

5 Conclusions

Trying to preserve workers’ location and sensing data from the untrusted MCS platform, a
data aggregation method named DP-DAWL is proposed in the paper. DP-DAWL method
adopts an improved K-means algorithm to divide workers into groups and assigns different
privacy budget to groups according to the group size. Because each worker’s location is
obfuscated and his/her sensing data is perturbed by adding Laplace noise before uploading
to the platform, DP-DAWL method adopts an improved Kalman filter algorithm to filter
out the added noise during the data aggregation phase. Through using optimal estimation of
noisy aggregated sensing data, the platform can finally gain better utility while preserving
workers’ privacy. Synthetic datasets with various size are generated and compared to
validate the effectiveness of DP-DAWL method. The results of experiment show that DP-
DAWL method achieves good data utility without compromising workers’ privacy. In
future work, we will mainly focus on how to cluster workers in a more accurate way and
provide personalized privacy preservation for workers. Besides, the efficiency of DP-
DAWL method can be improved in future research.
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