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Abstract: We are associating the solutions of stochastic and deterministic vector borne 
plant disease model in this manuscript. The dynamics of plant model depends upon 
threshold number P∗. If P∗ < 1 then condition helpful to eradicate the disease in plants 
while P∗ > 1  explains the persistence of disease. Inappropriately, standard numerical 
systems do not behave well in certain scenarios. We have been proposed a structure 
preserving stochastic non-standard finite difference system to analyze the behavior of 
model. This system is dynamical consistent, positive and bounded as defined by Mickens. 
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1 Literature survey 
Diseases spread by vectors are expanding due to environmental factors. Malaria, dengue 
and other large-scale diseases which are spread by vector are increasing in the present 
industrial world. Many new diseases such as west Nile and Lyme have appeared in 
different parts of United States [Jeger, Madden and Bosch (2009)]. Those who have 
contributed in preparing this chapter have scrutinized different factors, responsible for the 
emergence and resurgence of these diseases, which are spread by vectors. So that such 
knowledge could be used to predict outbreaks of such diseases in the future and the 
spread of vectors could also be anticipated in different geographical regions. The chapter 
begins with summary of the keynote address delivered in a workshop in the University of 
Hawaii. Different social and economic effects influenced the sudden appearance of vector 
borne diseases in the past thirty years. The speaker pointed to the changing factors of the 
spread of different diseases such as malaria, dengue and yellow fever. He also 
highlighted different factors responsible for the emergence of these vector-borne diseases 
and analyzed the ramifications of these elements on human health. He pointed out that 
modern means of transportation had caused easy movement of vectors from one part of 

 
1 Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi Arabia. 
2 Stochastic Analysis & Optimization Research Group, Department of Mathematics, Air University, PAF 

Complex E-9, Islamabad, 44000, Pakistan. 
3 Faculty of Engineering, University of Central Punjab, Bathinda, Lahore, Pakistan. 
4 Department of Mathematics, Comsats University, Chak Shahzad Campus, Islamabad, Pakistan. 
* Corresponding Author: Muhammad Shoaib Arif. Email: shoaib.arif@mail.au.edu.pk. 
Received: 15 October 2019; Accepted: 12 November 2019. 



66                                                                                   CMC, vol.61, no.3, pp.65-83, 2020 

the world to another which resulted in dispersion of diseases, while it was not easy in the 
past. Gabler is of the opinion that it is necessary to check the free transportation of 
vectors and other pathogens through modern means of transportation in order to prevent 
the emergence of these diseases. Fish of Yale university emphasized on the fact that 
constant growth of tick-borne diseases in north eastern parts of the United States are 
linked with the eradication of forests in that region; he described this in his presentation 
in Yale university [Grilli and Holt (2000); Madden, Jeger and Bosch (2000)]. Lynne 
disease was not known previously but it became the most ubiquitous disease within 
twenty years. Moreover, black legged deer ticks served as a vector for Ana plasma 
phago-cytophilic, a bacterium responsible for causing illness resembling flue which is 
called human granulocytic anaplasmosis. The developed insects of these species feed 
only on a deer while the immature insects feed and transmit diseases causing bacteria to 
the human. The reduction in agriculture and forest area in the north eastern part of the 
United States in the past few decades have provided conducive environment for the 
growth and development of white-tailed deer, other ticks they carry and also bacteria’s 
they carry. Fish observed that many foreign tick-borne arboviruses could infect numerous 
human feeding kinds of ticks present in United States. 
Plant diseases caused by vectors have many environmental and epidemiological 
characteristics with human beings and animals. But they are examined and studied 
separately. Rodrigo Almeida from the university of California, Berkeley is of the view that 
new approach on the nature of diseases caused by vectors could be acquired by sharing of 
instruments and knowledge among different research communities through plant system 
[Blum, Bresson, Zahid et al. (2018); Severns, Sackett, Farberet et al. (2019)]. Large number 
of experiments can be executed with variety of hosts, vectors and pathogens, which could 
be helpful in addressing ecological and evolutionary theories on pathogen range and 
efficiency of transmission connected with many kinds of diseases caused by arthropod. In 
Africa, the early warning system checked a major outbreak of rift valley fever, because the 
association was strong enough to develop risk maps that forecast the outbreak of disease in 
2007 [Keeling and Rohani (2008); Shoji and Ozaki (1997)]. These predictions may enable 
to anticipate the changes of dispersion of diseases on world level. This helped the health 
and the agricultural authorities to monitor and control the diseases also reducing the cost.  
Jonathan Patz from the university of Wisconsin, Madison has made two contributions and 
also co-authored discussed the probable consequences of global climate change on the 
appearance of diseases caused by vectors. Patz and Olson, who wrote the first paper, gave 
an outline of the consequences of climate change on the danger of emergence of disease 
at both global and indigenous level. Subsequently Patz and Uejio, added the detailed 
proofs of the effects of climate change on Lyme disease and WNV, the most dominant 
diseases caused by vectors in North America. Pathogens born in vectors are prone to 
changes in climate because they affect the survival of vector, its reproduction, feeding 
and biting, reproduction by replication and incubation and the effectiveness of pathogen 
transmission in various hosts. The writers’ analyses prove that average rise in global 
temperature would widen the territorial range of malaria in Africa and would increase the 
probability of emergence of dengue worldwide. However, they concentrated more on 
higher chances of the emergence of disease in local environments caused by practices of 
land use. For example, deforestation, cultivation and the building of dams. The writers 



Numerical Analysis of Stochastic Vector Borne Plant Disease Model                              67 

have endorsed an opinion that assessment of risk for diseases caused by vectors should 
include meticulous analysis of the repercussions of land use on climate and weather, 
ecosystem, diversity of living beings. Vector-borne diseases were the major health 
challenges in the beginning of twentieth century [Cunniffe and Gilligan (2011); Jeger, 
Holt, Bosch et al. (2004)]. Later other diseases caused by vectors were highlighted as 
major causes of disease in humans and domestic animals. With the better understanding 
of the history and causes of disease, it became possible to prevent and check these 
diseases with high success. After the second world war, prevention and control of vectors 
increased because of the invention of new chemicals such as insecticides, drugs and 
vaccines. Most of the major vector borne diseases controlled by 1960 while more serious 
efforts were directed to control those diseases which were not controlled at that time by 
new drugs and vaccines [Cai and Li (2010); Meng and Li (2010)]. 
A lot of papers have presented on vector borne plant disease dynamics in Madden et al. 
[Madden, Jeger and Bosch (2000)]. Stochastic differential equation models play an 
essential role in many branches of applied sciences such as industries, including 
population dynamics, finance, mechanics, medicine and biology as they provide an extra 
degree of realism compared to their deterministic counterpart [Bayram, Partal and 
Buyukoz (2018)]. The main question of this article is to restore the dynamical properties 
of model by developed stochastic systems [Mickens (1994); Mickens (2005); Mickens 
(2005); Cresson and Pierret (2014)]? So, we shall construct the implicitly driven explicit 
system for the given model under the rules presented by Mickens. 
This article based on the following sections: 
In section two, we have explained the deterministic plant disease model and its states. In 
section three, we have presented the stochastic numerical systems for plant disease model 
and its stability analysis. In fifth section, we have presented the results discussion and 
coming directions. 

2 Deterministic plant model 
In this way, we consider the deterministic plant model [Shi, Zhao and Tang (2014)]. Let, an 
arbitrary time ‘t’, the whole plants population is divided to various classes like S(t) represents 
susceptible plant hosts, I(t) represents infected plant hosts, R(t) represents recovered plant 
hosts. Similarly, the vector (insects) population is subdivided into two compartments namely 
X(t) which represents density of the susceptible vectors and Y(t) represents density of the 
infected. The communication dynamics of plant model as shown in Fig. 1. 
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Figure 1: Flow map of plant disease model 

The model parameters are described as K (denote the sum of total plant hosts), N (denotes 
the sum of total insect vectors density), β1 (denotes the infection ratio), βp (denotes the 
biting rate of an infected vector), βs (denotes the infection incidence of plant 
model), α1 (denotes the force of infection host), αp (denotes the force of infection vector), 
αs (denotes the ratio of infection of plants), γ (denotes the force of recovered hosts),  µ 
(denotes the natural death rate of plant hosts), Λ (denotes the birth or immigration of 
insect vectors), m (denotes the natural death rate of insect vectors) and d (denotes the 
disease-induced mortality of infected hosts). 
The governing equations of plant model are given below as 
dS(t)
dt

= µK − µS(t) − � βPY(t)
1+αpY(t)

+ βSI(t)
1+αSI(t)

� S(t)

dI(t)
dt

= � βpY(t)
1+αPY(t)

+ βSI(t)
1+αsI(t)

� S(t) −ωI(t).          
dR(t)
dt

= γI(t) − µR(t).                                             
dX(t)
dt

= Λ − β1I(t)X(t)
1+α1I(t)

− mX(t).                              
dY(t)
dt

= β1I(t)
1+α1I(t)

�Λ
m
− Y(t)� − mY(t)                    ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

             (1) 

where N = X(t) + Y(t) and S(t) + I(t) + R(t) = K. 
The reduced form of plant model (1) is  
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dS(t)
dt

= µ(K − S(t)) − � βPY(t)
1+αPY(t)

+ βSI(t)
1+αSI(t)

� S(t) + dI(t),
dI(t)
dt

= � βPY(t)
1+αPY(t)

+ βSI(t)
1+αSI(t)

� S(t) −ωI(t),                           
dY(t)
dt

= β1I(t)
1+α1I(t)

�Ʌ
m
− Y(t)� − mY(t),                                    

   

⎭
⎪
⎬

⎪
⎫

            (2) 

where ω = d + µ + γ. 

2.1 Equilibria of plant model 
The equilibria of plant model (2) can be categorized as:  
 Disease-free equilibrium, D1 = (K, 0,0). 
 Endemic equilibrium, E1 = (So, Io, Yo).  

 So = K − �1 + γ
µ
� Io, Io = −B±√B2−4AC

2A
 and Yo = β1ΛI0

mβ1I0+m2(I+α1I0). 

where, 

 P∗ = βsK
ω

+ β1βpΛK
m2ω

, 

 A = (µ + γ)�βpβ1αsΛ+ mβ1βs + m2βsα1 + βsβpβ1Λ�, 
 B = (µ + γ)(βPβ1Λ+ βsm2)− µK�mβ1βsα1βsm2βpβsβ1Λ+ βpβ1αsΛ�+
µω�mβ1 + α1m2 + αpβ1Λ+ m2αs�  
and C = µm2ω(1− P∗).  
Note that P∗ is the reproductive number of the plant model (2) which will decide that 
weather disease will persists or it will die out. The reproductive number has important 
role in the disease dynamics of plants.  

3 Stochastic plant model 
The deterministic plant model (2) can be extended to stochastic differential equations 
(SDEs) as follows. 
Let V = [S(t), I(t) , Y(t)]T  We are supposed to calculate the expectations E∗[∆V] and 
E∗[∆V∆VT]. The transition probabilities have presented in Tab. 1. 

Table 1: Possibilities in the process of plant model 
Transition Probabilities 

(𝛥𝛥𝛥𝛥)1 = [1 0 0]𝑇𝑇  𝑃𝑃1 = µ𝐾𝐾𝛥𝛥𝐾𝐾  

 (𝛥𝛥𝛥𝛥)2 = [−1 0 0]𝑇𝑇   𝑃𝑃2 = µ𝑆𝑆(𝐾𝐾)𝛥𝛥𝐾𝐾  

 (𝛥𝛥𝛥𝛥)3 = [−1 1 0]𝑇𝑇   𝑃𝑃3 = ( 𝛽𝛽𝑃𝑃𝑌𝑌(𝑡𝑡)
1+𝛼𝛼𝑃𝑃𝑌𝑌(𝑡𝑡)

+ 𝛽𝛽𝑆𝑆𝐼𝐼(𝑡𝑡)
1+𝛼𝛼𝑠𝑠𝐼𝐼(𝑡𝑡)

)𝑆𝑆(𝐾𝐾)𝛥𝛥𝐾𝐾  

 (𝛥𝛥𝛥𝛥)4 = [0 −1 0]𝑇𝑇   𝑃𝑃4 = 𝜔𝜔𝜔𝜔(𝐾𝐾)𝛥𝛥𝐾𝐾  

 (𝛥𝛥𝛥𝛥)5 = [0 0 1]𝑇𝑇  𝑃𝑃5 = 𝛽𝛽1𝐼𝐼(𝑡𝑡)
1+𝛼𝛼1𝐼𝐼(𝑡𝑡)

(𝛬𝛬
𝑚𝑚

)𝛥𝛥𝐾𝐾  

 (𝛥𝛥𝛥𝛥)6 = [0 0 −1]𝑇𝑇   𝑃𝑃6 = � 𝛽𝛽1𝐼𝐼(𝑡𝑡)
1+𝛼𝛼1𝐼𝐼(𝑡𝑡)

+ 𝑚𝑚�𝑌𝑌(𝐾𝐾)𝛥𝛥𝐾𝐾  
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 E∗[∆V] = ∑ Pi6

i=1 (∆V)i. 

 Expectation =E∗[∆V] =

⎣
⎢
⎢
⎢
⎢
⎡µK − µS − ( βPY(t)

1+αPY(t)
+ βSI(t)

1+αSI(t)
)S(t)

� βPY(t)
1+αpY(t)

+ βsI(t)
1+αsI(t)

� S(t) −ωI(t)
β1I(t)

1+α1I(t)
�Λ
m
� − � β1I(t)

1+α1I(t)
+ m�Y(t) ⎦

⎥
⎥
⎥
⎥
⎤

∆t. 

 Var= E∗[∆V∆VT] = ∑ Pin
i=1 [(∆V)i][(∆V)i]T. 

 E∗[∆V∆VT] = �
V11 V12 V13
V21 V22 V23
V31 V32 V33

� ∆t. 

where, V11 = µKΔt + µSΔt + � βPY(t)
1+αPY(t)

+ βSI(t)
1+αsI(t)

� S(t) , V12 = −� βPY(t)
1+αPY(t)

+
βSI(t)

1+αsI(t)
� S(t) , V13 = 0 , V21 = −� βPY(t)

1+αPY(t)
+ βSI(t)

1+αsI(t)
� S(t) , V22 = � βPY(t)

1+αPY(t)
+

βSI(t)
1+αsI(t)

� S(t) + ωI(t), V23 = 0 

V31 = 0, V32 = 0, V33 = β1I(t)
1+α1I(t)

�Λ
m
� + � β1I(t)

1+α1I(t)
+ m�Y(t). 

So, we can write, 

 dY(t)
dt

= V(Y(t), t) + L(Y(t), t) dB(t)
dt

. 

where, f(V(t), t) = E∗[∆V]
∆t

  and L(V(t), t) = �E∗[∆V∆VT]
∆t

  So, 

 dV(t) = f(V(t), t)dt + L(V(t), t)dB(t).               (3) 
The Eq. (3) is called stochastic differential equation of plant model (2) with initial 
conditions V(0) = Vo = [700, 200, 10]T  , 0 ≤ t ≤ T. 

3.1 Euler maruyama system 
The given system could be presented in [Maruyama (1955)] and biological data has been 
presented [Shi, Zhao and Tang (2014)]. (see Tab. 2).  

Table 2: Values of Parameters 

 
Parameters 

Values (Days) 
VFE EE 

K 1000 1000 
β1 0.0025 0.01 
βP 0.0025 0.02 
βS 0.0001 0.01 
α1 0.1 0.1 
αP 0.2 0.2 
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αS 0.2 0.2 
γ 0.4 0.4 
µ 0.1 0.1 
Λ 5 5 
m 0.3 0.3 
d 0.1 0.1 
σ1 0.004 0.004 
σ2 0.003 0.003 
σ3 0.02 0.02 

 
System (3) could be written as follows:  
 Vn+1 = Vn + f(Vn, t)Δt + L(Vn, t)∆B(t). 
where ‘Δt’ denotes the time step size. The disease-free equilibrium is D1 =  (1000,0,0 ) 
and the reproductive number P∗ = 0.7454 < 1  means disease is controlled in the 
population of plants. The endemic equilibrium is E1  =  (569.7,86.07,3.833) and the 
reproductive number P∗ = 35.1852 > 1 means disease is endemic in the population of 
plants [Bayram, Partal and Buyukoz (2018)]. 

 
(a) (b) 
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(c)                (d) 

Figure 2: (a) Susceptible plants at h = 0.001 for DFE (b) Susceptible plants at h = 5 for 
DFE (c) Infected insect vectors at h = 0.1 for EE (d) Infected insect vectors at h = 5 for EE 

3.2 Non-parametric perturbation of stochastic plant model 
One more method to constitute SDEs from the deterministic ODEs that we shall insert the 
stochasticity in each equation of system (2) as follows [Allen and Burgin (2000); Allen 
(2007); Allen, Allen, Arciniega et al. (2008); Raza, Arif and Rafiq (2019)]: 

 

dS(t) = �µ�K − S(t)� − � βPY(t)
1+αpY(t)

+ βSI(t)
1+αsI(t)

� S(t)�dt + σ1S(t)∆B1(t)      

dI(t) = �� βPY(t)
1+αpY(t)

+ βSI(t)
1+αSI(t)

�S(t) −ωI(t)�dt + σ2I(t)∆B2(t)                    

dY(t) = � β1I(t)
1+α1I(t)

�Λ
m
− Y(t)� − mY(t)�dt + σ3Y(t)∆B3(t)                            ⎭

⎪
⎬

⎪
⎫

          (4) 

where σ1,σ2 and σ3 are stochasticity of each compartment of plant model and Bj(t), (j =
1,2,3) are the independent Brownian motions [Raza, Arif and Rafiq (2019); Raza, Arif, Rafiq 
et al. (2019); Arif, Raza, Rafiq et al. (2019); Arif, Raza, Rafiq et al. (2019)]. Hence, we 
introduced a more advanced stochastic numerical system to discover the solution of model. 

3.2.1 Stochastic euler system 
The given model (4) could be written as follows [Raza, Arif and Rafiq (2019); Raza, Arif, 
Rafiq et al. (2019); Arif, Raza, Rafiq et al. (2019); Arif, Raza, Rafiq et al. (2019)]: 

 

Sn+1(t) = Sn(t) + h �µ�K − Sn(t)� − � βpYn(t)
1+αpYn(t)

+ βsIn(t)
1+αsIn(t)

�Sn(t) + σ1Sn(t)∆B1(t)�

In+1(t) = In(t) + h �� βpYn(t)
1+αpYn(t)

+ βsIn(t)
1+αsIn(t)

� Sn(t)−ωIn(t) + σ2In(t)∆B2(t)�              

Yn+1(t) = Yn(t) + h � β1In(t)
1+α1In(t)

�Λ
m
− Yn(t)� − mYn(t) + σ3Yn(t)∆B3(t)�                      ⎭

⎪
⎬

⎪
⎫

 

                   (5) 
where h is step length of time. We use MATLAB program for numerical experiments 
taking biological data given in Shi et al. [Shi, Zhao and Tang (2014)]. (see Tab. 2). 
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(a)                                                             (b) 

 
    (c)         (d) 

Figure 3: (a) Susceptible plants at ℎ = 0.1 for DFE (b) Susceptible plants at ℎ = 4 for DFE 
(c) Infected insect vectors at ℎ = 0.1 for EE (d) Infected insect vectors at ℎ = 3 for EE 

3.2.2 Stochastic runge kutta system 
The given model (4) could be written as follows [Raza, Arif and Rafiq (2019); Raza, Arif, 
Rafiq et al. (2019); Arif, Raza, Rafiq et al. (2019); Arif, Raza, Rafiq et al. (2019)]: 
First stage 

 A1 = h �µ�K − Sn(t)� − � βPYn(t)
1+αpYn(t)

+ βSIn(t)
1+αsIn(t)

� Sn(t) + σ1Sn(t)∆B1(t)� 

 B1 = h �� βPYn(t)
1+αpYn(t)

+ βSIn(t)
1+αsIn(t)

�Sn(t) −ωIn(t) + σ2In(t)∆B2(t)� 

 C1 = h � β1In(t)
1+α1In(t)

�Λ
m
− Yn(t)� − mYn(t) + σ3Yn(t)∆B3(t)� 
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 A2 = h �µ �K− �Sn(t) + A1
2
�� − �

βP�Yn(t)+C12 �

1+αP�Yn(t)+C12 �
+

βS�In(t)+B12 �

1+αS�In(t)+B12 �
� �Sn(t) + A1

2
� +

σ1 �Sn(t) + A1
2
� ∆B1(t)� 

 B2 = h ��
BP�Yn(t)+C12 �

1+αp�Yn(t)+C12 �
+

βs�In(t)+B12 �

1+αs�In(t)+B12 �
� �Sn(t) + A1

2
� − ω�In(t) + B1

2
�+

σ2 �In(t) + B1
2
�∆B2(t)� 

 C2 = h �
β1�In(t)+B12 �

1+α1�In(t)+B12 �
�Λ
m
− �Yn(t) + C1

2
�� − m �Yn(t) + C1

2
� + σ3 �Yn(t) + C1

2
� ∆B3(t)� 

Third stage 

 A3 = h �µ �K− �Sn(t) + A2
2
�� − �

βP�Yn(t)+C22 �

1+αP�Yn(t)+C22 �
+

βS�In(t)+B22 �

1+αS�In(t)+B22 �
� �Sn(t) + A2

2
� +

σ1 �Sn(t) + A2
2
� ∆B1(t)� 

 B3 = h ��
BP�Yn(t)+C22 �

1+αp�Yn(t)+C22 �
+

βs�In(t)+B22 �

1+αs�In(t)+B22 �
� �Sn(t) + A2

2
� − ω�In(t) + B2

2
�+

σ2 �In(t) + B2
2
�∆B2(t)� 

 C3 = h �
β1�In(t)+B22 �

1+α1�In(t)+B22 �
�Λ
m
− �Yn(t) + C2

2
�� − m �Yn(t) + C2

2
� + σ3 �Yn(t) + C2

2
� ∆B3(t)� 

Fourth stage 

 A4 = h �µ �K− �Sn(t) + A3
2
�� − �

βP�Yn(t)+C32 �

1+αP�Yn(t)+C32 �
+

βS�In(t)+B32 �

1+αS�In(t)+B32 �
� �Sn(t) + A3

2
� +

σ1 �Sn(t) + A3
2
� ∆B1(t)�   

 B4 = h ��
BP�Yn(t)+C32 �

1+αp�Yn(t)+C32 �
+

βs�In(t)+B32 �

1+αs�In(t)+B32 �
� �Sn(t) + A3

2
� − ω�In(t) + B3

2
�+

σ2 �In(t) + B3
2
�∆B2(t)� 

 C4 = h �
β1�In(t)+B32 �

1+α1�In(t)+B32 �
�Λ
m
− �Yn(t) + C3

2
�� − m �Yn(t) + C3

2
� + σ3 �Yn(t) + C3

2
� ∆B3(t)� 

Final stage 
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Sn+1(t) = Sn(t) + 1
6

[A1 + 2A2 + 2A3 + A4]

In+1(t) = In(t) + 1
6

[B1 + 2B2 + 2B3 + B4] 

Yn+1(t) = Yn(t) + 1
6

[C1 + 2C2 + 2C3 + C4]⎭
⎪
⎬

⎪
⎫

              (6) 

where h is time step size. 

 
(a)                                                             (b) 

 
(c)                (d) 

Figure 4: (a) Susceptible plants at h = 0.1 for DFE (b) Susceptible plants at h = 4 for DFE 
(c) Infected insect vectors at h = 0.1 for EE (d) Infected insect vectors at h = 4 for EE 

3.2.3 Stochastic NSFD system 
The given model (4) could be written as follows [Raza, Arif and Rafiq (2019); Raza, Arif, 
Rafiq et al. (2019); Arif, Raza, Rafiq et al. (2019, 2019)]: 
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Sn+1(t) = Sn(t)+hµK+hσ1Sn(t)∆B1(t)

1+hµ+h� βPYn(t)
1+αpYn(t)+

βSIn(t)
1+αSIn(t)�

                                

In+1(t) =
In(t)+h�

βpYn(t)
1+αpYn(t)+

βsIn(t)
1+αsIn(t)�S

n(t)+hσ2In(t)∆B2(t)

1+hω

Yn+1(t) =
Yn(t)+h β1In(t)

1+α1In(t)�
Λ
m�+hσ3Y

n(t)∆B3(t)

1+h� β1In(t)
1+α1In(t)+m�

                   
⎭
⎪
⎪
⎬

⎪
⎪
⎫

             (7) 

where “h” is time step size. 

3.2.4 Stability analysis 
We consider the following as: 

 F = S(t)+hµK+hσ1S(t)∆B1(t)

1+hµ+
hβpY(t)
1+αpY(t)+

hβsI(t)
1+αsI(t)

 

 G =
I(t)+h�

βpY(t)S(t)
1+αpY(t) +

βsI(t)S(t)
1+αsI(t)

�+hσ2I(t)∆B2(t)

1+hω
 

 H =
Y(t)+ hβ1I(t)Λ

�1+α1I(t)�m
+hσ3Y(t)∆B3(𝑡𝑡)

1+ hβ1I(t)
1+α1I(t)

+hm
 

We define, The Jacobian matrix J as follows: 

  J =

⎣
⎢
⎢
⎢
⎡
∂F
∂S(t)

∂F
∂I(t)

∂F
∂Y(t)

∂G
∂S(t)

∂G
∂I(t)

∂G
∂Y(t)

∂H
∂S(t)

∂H
∂I(t)

∂H
∂Y(t)⎦

⎥
⎥
⎥
⎤

 

where,  ∂F
∂S(t)

= 1+hσ1∆B1(t)

1+hµ+
hβpY(t)
1+αpY(t)+

hβsI(t)
1+αsI(t)

, ∂F
∂I(t)

= −
�S(t)+hµK+hσ1S(t)∆B1(t)� hβs

�1+αsI(t)�
2

�1+hµ+
hβpY(t)
1+αpY(t)+

hβsI(t)
1+αsI(t)

�
2  and 

∂F
∂Y(t)

= −
�S(t)+hµK+hσ1S(t)∆B1(t)�

hβp

�1+αpS(t)�
2

�1+hµ+
hβpY(t)
1+αpY(t)+

hβsI(t)
1+αsI(t)

�
2 .  ∂G

∂S(t)
=

h� βPY(t)
1+αpY(t)+

βsI(t)
1+αsI(t)

�

1+hω
, 

  ∂G
∂I(t)

=
1+hS(t)� βs

�1+αsI(t)�
2�+hσ2∆B2(𝑡𝑡)

1+hω
 and ∂G

∂Y(t)
= hS(t)βp

�1+αpY(t)�
2

(1+hω)
. 

 ∂H
∂S(t)

= 0 , ∂H
∂I(t)

=
�1+ hβ1I(t)

1+α1I(t)
+hm�hΛm � β1

�1+α1I(t)�
2�−�Y(t)+ hβ1I(t)Λ

(1+α1I(t)m)+hσ3Y(t)∆B3(𝑡𝑡)�� hβ1
�1+α1I(t)�

2�

�1+ hβ1I(t)
1+α1I(t)

+hm�
2 and 

∂H
∂Y(t)

=
1+ hβ1I(t)Λ

�1+α1I(t)�m
+hσ3Y(t)∆B3(𝑡𝑡)

1+ hβ1I(t)
1+α1I(t)

+hm
. 

By using the disease-free equilibrium D1 = (K, 0,0) we have 
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 J (K, 0,0)=

⎣
⎢
⎢
⎢
⎡1+hσ1∆B1

(t)
1+hµ

−Khβs�1+hµ+hσ1∆B1(t)�
(1+hµ)2 −

hKβp�1+hµ+hσ1∆B1(t)�

(1+hµ)2

0 1+hKβs+hσ2∆B2(t)
1+hω

hKβp
1+hω

0 hΛβ1
m(1+hm)

1+hσ3∆B3(t)
1+hm ⎦

⎥
⎥
⎥
⎤

 

The eigen value of Jacobean matrix as follows: 

 λ1 = 1+hσ1∆B1(t)
1+hµ

< 1,  

because, the perturbations as σ1,σ2 and σ3  are small noise disturbances with Brownian 
motions Bj(t), (j = 1,2,3) in each compartment of plant model. So, each stochastic term 
σj. (j = 1,2,3) < µ, where the parameter µ is the natural birth rate of plants [Shi, Zhao 
and Tang (2014)]. 

 J = �
1+hKβs+hσ2∆B2(t)

1+hω
hKβp
1+hω

hΛβ1
m(1+hm)

1+hσ3∆B3(t)
1+hm

�. 

 P1 = Trace of Jacobean matrix. 
 P2 = Determinant of Jacobean matrix. 

 P1 = 1+hKβs+hσ2∆B2(t)
1+hω

+ 1+hσ3∆B3(t)
1+hm

. 

 P2 = �1+hKβs+hσ2∆B2(t)��1+hσ3∆B3(t)�
(1+hω)(1+hm)

− h2KΛβ1βK
m(1+hω)(1+hm)

. 

3.2.5 Lemma 
The given equationλ2 – P1λ +  P2  =  0 , |λi|  <  1, 𝑖𝑖 =  1, 2; if and only if subsequent 
situations are satisfied [Brauer and Chavez (2001)]: 
 (i) 1 +  P1 +  P2 >  0 
 (ii) 1−  P1  +  P2 >  0 
 (iii) P2 < 1. 

 (i). 1 + P1 + P2 > 0 
 ∵ 1 > 0 , P1 > 0 ,𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝 P2 > 0. 

 ⇒ (1+hKβs+hσ2∆B2)(1+hσ3∆B3)
(1+hω)(1+hm)

− h2KΛβ1βK
m(1+hω)(1+hm)

>0. 

 ⇒ (1+hKβs+hσ2∆B2)(1+hσ3∆B3)
(1+hω)(1+hm)

> h2KΛβ1βK
m(1+hω)(1+hm)

 
 ⇒ m + mhσ3∆B3+mhKβs+mh2Kβsσ3∆B3+mhσ2∆B2+mh2σ2σ3∆B2∆B3>h2KΛβ1βk. 
 ⇒ h2[KΛβ1βk − mKβsσ3∆B3 − mσ2σ3∆B2∆B3]− h[mσ2∆B2 + mKβs + mσ3∆B3] <
m. 
 ⇒ h2 − h [mσ2∆B2+mKβs+mσ3∆B3]

[KΛβ1βk−mKβsσ3∆B3−mσ2σ3∆B2∆B3] < m
[KΛβ1βk−mKβsσ3∆B3−mσ2σ3∆B2∆B3]. 
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 ⇒ (h)2 − 2(h) � mσ2∆B2+mKβs+mσ3∆B3
KΛβ1βk−mKβsσ3∆B3−mσ2σ3∆B2∆B3

�+

� mσ2∆B2+mKβs+mσ3∆B3
2(KΛβ1βk−mKβsσ3∆B3−mσ2σ3∆B3)�

2
< � mσ2∆B2+mKβs+mσ3∆B3

2(KΛβ1βk−mKβsσ3∆B3−mσ2σ3∆B2∆B3)�
2

+
m

[KΛβ1βk−mKβsσ3∆B3−mσ2σ3∆B2∆B3]. 

⇒ � mσ2∆B2+mKβs+mσ3∆B3
KΛβ1βk−mKβsσ3∆B3−mσ2σ3∆B2∆B3

− h�
2

< � mσ2∆B2+mKβs+mσ3∆B3
2(KΛβ1βk−mKβsσ3∆B3−mσ2σ3∆B2∆B3)�

2
+

m
[KΛβ1βk−mKβsσ3∆B3−mσ2σ3∆B2∆B3]  
where “h” is any step size and always positive. 
(ii). 1 − P1 + P2 > 0 

⇒ 1 −
1 + hKβs + hσ2∆B2

1 + hω
−

1 + hσ3∆B3
1 + hm

+
(1 + hKβs + hσ2∆B2)(1 + hσ3∆B3)

(1 + hω)(1 + hm)

−
h2KΛβ1βK

m(1 + hω)(1 + hm)
> 0. 

 ⇒ m(1 + hm)(1 + hω) − m(1 + hm)(1 + hKβs + hσ2∆B2)− m(1 + hσ3∆B3)(1 +
hω) + m�1 + hKβs + hσ2∆B2(t)�(1 + hσ3∆B3)− h2KΛβ1βK > 0. 
⇒ [m + hmω+ hm2 + h2m2ω]

−m[1 + hKβs + hσ2∆B2(t) + hm + h2Kmβs+h2mσ2∆B2]
−m[1 + hσ3∆B3 + hω + h2ωσ3∆B3]
+ m[1 + hσ3∆B3 + hKβs + h2Kβsσ3∆B3 + hσ2∆B2 + h2σ2σ3∆B2∆B3]
− h2KΛβ1βk > 0. 

⇒ m + hmω+ hm2 + h2m2ω − m −mhKβs − mhσ2∆B2 − hm2

− h2Km2βs−h2m2σ2∆B2 − m − mhσ3∆B3 − mhω−mh2ωσ3∆B3
+ m + mhσ3∆B3 + mhKβs + mh2Kβsσ3∆B3 + mhσ2∆B2
+ mh2σ2σ3∆B2∆B3 − h2KΛβ1βk > 0. 

h2(m2ω − Km2βs − m2σ2∆B2 − mωσ3∆B3 + mKβsσ3∆B3 + mσ2σ3∆B2∆B3 −
KΛβ1βk) > 0.  
 ⇒ h2 > 0. 
⇒ h > 0.  
where “h” is any step size and always positive. 
(iii). P2 < 1 

 ⇒ (1+hKβs+hσ2∆B2)(1+hσ3∆B3)
(1+hω)(1+hm)

− h2KΛβ1βK
m(1+hω)(1+hm)

< 1. 

 ⇒ m[1 + hσ3∆B3 + hKβs + h2Kβsσ3∆B3hσ2∆B2 + h2σ2σ3∆B2∆B3] − h2KΛβ1βk <
𝑚𝑚(1 + hm)(1 + hω). 

⇒ m + h[mσ2∆B2 + mKβs + mσ3∆B3] + h2[mKβsσ3∆B3 + mσ2σ3∆B2∆B3]
− h2KΛβ1βk < +m[1 + hω + hm + h2mω]. 

 ⇒ h2[mKβsσ3∆B3 + mσ2σ3∆B2∆B3 − KΛβ1βk] + h[mσ2∆B2 + mKβs + mσ3∆B3] <
ℎ[mω + m2] + h2m2ω. 
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 ⇒ h2[m2ω + KΛβ1βk − mKβsσ3∆B3 − mσ2σ3∆B2∆B3] + h[m2 + mω− mσ3∆B3 −
mKβs −mσ3∆B3] > 0.  

⇒ (h)2 + h m2+mω−mσ3∆B3−mKβs−mσ3∆B3
m2ω+KΛβ1βk−mKβsσ3∆B3−mσ2σ3∆B2∆B3

> 0.  

⇒ (h)2 + 2h � �m2+mω−mσ3∆B3−mKβs−mσ3∆B3�
2(m2ω+KΛβ1βk−mKβsσ3∆B3−mσ2σ3∆B2∆B3)� +

� �m2+mω−mσ3∆B3−mKβs−mσ3∆B3�
2(m2ω+KΛβ1βk−mKβsσ3∆B3−mσ2σ3∆B2∆B3)�

2
>

� �m2+mω−mσ3∆B3−mKβs−mσ3∆B3�
2(m2ω+KΛβ1βk−mKβsσ3∆B3−mσ2σ3∆B2∆B3)�

2
.  

⇒ �� �m2+mω−mσ3∆B3−mKβs−mσ3∆B3�
2(m2ω+KΛβ1βk−mKβsσ3∆B3−mσ2σ3∆B2∆B3)� + h�

2
>

� �m2+mω−mσ3∆B3−mKβs−mσ3∆B3�
2(m2ω+KΛβ1βk−mKβsσ3∆B3−mσ2σ3∆B2∆B3)�

2
.  

⇒ � �m2+mω−mσ3∆B3−mKβs−mσ3∆B3�
2(m2ω+KΛβ1βk−mKβsσ3∆B3−mσ2σ3∆B2∆B3)�+ h >

� �m2+mω−mσ3∆B3−mKβs−mσ3∆B3�
2(m2ω+KΛβ1βk−mKβsσ3∆B3−mσ2σ3∆B2∆B3)�.  

 ⇒ h > 0. 
This condition is always valid [Shi, Zhao and Tang (2014)] So, the suggested frame 
work of stochastic nonstandard finite difference system is linearizable about the 
equilibria of the model. 
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(b) 

 

            
              (c) 

 
(d) 

Figure 5: (a) Susceptible plants at h = 0.1 for DFE (b) Susceptible plants at h = 100 for DFE 
(c) Infected insect vectors at h = 0.1 for EE (d) Infected insect vectors at h = 100 for EE 
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4 Results and discussion 
The euler maruyama system meets the factual steady states of the plant model as exposed 
in Fig. 2. Consequently for any time step size, Euler Maryuama system fails to work and 
shows unboundeness and negativity of solution. 
In Fig. 3, the stochastic euler system meets the factual steady states of the plant model. 
But, in certain values of data proved to be negativity and unboundednes of model. 
In Fig. 4, the stochastic runge kutta system converges the factual steady states of the plant 
model. But, in certain values of data proved to be negativity and unboundednes of model. 
Finally the above mentioned systems fails for any time step size. Henceforth, the 
stochastic systems do not preserving the continuous structure of model. 
Our claim stochastic NSFD system works for any time step size and adpoted all the 
dynamical properties of model presented in Mickens et al. [Mickens (1994); Mickens 
(2005)] as shown in Fig. 5. 

5 Conclusion and future framework 
We can conclude that deterministic analysis of plant model is less reliable methodology 
as related to stochastic analysis of plant model. When the time step size is very small then 
the explicit numerical systems behave well but there is the probability that it may diverge 
at some particular values of time step size, also the fundamental properties of continuous 
dynamical system may be loosed. 
In the stochastic framework, circumscribed by Mickens et al. [Mickens (1994, 2005, 
2005)] the imperative properties such as dynamical consistency and positivity are 
conserved by stochastic NSFD. 
Our keen interest in the future will be to apply the stochastic NSFD system to 
sophisticated stochastic diffusion and stochastic delay epidemic models. Furthermore, the 
recommended numerical analysis of this work may be used to enhance the fractional 
order dynamical system [Baleanu, Jajarmi, Bonyah et al. (2018); Jajarmi and Baleanu 
(2018); Singh, Kumar and Baleanu (2019)]. 
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