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Abstract: The human respiratory system consists of the upper and the lower respiratory tracts. Anatomically, the lower 
respiratory tract consists of the trachea, bronchi, bronchioles (terminal bronchioles and respiratory bronchioles), 
alveolar duct, alveolar duct sacs, and alveoli. Alveoli are composed of two epithelial cell types, cuboidal alveolar type 
2 (AT2) cells that secrete surfactant to prevent alveolar collapse and function as stem cells to regenerate alveolar type 
1 (AT1) cells during damage repair, and squamous AT1 cells that cover most of the surface area of the alveoli and 
mediate gas exchange. Previous studies mainly focused on AT2 cells; this review summarizes the current studies on 
lung development and property of AT1 cells.
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Introduction

The mammalian respiratory system is a tree-like architecture 
consisting of a single trachea, two bronchi, thousands of 
bronchioles and millions of alveoli (Chen et al., 2018). The 
lungs contain about 300 million alveoli, which comprise 
about 160 cm2 of surface area for air exchange (El-Hashash, 
2018; Rosen et al., 2015). Lung development is composed of 
three consecutive periods: the embryonic period, fetal period 
and postnatal period (Schittny, 2017). During the ebryonic 
period, lung organogenesis is mainly completed. The fetal 
period further divides into pseudoglandular, canalicular, and 
saccular stages. The postnatal period mainly contains alveolar 
formation and microvascular network maturation (Schittny, 
2017) (Fig. 1(A)). 

Lung Development

Human lung development begins at approximately day 28 
of gestation and originates from anterior foregut endoderm 
cells (Herriges and Morrisey, 2014). The primitive germ 
layer of the early embryo firstly differentiates to form the 
left and right primitive bronchial buds, and the left primary 
bronchial buds form two secondary bronchial buds, the 
right primary bronchial buds develop into three secondary 
bronchial buds at the 5th week of gestation, then the left and 
right secondary bronchi buds develop into corresponding 
pulmonary lobes (El-Hashash, 2018). The lungs begin 
to take shape at 6-16 postconceptional weeks (PCW), to 
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further increase and branch at 16-26 PCW, at the same time 
accompanying the bronchioles and alveolar ducts formation 
and the vascularization of lung tissue. Finally, alveolar 
formation and separation begin at 20 PCW, until several 
years after birth (Schittny, 2017; Warburton et al., 2010a).

Lung development is  actual ly the result  of  the 
interaction between mesenchymal and epithelial cells, 
and its development process is strictly regulated (Alescio 
and Cassini, 1962; Warburton and Olver, 1997). Thyroid 
transcription factor-1 (TTF-1) expresses in the thyroid, 
forebrain, and lung epithelial cells. A large number of 
studies have shown that NKX2.1 is the earliest marker of 
the lung endoderm (Cardoso and Lu, 2006; Guazzi et al., 
1990; Lazzaro et al., 1991). NKX2.1 is at the center of the 
pulmonary epithelial development regulatory network, 
and the appearance of NKX2.1+ cells in the anterior foregut 
endoderm indicates the fate of pulmonary endoderm 
determination (El-Hashash, 2018). NKX2.1 also plays a very 
important role in further lung development. Studies have 
shown that NKX2.1 directly regulates the expression of lung 
proximal and distal related genes by binding to the gene 
promoter region, such as multiple functional genes of type 
II alveolar epithelial cells (AT2 cell) including surfactant 
protein A (SPA), surfactant protein B (SPB), surfactant 
protein C (SPC) and surfactant protein D (SPD), type I 
alveolar epithelial cells (AT1 cell) gene PDPN and club cell 
gene (Boggaram, 2009; Bohinski et al., 1994; Bruno et al., 
1995). Complete deletion of NKX2.1 in mice kills them; it 
was found that the esophageal trachea was not separated 
and the lung development was stagnated, only bilateral main 
bronchi were developed and the distal lung parenchyma 
was completely absent (Kimura et al., 1999; Minoo et al., 



2                                                                                                                                                                                         YONG CHEN et al. 

1999). Wnt2/2b and beta-catenin signaling pathways are very 
important for early endodermal differentiation, and Wnt2/2b 
knockout in mice can lead to complete lung loss, and the 
initial NKX2.1+ cell loss in the lung endoderm was detected 
(Goss et al., 2009). However, conditional overexpression of 
beta-catenin will lead to ectopia proliferation of NKX2.1+ 
cells in the esophageal and gastric epithelium (Warburton et 
al., 2010b). The above results suggest that the regulation of 
the Wnt2/2b signal on lung development is strictly limited to 
the starting area of lung development in the anterior foregut 
endoderm. Fibroblast growth factor (FGF) protein family 
plays an important role in the process of cell proliferation, 
migration, and differentiation. Studies have shown that the 
function of FGF is highly consistent in the occurrence of 
respiratory organs from Drosophila to mammals (Volckaert 
and De Langhe, 2015). FGF-1, FGF-2, FGF-4, FGF-8, and 
FGF-10 have shown the ability to induce branch formation 
(limb bud formation) (Jin et al., 2018; Su et al., 2014; Yuan 
et al., 2018). During the lung development of mice, FGF-10 
was secreted by mesenchymal cells around the lungs, and the 
lung buds highly expressed FGF-2 and FGF-10 (Igarashi et 
al., 1998; Ohuchi et al., 1997). Complete deletion of FGF-10 
in mice was fatal, and the lung was found to be completely 
absent (Min et al., 1998); these results suggest that FGF-
10 is essential for lung development. Keratinocyte growth 
factor (KGF, also known as FGF7) is highly expressed in 
lung interstitial cells in late lung development (Post et al., 
1996). FGF-7 has a regulatory effect on the proliferation and 
differentiation of pulmonary epithelial cells, but there is no 
obvious abnormality in the mice with FGF-7 knockout (Guo 
et al., 1996); it suggests that FGF-7 plays an auxiliary role in 
lung development.

During lung development, various components of the 
extracellular matrix (ECM), such as extracellular basement 
membrane, laminin (LNs), collagen, basement membrane 
chitosan (Perlecan), fibromodulin, and fibronectin provide 
organizational support and biological signal, regulating cell 
proliferation and differentiation (Chen et al., 2018; Matter 
and Laurie, 1994).

AT1 and AT2 Cell Property

Lung distal progenitor cells expressed NKX2.1 and SOX9, 
and the distal progenitor cells (NKX2.1+/SOX9+) eventually 
differentiated into AT1 and AT2 cells (Kadzik and Morrisey, 
2012). The results of mouse fetal lung single-cell sequencing 
showed that AT1 cells and AT2 cells were both derived from 
bipotent progenitor cells (BP cells) during lung development 
to the cystic stage, and then AT1 cells and AT2 cells were 
further amplified and matured at the alveolar stage (Desai 
et al., 2014; Treutlein et al., 2014). Single-cell sequencing 
also showed that mouse lung BP cells expressed of AT1 cells 
marker podoplanin (PDPN, also known as T1α) and AT2 
cells marker SPC (Desai et al., 2014; Treutlein et al., 2014), as 
well as distal alveolar progenitor cells marker SOX9 (Rockich 
et al., 2013). Mouse lung BP cells (SPC+/PDPN+/SOX9+) can 
express more SPC, SPB and downregulate early AT1 marker 
PDPN to generate mature AT2 cells (SPC++/SPB+/PDPN−), 
or express more mature AT1 markers and downregulate AT2 
markers to generate mature AT1 (PDPN++/AQP5+/SOX9−) 
(Chen et al., 2018; Treutlein et al., 2014) (Fig. 1(B)). hESCs-
derived lung BP cells (SPC+/PDPN+/SOX9+) were recently 
reported (Chen et al., 2018), and more detailed studies are 
needed to investigate the cell property, such as lineage tracing 
and single-cell sequencing.

The alveoli are a continuous epithelial structure 
composed of AT1 and AT2 cells. AT1 cells account for about 
8% of the total number of pulmonary parenchyma cells but 
constitute more than 90% of the alveolar surface area (Weibel, 
2009). AT1 cell morphology is specific, flat, scaly, with 
multiple branch structures, can widely contact the basal and 
capillary endothelial cells to improve gas exchange efficiency 
(Weibel, 2009). AT1 cells have been considered as terminally 
differentiated cells that lack the ability to divide and change 
phenotypes (McElroy and Kasper, 2004). A large number 
of animal experiments have shown that SPC+ AT2 cells can 
differentiate into AT1 cells to repair alveolar structures when 
alveolar cells are injured (Barkauskas et al., 2013; Nabhan et 
al., 2018) (Fig. 1(C)). A few results have shown that, under 

FIGURE 1. Lung development and AT1/AT2 cells property. (A) Continuous stages of human lung development. 
(B) AT1 and AT2 cells derived from BP cells (SOX9+/SPC+/PDPN+). (C) AT2 possessed self-renewal and 
differentiation capability.
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distal lung (Tao et al., 2016) and it is a functional marker of 
mature AT1 cells (Chen et al., 2018; Nikolic et al., 2017; Tao et 
al., 2016). The above-mentioned studies indicated that AQP5 
protein was considered as a marker of mature AT1 cells (Fig. 
2). A recent study showed that flattened AT1 cells undergoing 
terminal differentiation can be reprogrammed toward the 
airway fate, and proliferate, and that fully differentiated 
AT1 cells can retract their elaborate cellular extensions and 
proliferate (Yang et al., 2016). AT2 cells, in addition to the 
synthesis and secretion of alveolar surface-active substance 
and as stem cells that participate in alveolar damage repair 
function, have also the function to transfer sodium ions and 
alveolar fluid (Gonzalez et al., 2005; Mason, 2006).

TABLE 1

Overview of markers in distal progenitor and alveolar cells

Markers BP AT2
Immature 

AT1
Mature 

AT1
SOX9 + + +/− −
PDPN + − + ++
HOPX + − + +

LGFBP2 − − − +
SPC + ++ − −

AQP5 − − − ++
++ means that marker higher expressed.
+/− means that marker expressed in basal level.

Future Directions

As more and more studies on lung development have been 
carried out, details on the properties of AT1 and AT2 cells get 
more clarity. Further studies based on single-cell sequencing 
and lineage tracing will reveal more biological features on 
AT1 and AT2 cells.
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certain circumstances, AT1 can transdifferentiate into AT2 
cells (Flecknoe et al., 2002). Compared with a large number 
of studies on AT2 cells, an important reason why AT1 cells 
are less studied is the late identification of specific markers. 
Recent murine-based studies indicated that Hop Homeobox 
(HOPX) is the earliest detectable AT1 cell marker (Jain et al., 
2015; Laresgoiti et al., 2016). The results of human fetal lung 
analysis also confirmed that HOPX could be detected in the 
distal bud area at 11 PCW (Nikolic et al., 2017). HOPX+ AT1 
cells possessed plasticity, could self-renew and differentiate 
into SPC+ AT2 cells after partial pneumonectomy (Jain et 
al., 2015). A more recent study demonstrated that insulin-
like growth factor-binding protein 2 (LGFBP2) as a genetic 
marker specifically expressed in postnatal AT1 cells, HOPX+ 
LGFBP2− AT1 cells can transdifferentiate into AT2 cells, 
but HOPX+ LGFBP2+ cells are terminally differentiated 
AT1 cells that cannot proliferate and transdifferentiate into 
AT2 cells (Wang et al., 2018). It suggested that HOPX+ AT1 
cells population is composed of immature and mature AT1 
cells. PDPN protein is an AT1 cell marker that appears 
later than HOPX (Laresgoiti et al., 2016), human fetal lung 
immunofluorescence staining also confirmed that PDPN 
expression could be detected in the distal alveolar area at 17 
PCW (Nikolic et al., 2017). Although PDPN is also expressed 
in basal cells and lymphatic endothelial cells in the proximal 
trachea of the lung (Breiteneder-Geleff et al., 1999; Farr et 
al., 1992), but in the distal alveolar region, it had restricted 
expression in differentiating AT1 cells (Laresgoiti et al., 2016). 
Aquaporin 5 (AQP5) is considered as an AT1 cell marker 
that appears later than PDPN (Chen et al., 2018). Studies on 
human fetal lung have confirmed that PDPN+/AQP5+ AT1 
cells can be detected in the terminal area of the pulmonary 
alveolar duct at 20 PCW, and staining results of the adult lung 
also confirmed that AT1 cells have high expression of AQP5 
protein (Nikolic et al., 2017) (Tab. 1). 

The results of single-cell sequencing in mice showed 
that the AQP5 was restricted expression in alveolar AT1 
cells, while HOPX and PDPN were also expressed in alveolar 
progenitor cells (Desai et al., 2014). Moreover, AQP5 is 
a water channel protein that plays an important role in 
transporting water across the blood-gas barrier in the 

FIGURE 2. Markers expression of immature and mature AT1 cells.
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