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Abstract: We propose a multiscale approach to study the influence of carbon nanotubes’ 
agglomeration on the stability of hybrid nanocomposite plates. The hybrid 
nanocomposite consists of both macro- and nano-scale reinforcing fibers dispersed in a 
polymer matrix. The equivalent material properties are calculated by coupling the 
Eshelby-Mori-Tanaka model with the rule of mixture accounting for effects of CNTs 
inside the generated clusters. Furthermore, an energy based approach is implemented to 
obtain the governing equations of the problem utilizing a refined higher-order plate 
theorem. Subsequently, the derived equations are solved by Galerkin’s analytical method 
to predict the critical buckling load. The influence of various boundary conditions is 
studied as well. After validation, a set of numerical examples are presented to explain 
how each variant can affect the plate’s natural frequency. 
 
Keywords: Buckling, agglomeration, multi-scale hybrid nanocomposites, Eshelby-Mori-
Tanaka model. 

1 Introduction 
Laminated composites are fabricated by inserting each ply with a desirable orientation 
angle to achieve pre-defined mechanical properties. Due to their remarkable 
characteristics, such composites have gained the attention in the engineering community. 
In the early 2000s, Zenkour et al. [Zenkour and Fares (2001)] presented a general 
mechanical analysis on the laminated composite shells independent from any additional 
shear correction coefficient. Static and dynamic answers of laminated plates via a 
meshless method are explored by Wang et al. [Wang, Liew, Tan et al. (2002)] with 
respect to various edge conditions of the structure. Patel et al. [Patel, Ganapathi and 
Makhecha (2002)] used a finite element method (FEM) to estimate the hygro-thermo-
elastic buckling and free vibration behaviors of laminated composite plate via a C0 
continuous element. Later, Ferreira et al. [Ferreira and Carrera (2005)] developed a grid-
free approximation function to probe the free vibration problem of a laminated plate in 
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the framework of Mindlin’s plate theory. Aydogdu [Aydogdu (2007)] studied the thermo-
elastic stability limits of multi-layered composite beams employing a higher-order beam 
theorem. Chai et al. [Chai and Yap (2008)] developed a closed form FE model to derive 
the lateral modulus of laminated composite beams and showed its applicability in static 
and dynamic problems of Euler-Bernoulli beams. Another study has been performed by 
Ćetković et al. [Ćetković and Vuksanović (2009)] to present a layerwise displacement 
field for mechanical behaviors of laminates. Putting emphasize on the crucial role of 
choosing a proper shape function in higher-order theories, [Aydogdu (2009)] introduced a 
new shear deformable model for laminated composite plates and showed its application 
in the cases of vibration, bending and buckling problems. Carrera’s unified formulation 
(CUF) has been utilized by Fazzolari et al. [Fazzolari and Carrera (2011)] solving the 
vibration and stability problems of laminated composite plates on the basis of various 
approximation techniques. CUF has again been used together with a zig-zag kinematic 
theorem and a finite difference approach in order to study both static and dynamic 
answers of composite plates [Rodrigues, Roque, Ferreira et al. (2011)]. Other authors 
exploited isogeometric analysis (IGA) for the mechanical response of laminated elements 
[Thai, Ferreira, Bordas et al. (2014); Yu, Yin, Bui et al. (2016)]. 
Another popular composite commonly used in designs is the fiber reinforced composite 
(FRC). In this type, the desirable properties can be generated by inserting a group of 
fibers such as glass- or carbon-fibers into a matrix with a designed orientation angle. Aref 
et al. [Aref and Alampalli (2001)] studied fiber reinforced polymers (FRPs) including the 
vibrational mode shapes of bridges consisting of FRPs. Tita et al. [Tita, Ferreira, Bordas 
et al. (2003)] examined the dynamic behaviors of FRC beams both experimentally and 
theoretically. Zenkour [Zenkour (2004)] performed a viscoelastic stability analysis of 
FRC plates using both classical and higher-order plate theories. A genetic algorithm (GA) 
based model has been proposed by Roy et al. [Roy and Chakraborty (2009)] to optimize 
the vibration control of FRP shells. In another research, Mareishi et al. [Mareishi, Rafiee, 
He et al. (2014)] investigated the electro-mechanical nonlinear mechanical static and 
dynamic behaviors of fiber reinforced piezoelectric beams. [Sepahvand (2016)] carried 
out a FEM based stochastic dynamic study on FRCs. 
Once elements with at least one dimension in nano scale are selected as reinforcements, 
the composite is named a nanocomposite. One of the most famous nano-sized 
reinforcements are carbon nanotubes (CNTs). Numerous researchers have investigated 
the static and dynamic behavior of CNT reinforced (CNTR) nanocomposites. For 
example, Ke et al. [Ke, Yang and Kitipornchai (2010)] utilized Timoshenko beam model 
incorporated with von Kármán relations to study the nonlinear vibrational behavior of 
CNTR nanocomposite beams. In another attempt, [Zhu, Lei and Lieu (2012)] employed 
Mindlin plate theory coupled with FEM to study the static and dynamic responses of 
CNTR nanocomposite plates. Shen et al. [Shen and Xiang (2014)] investigated the 
thermo-elastic postbuckling problem of a cylindrical CNTR nanocomposite panel. 
Heshmati et al. [Heshmati, Yas and Daneshmand (2015)] predicted the dynamic 
characteristics of a CNTR beam and studied the influence of CNTs’ agglomeration and 
waviness. Lei et al. [Lei, Zhang and Liew (2015)] utilized a kp-Ritz method in order to 
study the vibration analysis of nanocomposite plates reinforced with single-walled CNTs 
(SWCNTs) in the framework of Mindlin plate theory. Wattanasakulpong et al. 
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[Wattanasakulpong and Chaikittiratana (2015)] presented an efficient model for bending, 
buckling and vibration behaviors of CNTR nanocomposite plates based on a higher-order 
plate model. Jam et al. [Jam and Kiani (2015)] presented a solution for low-velocity 
impact problem of a nanocomposite beam while the structure is subjected by thermal 
loading. An Isogeometric analysis (IGA) in conducted by Phung-Van et al. [Phung-Van, 
Abdel-Wahab, Liew et al. (2015)] for both stability and vibration problems of CNTR 
nanocomposite plates on the basis of Reddy’s plate model. Song et al. [Song, Zhang and 
Liew (2016)] employed a higher-order plate theory to consider impact responses of 
CNTR nanocomposite structures with respect to different distributions of CNTs in the 
initial matrix. Lei et al. [Lei, Zhang and Liew (2016)] developed a parametric study for 
dynamic behaviors of rotating cylindrical panels reinforced with CNTs on the basis of an 
element free kp-Ritz method. The low-velocity impact analysis of nanocomposite plates 
in thermal environments has been carried out by Ebrahimi et al. [Ebrahimi and Habibi 
(2017)]. An Eshelby-Mori-Tanaka based homogenization model for CNTR 
nanocomposite panels is developed by García-Macías et al. [García-Macías, Rodríguez-
Tembleque, Castro-Triguero et al. (2017)] investigating the postbuckling characteristics 
of such structures under axial compression with respect to waviness and agglomeration 
effects. Ebrahimi et al. [Ebrahimi and Farazmandnia (2018)] examined the thermally 
affected mechanical responses of sandwich beams made of CNTR nanocomposites. 
However, CNTs are not the only nano size reinforcement which is used in 
nanocomposites. Graphene platelets (GPLs) have been recently employed by researchers 
to design and analyze novel nanocomposites. Song et al. [Song, Kitipornchai and Yang 
(2017)] investigated both free and forced vibrational characteristics of GPL reinforced 
(GPLR) plates. García-Macías et al. [García-Macías, Rodriguez-Tembleque and Sáez 
(2018)] surveyed the frequency and deflection characteristics of nanocomposite plates 
reinforced with both graphene and CNT. Song et al. [Song, Yang and Kitipornchai (2018)] 
highlighted the effects of GPLs as reinforcements in the bending and buckling responses 
of nanocomposite plates on the basis of Mindlin plate theory.  
Also popular are so-called hybrid nanocomposites, which are made of three phases: a 
matrix, macro-scale reinforcements and nano-scale reinforcements. These hybrid 
nanocomposites empowers the structure to support higher critical stability limit, natural 
frequency and also lower deflections. Several studies on the mechanical responses of such 
hybrid nanocomposites have been conducted. Rafiee et al. [Rafiee, Liu, He et al. (2014)] 
surveyed the nonlinear dynamic characteristics of piezoelectric laminated plates. He et al. 
[He, Rafiee, Mareishi et al. (2015)] explored the large amplitude nonlinear free and forced 
vibrational responses of multi-scale hybrid nanocomposite beams. Later, Rafiee et al. 
[Rafiee, Nitzsche and Labrosse (2016)] investigated the static and dynamic responses of 
thin-walled rotating hybrid nanocomposite beams. Ghorbanpour Arani et al. [Ghorbanpour 
Arani, BabaAkbar Zarei, Eskandari et al. (2017)] studied the vibrational responses of 
double-layered sandwich beams made from a smart core and facesheets made from multi-
scale hybrid CNT/glass fiber reinforced nanocomposites. Ebrahimi et al. [Ebrahimi and 
Habibi (2018)] determined the behavior of hybrid nanocomposite plates in a hygrothermal 
environment when the structure is subjected to a low-velocity impactor. They considered 
kinematical nonlinearities on the basis of von-Karman theory. The presented paper is 
focused on an analytical study of the buckling characteristics of multi-scale hybrid 
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nanocomposite plates. Therefore, a blend of Eshelby-Mori-Tanaka micromechanical model 
and rule of mixture is implemented to homogenize the material. Afterwards, a refined plate 
theory is extended and the equations of motion are derived based on the dynamic form of 
the principle of virtual work. Next, Galerkin’s method is used to solve the governing 
equations and the influence of several imput parameters is studied. 

2 Theory and formulation 
2.1 Problem definition 
As shown in Fig. 1, the length and width of the plate are presumed to be a and b, 
respectively; the thickness of the structure is assumed to be h. It is worth mentioning that 
the structure is reinforced with a mixture of multi-scale reinforcing gadgets. In this 
research, carbon based reinforcements are employed, (CFs) and CNTs in particular. 

 
Figure 1: Geometry of a rectangular plate 

2.2 Micromechanical homogenization scheme 
In this section, the homogenization process is explained presenting a Eshelby-Mori-
Tanaka model in order to capture the effect of CNTs’ agglomeration while reaching the 
effective mechanical properties of multi-scale hybrid nanocomposites Shi et al. [Shi, 
Feng, Huang et al. (2004)]. Furthermore, the rule of mixture is employed in order to 
account for the dispersion of CFs in the nanocomposite. First, the effective properties of 
CF reinforced (CFR) composites are going to be discussed as follows: 
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12
F NMC

F NCMV Vν ν ν= +    (5) 

where E, G, ν and ρ stand for Young’s modulus, shear modulus, Poisson’s ratio and mass 
density, respectively. Also, the superscripts F and NCM denote fiber and nanocomposite 
matrix, respectively. Evidently, VF and VNCM are volume fractions of fiber and 
nanocomposite matrix, respectively. Obviously, the aforementioned volume fractions can 
be related to each other by: 

1F NCMV V+ =    (6) 

Next, we investigate the effect of adding nanoparticles to the media. CNTs, which are 
employed as the nano scale reinforcements in this article, possess a remarkable stiffness 
incorporated with a high slenderness ratio. Due to these features, sometimes CNTs do not 
follow the initial uniform distribution inside the matrix. In other words, in some regions 
inside the continua some spherical inclusions can be found which are filled with a set of 
CNTs. Thus, CNTs’ concentration can be different from a region to another one. This 
effect is of high significance whenever the mechanical behavior of a nanocomposite is 
supposed to be analyzed. in this situation, the total volume of CNTs can be divided in two 
parts, one of them is related to the CNTs inside the inclusions and another one 
corresponds with CNTs which are inserted in the matrix. The volume of CNTs inside the 
inclusions (clusters) in

rW  and the volume of CNTs inside the matrix M
rW  can be related 

to each other as: 
in M

r r rW W W= +    (7) 

Now, it is turned to relate the volume of CNTs to the entire volume of the structure as 
follows: 

r MW W W= +    (8) 

where WM is the volume of the matrix which CNTs are dispersed in it. In this paper, a 
polymeric matrix is utilized. Also, Wr is the volume of CNTs. Dividing these volumes to 
the total volume (W), the volume fraction of each part can be written as: 

r M
r M

W WV , V
W W

= =    (9) 

As same as the volume of CNTs (W), the volume fraction of CNTs in the matrix can be 
divided in two parts of inside the clusters and outside of clusters. To this reason, two new 
parameters are introduced to formulate this issue in the following form: 

in
in r

r

W W,
W W

µ η= =    (10) 

where µ indicates on the volume fraction of clusters and η stands for the volume fraction 
of CNTs inside the clusters. It should be regarded that µ≤η is a limitation for this 
methodology. One should be aware of the particular cases which can be generated by 
changing agglomeration parameters. For instance, once µ=1, the entire matrix can be 
considered as a big cluster which contains all of the nanoparticles, henceforward, 
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aggregation of nanofillers cannot be observed. However, full accumulation can occur in 
the situation that η=1 (fully agglomerated CNTs). In another condition (µ≤η, η≠1), some 
of the nanofillers are placed inside the clusters and the others are scattered in the matrix 
free from any membrane (partially agglomerated CNTs). 
Now, incorporating the Eqs. (9) and (10) yields in: 

in
r r

in

W V
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η
µ

=    (11) 

( )1
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W W

η
µ
−

=
− −

   (12) 

Also, the variation of the rV   with respect to the thickness direction produces mechanical 
properties as a function of z . The volume fraction of nanofillers in the matrix can be 
expresses as: 

( )
1

1= 1
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−
   − + +   

  
   (13) 

in which ρr and ρM are mass densities of CNT and matrix, respectively. In addition, wr is 
the mass fraction of nanofillers and can be calculated by: 

r
r

r M

Mw
M M

=
+

   (14) 

where Mr and MM are related to the mass of CNTs and matrix, respectively. It is worth 
mentioning that two versions of Vr can be defined in the problems of which 
agglomeration phenomenon is studied. The main difference between these two types is 
about the position of agglomerated nanoparticles and the matrix. In this case, the matrix 
is seemed to be in the bottom and the agglomerated CNTs are assumed to be at the top of 
the structure.  
Now, the effective material properties can be reached following the relations of Eshelby-
Mori-Tanaka micromechanical model [Shi, Feng, Huang et al. (2004)]. According to this 
model, the bulk moduli of inclusions can be written as: 
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where KM is the bulk moduli of the matrix. Moreover, the shear moduli of inclusions can 
be introduced as: 
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where GM is the shear moduli of matrix. Next, the bulk and shear moduli of the remnant 
parts can be formulated as: 
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In Eqs. (15)-(18), the mechanical terms αr, βr, δr and ηr can be calculated as: 
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where kr, lr, mr, nr and pr are the elastic Hill’s coefficients of CNTs which can be different 
for each type of CNTs with respect to the chirality of the CNT. In this manuscript, the 
Hill’s constants are employed for SWCNTs with chirality of (10,10) from the reference 
[Wang and Hu (2005)]. 
Based on the implemented homogenization scheme, the equivalent bulk moduli of the 
nanocomposite can be computed using the following formula: 
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where outν  is the Poisson’s ratio of the matrix and can be defined as: 
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Also, the equivalent shear moduli can be computed as: 
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Finally, the equivalent Young moduli and Poisson’s ratio of CNTR nanocomposites can 
be written in the following form: 

( ) ( ) ( )
( ) ( )
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K z G z
E z
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   (26) 
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Moreover, the equivalent density of the CNTR nanocomposite can be formulated 
utilizing the fundamentals of mixture’s rule as: 

( ) ( )r M r Mz Vρ ρ ρ ρ= − +    (28) 

2.3 Refined parabolic plate theory 
Present part is allocated to introduce a refined parabolic plate theory in order to derive the 
kinematic relations of the plate. In this theory, a shape function is employed to estimate 
the shear strain and stress. Here, the displacement field of plate can be written as: 
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In above equations, u  and v  are longitudinal and transverse displacements of the mid-
surface, respectively; also, bw  and sw  are the bending and shear deflections through z- 

axis, respectively. In addition, ( )f z  stands for the shape function of the theorem. In this 

paper this function is considered to be 
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where 
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2.4 Derivation of motion equations 
In this section, the equations of motion are going to be developed in the framework of a 
Hamiltonian approach. Actually, Hamilton’s principle can be defined as: 

0

( ) 0
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U V dtδ + =∫    (32) 

where U and V account for strain energy and work done by external forces, respectively. 
The variation of strain energy is written as: 
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in above equation, the axial forces and bending moments can be defined as: 
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where ( ) 1 df
dzg z = − . The variation of work done by buckling load can be expressed as: 

0 0

( ) ( ) ( ) ( )b a
b b s b s b s b sw w w w w w w wV N dxdy

x x y y
δ δδ

 ∂ + ∂ + ∂ + ∂ +
= − + ∂ ∂ ∂ ∂ 
∫ ∫   (35) 

By substituting Eqs. (33) and (35) into Eq. (32) and setting the coefficients of δu, δv, δwb 
and δws to zero, the Euler-Lagrange equations of multi-scale hybrid nanocomposite plates 
can be written as: 
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where 2∇  stands for the Laplacian operator. 

2.5 Constitutive equations 
Herein, the elastic stress-strain relations of orthotropic composite materials are reviewed 
for the purpose of deriving the fundamental elastic equations of such solids. Here, 
following constitutive equations can be expressed as: 

ij ijkl klCσ ε=    (40) 

where ijσ , klε  and ijklC  represent the components of second-order stress tensor, second-
order strain tensor and fourth-order elastic tensor, respectively. Therefore, these relations 
can be modified as follows for plates: 
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Now, integrating from Eq. (41) with respect to thickness direction, z- axis, the following 
resultant forces and moments can be achieved: 



Agglomeration Effects on Static Stability Analysis of Multi-Scale                       51 

11 12 11 12 11 12

12 22 12 22 12 22

66 66 66

11 12 11 12 11 12

12 22 12 22 12 22

66 66 66

11 12

0 0 0
0 0 0

0 0 0 0 0 0
0 0 0
0 0 0

0 0 0 0 0 0
0

s sxx

s syy

sxy

b s s
xx
b s s
yy

sb
xy

s s
s
xx
s
yy

s
xy

N
A A B B B B

N A A B B B B
N A B B
M B B D D D D
M B B D D D D

B D DM
B B DM

M

M

 
 
 
 
 
 
 
  =
 
 
 
 
 
 
 
 

2

2

2

2

2

2

2

2

2

2

11 12 11 12

12 22 12 22 12 22

66 66 66

2
0 0

0 0 0
0 0 0 0 0 0

2

b

b

b

s

s

s

u
x
v
y

u v
y x

w
x

xw
y

w
x ys s s s

w
s s s s s s

x

s s s w
y

w
x y

Q
,

D H H
B B D D H H

B D H

∂
∂
∂
∂

∂ ∂
∂ ∂

∂

∂

∂

∂

∂
∂ ∂

∂

∂

∂

∂

∂
∂ ∂

 
 
         +      −      −      −      −       − 
 
 − 

44

55

0
0

s

s

ws
z x

s w
yz y

A
Q A

∂
∂

∂
∂

    
=     

     

  (43) 
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2.6 Governing equations 
In this section, inserting Eq. (43) in Eqs. (36)-(39), the governing equations of multi-scale 
hybrid nanocomposite plates can be expressed in the following form: 
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3 Analytical solution 
Up to now, many analytical and numerical methods are found to be utilized for the goal 
of solving the buckling problem of plates. Herein, the governing equations achieved in 
Eqs. (41)-(44) will be solved in the framework of Galerkin’s method which is one of the 
best analytical solutions for static and dynamic problems. In this method the 
displacement field of a plate can be defined as: 
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where Umn, Vmn, Wbmn and Wsmn are unknown coefficients. Moreover, Xm and Yn are 
trigonometric functions in terms of x and y, respectively; these functions are majorly 
presented to satisfy the BCs on edges of the plate. It is worth mentioning that in the 
present paper effects of various BCs are included. Here, by inserting Eq. (49) in Eqs. 
(45)-(48) and integrating over the cross-section area of the plate results in the following 
eigenvalue problem: 
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where K is stiffness matrix. The corresponding arrays of stiffness matrix can be 
calculated a 
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In order to solve this eigenvalue problem, the determinant of coefficient matrix in the left 
hand side of Eq. (50) shall be set to zero: 

[ ]4 4
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×
=    (67) 

Once Eq. (67) is solved for Nb, the critical buckling load of multi-scale hybrid 
nanocomposite plate can be obtained. 

4 Numerical results and discussion 
In this section, a series of illustrations are presented in order to clarify the effect of 
various parameters on the critical stability load behaviors of multi-scale hybrid 
nanocomposite structures. Basically, the plate is supposed to be made of epoxy and it is 
reinforced with CF and CNT. Material properties of CFs are achieved from Ebrahimi et 
al. [Ebrahimi and Habibi (2018)]. The mechanical properties of SWCNT (10,10) which 
are used here can be found in the reference [Wang and Hu (2005)]. Moreover, the 
material properties of the matrix are as same as those implemented in the reference 
[Fantuzzi et al. (2017)]. The presented results are validated by comparing the vibrational 
results of this model with those of former researches. The results of this comparison are 
tabulated in Tab. 1 which indicates on the efficiency of the presented model. 
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Table 1: Comparison of the dimensionless fundamental frequency of SSSS GPLs 
reinforced nanocomposite square plates for various distribution patterns of nanofillers 

Distribution 
type 

 [García-Macías, 
Rodriguez-Tembleque 
and Sáez (2018)] 

[Song, Kitipornchai 
and Yang (2017)] 

Present 

Pure epoxy  0.058 0.058 0.057 
UD  0.121 0.122 0.118 
FG-O  0.097 0.102 0.100 
FG-X  0.141 0.138 0.128 
FG-A  0.117 0.112 0.118 
 
In this research, plate’s thickness is supposed to be h=5 cm. In this section, effects of 
different edge conditions are covered. Furthermore, efficiency of the presented model is 
examined and the results, tabulated in Tab. 1, show that this model can accurately predict 
the mechanical responses of composite plates reinforced with CNTs. Here, the 
dimensionless form of buckling load can be presented as: 

( )2 2
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E h
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Fig. 2 is plotted to show the influence of different aspect ratios on the critical buckling 
load of multi-scale hybrid nanocomposite plates while the volume fraction of clusters is 
assumed to be changed. In this case, all of the CNTs are considered to be inside the 
clusters, means µ<η, η=1. According to the figure, buckling load diminishes continuously 
as aspect ratio becomes greater. Moreover, the greater is the clusters’ volume fraction, the 
higher is the dimensionless buckling load. Therefore, clusters’ density can amplify the 
dimensionless buckling load with its increase. On the other hand, effect of BCs is 
included briefly. Indeed, two common types of edge conditions, namely SSSS and CCCC, 
are covered and it can be seen that whenever a fully clamped structure is implemented, 
the mechanical response can be higher than the situation of which simply supported 
plates are used. Once taking a precise look at the figure, one can realize that changes in 
the amount of clusters’ volume fraction can be more sensed in SSSS plates in comparison 
with the CCCC ones. 
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(a) SSSS 

 
(b) CCCC 

Figure 2: Variation of first dimensionless buckling load of agglomerated multi-scale 
hybrid nanocomposite square plates versus aspect ratio for various values of µ by 
considering the boundary conditions effect (b/h=30, P=1, wr=0.1, η=1, VF=0.2) 

Furthermore, coupled effects of gradient index, clusters’ volume fraction and volume 
fraction of CNTs inside the cluster are included in Fig. 3. It is clear that gradient index 
has enough potential to lessen the dimensionless buckling load with its increase. So, it 
may be a better choice to use small values of gradient index to enlarge the buckling load 
of the plate. In addition, the influence of volume fraction of clusters inside a 
nanocomposite can be observed here as well as before. In fact, higher clusters’ volume 
fraction amounts correspond with greater dimensionless buckling loads. Moreover, 
smaller amounts are assigned to the critical buckling load whenever higher values are 
considered for the volume fraction of CNTs inside the cluster. In other words, in practical 
applications, the stability limit of nanocomposites with fully agglomerated CNTs is very 
smaller than those with partially agglomerated CNTs. Thus, it can be concluded that 
clusters’ volume fraction and the volume fraction of CNTs inside the cluster possess two 
completely different influences on the buckling behaviors of multi-scale hybrid 
nanocomposite plates. 
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(a) P=1 

 
(b) P=2 

Figure 3: Variation of dimensionless buckling load of SSSS square multi-scale 
nanocomposite plates versus volume fraction of CNTs inside the cluster (η) for various 
volume fractions of clusters (µ) for (a) P=1, and (b) P=2 (a/h=30, wr=0.1, VF=0.2) 

Fig. 4 is majorly presented to survey the effect of mass fraction of CNTs instead of clusters’ 
volume fraction on the dimensionless buckling load of SSSS square plates made of multi-
scale hybrid nanocomposites. Based on this diagram, it can be understood that utilizing 
higher mass fractions for nanoparticles reveals greater stability responses. This 
phenomenon can be authenticated taking a brief look on the definition of the wr. In fact, 
mass fraction of CNTs in the matrix depends on the equivalent mass of CNTs inside the 
matrix. Thus, greater values for this fraction corresponds with a stiffer continuum. In other 
words, whenever wr is increased, the effective stiffness of the system is added. According 
to this issue, it is believable to reach higher dimensionless buckling loads in the cases 
which great mass fractions are utilized for the nanofillers. Besides, the decreasing 
influences of gradient index and volume fraction of CNTs inside the cluster can be 
observed again in this diagram. 
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(a) P=1 

 
(b) P=2 

Figure 4: Variation of dimensionless buckling load of SSSS square multi-scale 
nanocomposite plates versus volume fraction of CNTs inside the cluster (η) for various 
mass fractions of the CNTs (wr) for (a) P=1, and (b) P=2 (a/h=30, µ=0.5, VF=0.2) 

Thereafter, the effect of adding CFs’ volume fraction on the variation of critical buckling 
load versus volume fraction of clusters is highlighted in the framework of Fig. 5. Also, 
CNTs’ mass fraction has been changed to see its effect on the dimensionless buckling 
load. Obviously, it can be perceived that the buckling response can be aggrandized once 
either µ or wr is added. In addition to this increasing effect, another stiffness-hardening 
trend can be observed which is dedicated to the volume fraction of CFs. In other words, 
the system can be prepared to tolerate greater buckling loads by considering a bigger 
value for the CFs’ volume fraction. 

 
(a) wr=0.1 

 
(b) wr=0.4 

Figure 5: Variation of dimensionless buckling load of SSSS square multi-scale 
nanocomposite plates versus volume fractions of clusters (µ) for various volume fractions 
of carbon fibers (VF) for (a) wr=0.1, and (b) wr=0.4 (a/h=30, P=2, η=1) 
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The combined effects of aspect ratio, BCs and agglomeration type are surveyed in Fig. 6 
by plotting the variation of dimensionless buckling load versus clusters’ volume fraction. 
It is clear that the plate can be subjected to higher buckling loads whenever volume 
fraction of clusters is increased. Moreover, choosing a higher aspect ratio results in a 
decrease in the amount of mechanical response. Actually, once higher aspect ratios are 
selected, the structure becomes narrow and it can endure lower loads. It is worth 
mentioning that effect of changing aspect ratio from 1 to 2 is more than the situation that 
it is changed from 2 to 3. As a logical phenomenon, it is shown that fully clamped plates 
are stiffer than simply supported ones; henceforward, they are able to endure higher 
buckling loads. As the most crucial highlight of this figure, one should pay attention that 
in the case of full agglomeration the dimensionless buckling load reaches its minimum 
magnitude. Indeed, in the case of CNTs’ partial agglomeration (µ<η, η≠1), greater 
buckling loads can be supported by the nanocomposite. 

 
(a) SSSS, partially agglomerated CNTs 

 
(b) SSSS, fully agglomerated CNTs 

 
(c) CCCC, partially agglomerated CNTs 

 
(d) CCCC, fully agglomerated CNTs 

Figure 6: Variation of dimensionless buckling load of multi-scale hybrid nanocomposite 
plates vs. volume fraction of clusters for SSSS and CCCC edge conditions by considering 
partially and fully agglomerated CNTs (b/h=30, P=2, wr=0.2, VF=0.2) 
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Finally, effect of various BCs is included while drawing the variation of dimensionless 
buckling load against mass fraction of CNTs in Fig. 7. Herein it can be seen that buckling 
load can be added once a higher mass fraction is used for nanotubes (stiffening effect). 
Moreover, it can be observed that simply supported plates can endure small critical loads. 
In reverse, structures with either free or clamped edge conditions are better candidates for 
more critical static conditions. 

 
Figure 7: Effect of different boundary conditions on the variation of dimensionless 
buckling load of multi-scale hybrid nanocomposite square plates versus mass fraction of 
CNTs (a/h=30, P=2, VF=0.2, µ=0.5, η=0.8) 

5 Conclusions 
In this manuscript, Hamilton’s principle is mixed with a refined higher-order plate theory to 
reach the motion equations of a multi-scale hybrid nanocomposite plate. The 
nanocomposite, which is consisted of a polymer matrix, CFs and CNTs, is modeled 
utilizing Eshelby-Mori-Tanaka model incorporated with the rule of mixture. Influence of 
the nanofillers aggregation inside the inclusions is covered in this paper. The problem is 
solved on the basis of an analytical approach. Then, the non-dimensional form of results is 
presented for the sake of simplicity. Here, most important results are reviewed as follows: 
● The buckling load can be amplified using higher mass fraction values for CNTs. 
● Another way to intensify the critical buckling load once the CNTs are aggregated 
inside the inclusions is to employ a great volume fraction for clusters. 
● Buckling load becomes smaller once the volume fraction of CNTs inside the clusters 
is increased. 
● An increase in the value of CFs’ volume fraction results in higher critical buckling loads. 
● The structure can endure greater buckling loads once the CNTs are aggregated partially. 
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