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Abstract: Vehicles generate dissimilar sound patterns under different working
environments. These generated sound patterns signify the condition of the
engines, which in turn is used for diagnosing various faults. In this paper, the
sound signals produced by motorcycles are analyzed to locate various faults.
The important attributes are extracted from the generated sound signals based
on time, frequency and wavelet domains which clearly describe the statistical
behavior of the signals. Further, various types of faults are classified using the
Extreme Learning Machine (ELM) classifier from the extracted features. More-
over, the improved classification performance is obtained by the combination of
feature sets in different domains. The simulation results clearly demonstrate that
the proposed hybrid feature set together with the ELM classifier gives more pro-
mising results with higher classification accuracy when compared with the other
conventional methods.
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1 Introduction

Asia has the world’s most astounding centralization of mechanized two and three-wheeled vehicles.
Motorcycles are the most favored means of travel frequently used by sparingly middle-class citizens due
to their inexpensiveness, mileage, street conditions, and less demanding mobility. Motorcycle acquires the
automobile market above 75% virtually of the total vehicle sales in the Asian countries. The Engine is
the heart of automobiles and may get a complaint if the rider doesn’t make continuous checking of the
engine and other particles. Viewing from the side of engine complaints, the sound of the engine would
provide major information about the engine problem [1]. Vehicles of a particular type, in various working
environments, produce different sound patterns. Each sound pattern is regarded as an aural signature.
Sounds of moving vehicles afford hints of their behaviors such as possible faults make and concerts of
subsystems. In such circumstances, stalking of faults manually befits difficult and automatic acoustic
investigation assists easy monitoring of assured conditions of the vehicles and future significances [2].
The problematic sound might be produced due to the hydraulic tap fit failures, float needle problem, high
acceleration problem, air screw problem, alteration of silencer, air filter problem, etc. Due to the rapid
development of transportation technology, fault detection and diagnostics in the motorcycles based on the

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Sound & Vibration
DOI:10.32604/sv.2020.08573

echT PressScience

http://dx.doi.org/10.32604/sv.2020.08573


audio signatures is one of the major issues in the day to day life. Fault diagnostic can be done once the fault is
detected properly.

Anami et al. [3] employed an acoustic signal-based recognition technique for the detection of faults in
motorcycles using time domain-based features based and ANN classifiers. But the training time required for
such type of classifier was found to be more. Paulraj et al. [4] adopted the autoregressive modeling algorithm
for extracting features from the vehicle sound signals. But the authors focused only on finding the distance
between the vehicles and the type of moving vehicle. Pan et al. [5] introduced a fault diagnosis method using
the combination of entropy and mutual information as features derived from the vibration signals. But all the
time domain-based features do not provide proper information, because most of the data might be embedded
in the frequency content of the signal. For feature extraction, frequency domain-based signal processing
techniques such as Discrete Fourier Transform (DFT) and short Time Fourier Transform (STFT) is used
for detecting faults in the automobiles [6]. Anami et al. [7] adopted spectral based techniques by
exploiting the variations in spectral behavior together with the chain code of the pseudo spectrum of the
sound signal. Zhou et al. [8] adopted Fourier Transform based Mel-Frequency Cepstral Coefficients
(MFCC) for recognizing the faults. Since the audio signals are non-stationary in nature, the Fourier
transform based methods do not provide appropriate results because of their fixed window size. However,
DFT and STFT have been realistic only to stationary signals. The wavelet Transform (WT) is localized in
both time and frequency domain whereas the Fourier Transform (FT) is localized only in the frequency
domain. Generally, by using the Wavelet Transform the frequency components can be separated based on
the number of levels. Then number of sub bands is directly proportional to the number of levels of
decomposition. In the wavelet Transform, various frequency components can be separated and stored and
further processed for the classification purpose. Wavelet domain with various sub bands can produce
detailed frequency information when compared to the Fourier Transform based analysis. Moreover,
Wavelet Transform is well suited for the analysis of non-stationary signals, whereas, Fourier Transform is
suitable only for the analysis of stationary signals. Since most of the signals such as speech, sound, music
biomedical signals etc. are non-stationary in nature, WT based methods are used for the analysis of such
type of signals. Furthermore, the local behavior of the signal can be studied well using Wavelet
Transform when compared to Fourier Transform [10].

Wavelet Transform (WT) with variable window size is used for obtaining features from the non-
stationary audio signals. Because of their inherent multi-resolution nature, wavelet coding schemes are
especially suitable for applications where scalability and tolerable degradation are important. Wavelet
Transform decomposes the signal into a set of basic functions [9]. These basis functions are called
wavelets. Wavelets are obtained from a single prototype wavelet called mother wavelet by dilations and
shifting. WT is computed separately for different segments of the time domain signal at different
frequencies. But in WT based methods, only low frequency components called approximations are
considered for analysis. This may cause problems, since important information may be located in the
high frequency components. The aforementioned problem can be overcome by the application of Wavelet
Packet Transform (WPT), in which the signal under consideration is divided into both low frequency
components called approximations and high frequency components called details and both are considered
for analysis. Wang et al. [10] employed the Wavelet Packet Transform (WPT) based approach in which
distribution of energies in the first five sub bands of wavelet packet decomposition levels are used as
features. A two stage Artificial Neural Network (ANN) classifier is deployed for the recognition of faults.
But the computation time required was more and the classification rate obtained was less. Berredjem
et al. [11] used wavelet packet coefficients to extract features from faulty bearings. Huseyin et al. [12]
adopted wavelet packet analysis to extract features from the sound signals recorded from the cars and
used multilayer perceptron classifiers for classification. Despite the advantages of the feature sets in all
the three domains, the classification accuracy attained was still less, which can be further improved by
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using the combination of feature sets in the three domains. This work mainly focuses on the application of
hybrid feature sets.

Classification is one of the major tasks in fault identification in the vehicles. Many of the authors
suggested Feed Forward Neural Network (FFNN) classifiers. Nevertheless, such type of classifiers
produced less classification rate and Mean Square Error (MSE). ELM is a comparatively novel learning
technique used for fault classification. Certainly, ELM models are highly adaptable and are much faster to
train than standard neural network models. The main idea behind ELM is the projection of the original
input into a high dimensional feature space. The uniqueness is that this new space is entirely fixed before
observing the data. Thus, the actual learning consists of a simple linear regression that can be calculated
proficiently in closed form. In this paper, the classification of faults in motorcycles based on acoustic
signals using hybrid feature sets and ELM has been addressed. The rest of the paper is organized as
follows: Section 2 discusses the proposed methodology. Feature extractions in three domains are
discussed in Section 3. Results and discussions are discussed in Section 4 followed by conclusion Section 5.

2 Proposed Methodology

The objective of this study is to classify different faults in motorcycles based on the sound signals. The
sound signals generated by the vehicles in practice are in the time domain. But most distinguished
information may be hidden in the frequency content of the signal. The proposed methodology for fault
detection incorporates the advantages of both times, frequency and wavelet domain-based features. Fig. 1
illustrates the block diagram of the proposed framework. The important stages include signal
preprocessing, feature extraction and classification.

Initially, the signals undergo preprocessing which includes low pass filtering and normalization. Low
pass filter is used for limiting the signal values below a predefined level and normalization is done for
bringing all the signal values to an offset value. The appropriate features are extracted from the
preprocessed signal. The feature vectors reflect the statistical characteristics of the signal in time,
frequency and wavelet domains. The Extreme Learning Machine (ELM) is used for classifying the faults.
The classification performance is analyzed by using a different combination of feature sets. The
forthcoming sections describe the detailed description of each stage.

3 Feature Extraction

The extraction of features from input signals is vital to resolve the accuracy of classification. The usage
of all coefficients of the input signal into the classifier may increase the computational load and decrease the
classification rate. Thus, it is necessary to reduce the size of the input signal by extracting the relevant
characteristics of the signal.

3.1 Time Domain-Based Features
The time-domain features give the basic information of data that is stored in a one-dimensional format

[13]. The important statistical features extracted from the audio signals are explained below:

(a) Mean (M):Mean is the arithmetic average of the signal x(n) and is computed by adding all the values
in the signal and dividing it by the total number of values in the signal.

M ¼
P

xðnÞ
n

(1)

where n is the number of samples.

(b) Variance (V): Variance of a signal uses the power of the signal as a feature. Generally, the variance is
the mean value of the square of the deviation of that variable. However, the mean of the signal is close to zero
[18].
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V ¼
P

x nð Þ � x nð Þ
���

���
2

n� 1
(2)

The variance represents the power of the variation of the standard deviation from the mean.

(c) Kurtosis (K): Kurtosis is a statistical measure that describes how profoundly the tails of distribution
vary from the tails of a normal distribution. Fig. 2 shows the curves for Normal distribution and kurtosis.

The kurtosis of a distribution is defined as

K ¼ E x nð Þ � lð Þ4
r4

(3)

where μ is the mean of x(n), σ is the standard deviation of x(n), and E(n) represents the expected value of the
quantity n.
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Figure 1: Acoustic signal-based fault classification system
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(d) Entropy (U): The average rate at which information is produced by a stochastic source of data is
called Entropy [14]. Entropy related with each promising data value is the negative logarithm of the
probability mass function for the value:

U ¼ �
X

p: � log 2 pð Þð Þ (4)

where p contains the normalized sample number counts.

There are some features that describe the information about the structure of the envelope of the signal.
They are zero Crossing (Z) and waveform length(L).

(e) Zero-Crossing (Z): A zero-crossing is a point where the sign of a function changes (e.g., from
positive to negative), represented by an intercept of the axis (zero value) in the graph of the function.
Thus, the zero-crossing rate is the rate of sign-changes along with a signal, i.e., the rate at which the
signal changes from positive to negative or vice–versa [15].

Z ¼ 1

2 M � 1ð Þ
XM
m¼1

sign x mð Þð Þ � sign x m� 1ð Þð Þj j (5)

M is the total number of samples in a processing window. x(m) is the value of the mth sample.

(f) Waveform Length (L): It is the cumulative length of the waveform over the segment. The resultant
values indicate a measure of waveform amplitude, frequency, and duration all within a single parameter [12].

L ¼
XN�1

i¼1

xiþ1 � xij j (6)

where xi is the value of each part of the segment k, and N is the length of the segment N.

3.2 Frequencydomain Based Features
The property of the signal can also be described from the frequency content of the signal. The visual

representation of the spectrum of frequencies of the signal can be analyzed from the audio spectrogram.
Spectrograms are occasionally called as sonographs [16]. The estimate of the spectrogram for the
particular fault is shown in Fig. 3. The important features extracted from the spectrogram are Mean
frequency and Median frequency

(a) Mean Frequency (C): The mean frequency of an audio spectrum is calculated as the sum of the
product of the audio spectrogram intensity (in dB) and the frequency divided by the total sum of audio
spectrogram intensity. It can be expressed as follows:

Figure 2: Normal distribution and kurtosis
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C ¼
Pn

i¼0 Ii:fiPn
i¼0 Ii

(7)

n = number of frequency bins in the audio spectrum

fi = frequency of audio spectrum at bin i of n

Ii = Intensity (dB scale) of the audio spectrum at bin i of n

(b) Median Frequency (N): It is a frequency at which the audio spectrum is divided into two regions with
an equal integrated power [19]. It can be expressed as

XM
j¼1

Pj ¼
XM

j¼MDF

Pj ¼ 1

2

XM
j¼1

Pj (8)

Figures 4a and 4b show the Mean frequency and median frequency estimates of the signal.

3.3 Wavelet Packet Transform (WPT)
Wavelet Packet Transform provides a multi-resolution and sparse representation of the audio signal. The

wavelet packets are more sensitive to small changes in the audio signal. In the DWT, each level of
decomposition is evaluated by passing only the proceeding wavelet approximation coefficients through
discrete-time low and high pass quadrature mirror filters. Nevertheless, in the wavelet packet
decomposition, both the detail and approximation coefficients are decomposed for creating the full binary
tree. For n levels of decomposition, 2n sets of coefficients are produced in WPT [17]. The energy values
distributed in the approximations and detailed coefficients of the wavelet packet sub bands are revealed as
features. Fig. 5 shows the Wavelet packet decomposition structure.

Wavelet packets are precise linear combinations of wavelets. They form bases that preserve many
smoothness, and localization properties of the orthogonality, of their parent wavelets [18]. The packet is
given by the following equation

Figure 3: Spectrogram of the audio signal for a particular fault
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U jð Þ
2n tð Þ ¼

ffiffiffi
2

p X
k
h kð ÞU jð Þ

n 2t � kð Þ (9)

U jð Þ
2nþ1 tð Þ ¼

ffiffiffi
2

p X
k
g kð ÞU jð Þ

n 2t � kð Þ (10)

where n ¼ 0; 1; 2;………:: and k ¼ 0; 1; 2;………::;m

The scaling function is fðtÞ ¼ uð0Þ0 ðtÞ and the wavelet function is �ðtÞ ¼ uð0Þ1 ðtÞ

3.4 Hybrid Feature Sets
The feature combinations in various domains (time, frequency and wavelet) have been introduced which

make use of the combined characteristics of all the feature sets. Different combinations of feature sets are
given below. Here F4, F5, F6 and F7 represent a hybrid set of features. The feature vectors are

Figure 4: (a) Mean Frequency estimate (b) Median frequency estimate

Figure 5: Wavelet packet decomposition structure for 3 levels
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F1 ¼ ½M ;V ;K;U ; Z; L�
F2 ¼ ½C;N �

F3 ¼ ½E1;E2;E3;E4;E5;E6;E7;E8�

F4 ¼ M ;V ;K;U ; Z; L;C;N½ �

F5 ¼ C;N :E1;E2;E3;E4;E5;E6;E7;E8½ �

F6 ¼ M ;V ;K;U ; Z; L;E1;E2;E3;E4;E5;E6;E7;E8½ �

F7 ¼ M ;V ;K;U ; Z; L;C;N ;E1;E2;E3;E4;E5;E6;E7;E8½ �

Algorithm 1 briefs the process of feature extraction

4 Extreme Learning Machine Based Classifier

ELM is the single hidden layer Feed Forward Neural network (FFNN) used for a broad range of non-
linear applications. The ELM structure comprising of three layers (input, hidden, output) is shown in Fig. 6.
In this structure, the weights and biases of the input layer are arbitrary while only the outputs are calculated
using the ELM algorithm. The learning time required for ELM is extremely less. Furthermore, the ELM
structure has precise generalization aptitude compared to the FFNN based conventional learning
algorithm [19]. AN ELM is a model of the form

f ðxÞ ¼
XL
i¼1

hiðxÞbi ¼ hT ðxÞb (11)

where hðxÞ ¼ ½h1ðxÞ;……:hLðxÞ�T is referred to as an ELM feature vector, and b denotes the vector of
expansion coefficients. Eq. (11) represents a network with two layers, where the input is projected first
into a Mdimensional space, in which the linear combination is accomplished.

The basic ELM frame consists of M number of hidden nodes and operates with g(x) activation function.
The other important characteristics of ELM are the randomly chosen input weights and hidden unit biases

Algorithm 1: Feature extraction

Input: Load the input audio signal

Output: Total feature set to be classified

Feature Extraction:

1: for i= 1 to N do

2: Calculate the feature sets {F1}, {F2}, {F3} using equations

3: Form the hybrid feature sets {F4, F5, F6, F7}

5: end

6: Compose the total feature vector

64 SV, 2020, vol.54, no.1



[20, 21]. Furthermore, the weights and biases are adjusted and the network is trained by finding the least
square solutions which analytically determine output weights. The hidden layer parameters are related by
the following equation.

Hb ¼ T; (12)

g w1 � X1 þ b1ð Þ � � � g w~
N
� X1 þ b~

N

� �

..

. � � � ..
.

g wN � XN þ bNð Þ � � � g w~
N
� XN þ b~

N

� �

2
6664

3
7775
N�~

N

(13)

b ¼
bT
1

..

.

bT
~
N

2
664

3
775

~
N�M

And T ¼
tT1
..
.

tt~
N

2
664

3
775
N�M

(14)

~
N = number of Hidden Units, N = number of observations

The hidden layer parameters are randomly selected, before giving the training data [22]. The ELM not
only achieves minimum training error but also the smallest norm of the output weights. Tab. 1 shows the
parameters used for ELM Training.

Figure 6: Structure of ELM

Table 1: ELM training parameters

Parameter Specification

ELM Type ELM Classification

Kernel Type Radial basis function kernel

Wavelet Feature 1 × 16384 samples

Time-domain Feature 1 × 43 samples

Frequency Domain Feature 1 × 2 samples

Regularization coefficient 1
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5 Result and Discussion

5.1 Acquisition of Sound Samples
The different sound signals of motorcycles (Royal Enfield Bullet) are recorded using the digital voice

recorder, under the supervision of experienced mechanics. Acoustic features are acquired from motor
cycle engine with single cylinder, 346cc, air cooled petrol engine, four stroke, maximum torque of 28Nm
@4000 and 5 speed manual gear box. The signals are sampled with the frequency 44.1 kHz. The
sampled signals are further low pass filtered and normalized. The database consists of a total of 4500
samples which includes 500 samples of healthy motorcycles and 4000 samples of faulty motorcycles are
show in Tab. 2. The faulty motorcycles produce problematic sounds like an air filter, air screw problem,
air silencer; float needle problem, high acceleration problem hydraulic tap pit failure and pushrod problem.

(a) Alter silencer problem

There may be sparks firing in the silencers. This ensures when the exhaust/silencer is tampered to
achieve better performance. The inner circumference of the silencer would be surfaced with exhaust
residue, mostly unburnt fuel which is pushed from the cylinder. And this unburnt fuel is sparked by the
heat exhaust fumes along with the silencer and it appears as sparks and sounds like gunfire. Fig. 7a
shows the air silencer and the generated sound signal due to air silencer problem.

(b) Air filter problem

An air filter is a pleated multi-layered, oil impregnated mesh prepared from surgical cotton or other
fabric. It is used for cleaning air going to the intake system of the engine, thereby reducing its turbulence,
while limiting the foreign particles in that air. The motorcycle with a problem in the air filter produces a

Table 2: Experimental data for ELM training and testing

S. No. Type Sample Size ELM Training ELM Testing

1 Motorcycle in good condition 500 370 130

2 Air filter problem 570 425 145

3 Air screw problem 570 425 145

4 Alter silencer problem 580 435 145

5 High Acceleration problem 570 425 145

6 Float needle problem 570 425 145

7 Hydraulic tap pit problem 570 425 145

8 Push rod problem 570 425 145

Figure 7a: Alter silencer and the generated sound signal due to alter silencer problem
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different sound. i.e., a high flow air filter allows more air than a normal air filter. Fig. 7b shows the air filter
and the generated sound signal due to air filter problem

(c) Pushrod problem

A bad push rod (usually this means it's bent) should produce unwanted sound. Fig. 7c shows Pushrod
and the generated sound signal due to pushrod problem

(d) Hydraulic tappet

Due to the damaged hydraulic tappets, tappet noise should be produced. When dirt pushes inside the
tappet cylinder its hydraulic property is lost and thus resulting in some clearance with the pushrods. As a
consequence, the unwanted sound might be produced. Fig. 7d shows Hydraulic tappet and the generated
sound signal due to Hydraulic tappet problem

Figure 7b: Air filter and the generated sound signal due to air filter problem

Figure 7c: Pushrod and the generated sound signal due to pushrod problem

Figure 7d: Hydraulic tappet and the generated sound signal due to Hydraulic tappet problem
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(e) Airscrew problem

When the carburetor is out of adjustment, the air/fuel screw and the balance between two or more
carburetors need to be adjusted. The incorrect adjustment can produce unwanted sounds.

(f) Float needle problem

The floats in a carburetor are typically made from either brass or plastic. Most of the floats in small
engines do not have a metal tang to adjust them. The problems in the float needle produce different sounds.

(g) High acceleration problem:

Increasing the speed of the accelerator produces different sounds. This is called a high acceleration
problem. Figs. 7g and 7h show the generated sound signal due to the bike with normal speed and high speed.

The pertinent features are extracted from the recorded sound signals after preprocessing. The features are
further normalized and randomized. 75% of the dataset is used for training and the remaining 25% are used
for testing.

These features are given as input to the FFNN, ELM classifiers. In the hidden layer, the hyperbolic
tangent sigmoidal activation function is used and in the output layer, the logistic sigmoidal activation
function is used. The total number of output neurons is fixed as 8 and the number of the epoch is fixed as

Figure 7e: Airscrew and the generated sound signal due to air screw problem

Figure 7f: Float needle and the generated sound signal due to float needle problem

Figure 7g: Sound signal due to high acceleration
problem

Figure 7: Shows the sample waveform for the faults which are mentioned above

Figure 7h: Sound signal due to the bike with good
condition (normal Speed)
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5000. The output of the ELM designates whether the input feature vector matches to the healthy or faulty
motorcycle. In our experiments, numbers of hidden neurons are 225 and 20 for ELM and FFNN respectively.

The different classes are given below:

C1 – Motorcycle in good condition

C2 – Air filter problem

C3 – Air screw problem

C4 – Alter silencer problem

C5 – High acceleration problem

C6 – Float needle problem

C7 – Hydraulic tap pit problem

C8 – Push rod problem

The performance of the network is tested using the test datasets and validated by calculating different
performance metrics. A 10-fold cross-validation algorithm is adopted to get enhanced test performance.

5.2 Performance Assessment
The performance of the proposed methodology is analyzed by evaluating different performance metrics

given in Eqs. (18) to (20).

Accuracy ¼ tp þ tn
tp þ fp þ tn þ fn

(18)

Sensitivity ¼ tp
tp þ fn

(19)

specificity ¼ tn
tn þ fp

(20)

Precision ¼ tp
tn þ fp

(21)

FalseMeasure ¼ fp
fp þ tn

(22)

F1� score ¼ 2tp
2tp þ fp þ fn

(23)

where tp -True-positive samples,

tn - True-negative samples

fp - False-positive samples

fn - False-negative samples

Tables 3 and 4 show the classification accuracy using ELM classifier for the individual feature set (F1, F2
and F3). The diagonal elements of the Table correspond to the correctly classified and the off-diagonal
elements correspond to misclassified in percentage. It is observed that, for the time domain-based feature

SV, 2020, vol.54, no.1 69



set, the average classification rate achieved is 83.4% and for the frequency domain, 85.5% is attained, i.e.,
only 2% improvement is accomplished.

Similarly, the classification rate for the wavelet domain-based features is found out and the results are
shown in Tab. 4.

The features F3 ¼ ½E1;E2;E3;E4;E5;E6;E7;E8� obtained from the energy distribution of the detailed
and approximation coefficients of wavelet packet decomposition are used as input to the classifier.

From Tab. 4, it is evident that the classification accuracy obtained is approximately 87.62%. ELM and
FFNN have the same form as the SLFN structure. Hence, the proposed method is compared with the classic
FFNN classifier. Tab. 5 summarizes the comparison result of various performance metrics for both the
classifiers.

Table 5 clearly shows that the performance of the ELM classifier gives better results when compared to
FFNN classifier. Additionally, the WPT based feature sets also provide higher performance values.

Table 3: Classification accuracy for F1 and F2 feature set and ELM

Time-domain features (F1) Frequency domain-based feature set (F2)

C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C7 C8

C1 91 1 1 2 0 1 2 1 92 1 1 0 3 1 1 1

C2 3 77 4 1 3 5 4 3 3 83 2 3 2 4 2 1

C3 0 1 92 2 1 2 1 1 2 1 92 0 1 0 3 1

C4 1 2 3 86 1 2 2 3 1 2 2 90 1 1 0 3

C5 3 6 4 4 68 5 4 6 1 2 2 3 86 2 1 3

C6 2 1 1 2 0 91 2 1 5 1 3 4 2 78 4 3

C7 5 0 4 1 4 1 79 6 0 4 2 2 3 4 83 2

C8 4 0 2 3 2 4 2 83 1 1 2 5 1 4 3 82

Table 4: Classification accuracy for F3 feature set and ELM

Wavelet domain features (F3)

C1 C2 C3 C4 C5 C6 C7 C8

C1 93 1 1 2 0 1 0 2

C2 1 79 4 1 3 5 4 3

C3 3 0 86 2 0 2 4 3

C4 1 3 4 82 1 3 2 4

C5 1 3 0 2 89 2 1 2

C6 0 2 1 2 0 91 3 1

C7 2 2 3 1 1 1 88 2

C8 1 1 2 0 1 0 2 93
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Hybrid feature sets: The performance of the classifier can be further enhanced by using the
combination of feature sets (hybrid features), i.e., fusing the features in the three domains. The
classification accuracy for the hybrid feature sets (F4, F5, F6 and F7) is shown in Tab. 6.

Table 5: Performance results for different feature sets

Classifier Accuracy (%) Specificity Sensitivity Precision False Measure F1-Score Time (s)

Training Testing

Time-domain features (F1)

ELM 83.37 0.8921 0.9012 0.9521 0.12 0.85 0.3982 0.4731

FFNN 82.4 0.8723 0.8891 0.942 0.16 0.84 0.5012 0.5029

Frequency domain-based feature set (F2)

ELM 85.75 0.9045 0.9126 0.945 0.36 0.91 0.3366 0.4067

FFNN 83.12 0.9144 0.9258 0.932 0.23 0.89 0.4203 0.6755

Wavelet packet-based feature set(F3)

ELM 87.62 0.9166 0.9216 0.9321 0.132 0.89 0.2934 0.3210

FFNN 86.23 0.9275 0.9311 0.9213 0.235 0.87 0.3012 0.3211

Table 6: Classification accuracy for hybrid feature sets and ELM

Hybrid Feature set (F4) Hybrid Feature set (F5)

C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C7 C8

C1 92 1 1 2 0 1 2 1 95 1 1 0 1 1 0 1

C2 1 89 2 1 3 1 2 1 1 95 0 0 3 0 0 1

C3 1 1 94 0 1 0 2 1 1 1 93 0 1 0 0 0

C4 1 0 2 93 1 1 0 2 1 1 0 96 1 1 0 0

C5 1 1 0 0 92 2 1 3 1 0 2 0 94 2 1 0

C6 1 1 1 1 1 92 2 1 0 1 1 0 1 96 0 1

C7 2 1 2 1 1 1 90 2 0 0 1 1 1 0 97 0

C8 1 1 2 1 1 0 0 94 0 1 2 1 1 0 0 95

Hybrid Feature set (F6) Hybrid Feature set (F7)

C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C7 C8

C1 97 1 1 0 0 1 0 0 98 0 0 0 0 1 0 1

C2 1 96 1 0 2 0 0 1 0 99 1 0 0 0 0 0

C3 0 0 98 0 0 0 1 1 0 1 99 0 0 0 0 1

C4 1 0 0 97 1 1 0 0 1 1 0 98 0 0 0 0

C5 1 0 0 1 98 0 0 0 1 0 0 0 97 2 0 0

C6 1 0 1 1 0 96 0 1 0 0 1 0 0 99 1 1

C7 0 1 1 0 1 1 96 0 0 0 0 1 0 0 99 0

C8 1 1 2 0 0 0 2 94 0 0 1 0 0 0 1 98
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The average classification accuracy for F4 feature set is 94.3%. For feature set F5, 95.34% is attained. For
F6, 96.5% is achieved. For F7 feature set, 98.5% is attained. To validate the performance of the ELM
classifier, the proposed hybrid feature extraction technique with FFNN classifier is also investigated and
the results are shown in Tab. 7. Thus, it is proved that the increase in classification accuracy is attained
by the application of a hybrid feature set.

A classification rate of 98.5% was achieved for the hybrid feature set. Fig. 8 shows the performance of
the ELM classifier with hybrid dataset for variable number of hidden nodes.

It is found that the best performance is achieved by increasing the number of a hidden node with a
maximum of 100.

Thus, in the above discussions and from the comparison results, it is concluded that the combination of
the features sets in all three domains, i.e., time, frequency and wavelet domains provide better performance.

Table 7: Performance results using hybrid feature sets

Classifier Accuracy (%) Specificity Sensitivity Time (s)

Training Testing

Hybrid feature set (F4)

ELM 94.3 0.8921 0.9012 0.3982 0.4731

FFNN 82.4 0.8723 0.8891 0.5012 0.5029

Hybrid feature set (F5)

ELM 95.34 0.9045 0.9126 0.3366 0.4067

FFNN 88.12 0.9144 0.9258 0.4203 0.6755

Hybrid feature set (F6)

ELM 96.51 0.9166 0.9216 0.2934 0.3210

FFNN 89.23 0.9275 0.9311 0.3012 0.3211

Hybrid feature set (F7)

ELM 98.51 0.9312 0.9291 0.1037 0.2609

FFNN 91.54 0.9293 0.9367 0.2082 0.2207

Classification performances vs number of hidden nodes
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Figure 8: Performance of the neural network training
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6 Conclusion

Fault classification using ELM classifier is proposed for the recognition of various faults in the
motorcycle. Features from time, frequency and wavelet domains are extracted from the sound signals
captured generated by the motorcycles. These feature sets give important attributes of the signal. The
high performance is obtained by the application of ELM classifier, because of its unique characteristics.
The proposed methodology is tested in the real environment by collecting the sound signals which is
recorded from the motorcycles with different faults. Thus, the ELM classifier with hybrid feature sets can
be used for predicting, identifying and classifying various faults in the motor cycles at the early stage. By
identifying the faults automatically, we can avoid situations such as engine failure, serious accidents and
other components from getting damaged. Consequently, the faulty components can be replaced or get
repaired at the early stages, thereby improving the life time of other engine components. For example, if
the problem in the air filter is automatically identified first, it can be replaced immediately and by
replacing the faulty component, the mileage of the motor cycle can be improved very much. The
experimental results and discussions clearly demonstrate that the proposed system provides better
performance when compared to the conventional classification systems.
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