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Abstract: The nonlinear activation functions in the deep CNN (Convolutional Neural 

Network) based on fluid dynamics are presented. We propose two types of activation 

functions by applying the so-called parametric softsign to the negative region. We use 

significantly the well-known TensorFlow as the deep learning framework. The CNN 

architecture consists of three convolutional layers with the max-pooling and one fully-

connected softmax layer. The CNN approaches are applied to three benchmark datasets, 

namely, MNIST, CIFAR-10, and CIFAR-100. Numerical results demonstrate the 

workability and the validity of the present approach through comparison with other 

numerical performances. 
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1 Introduction 

The state-of-the-art on the deep learning in artificial intelligence is nowadays 

indispensable in engineering and science fields, such as robotics, automotive engineering, 

web-informatics, bio-informatics, and so on. There are recently some neural networks in 

the deep learning framework [LeCun, Bengio and Hinton (2015)], i.e., CNN 

(Convolutional Neural Networks) to recognize object images [Fukushima and Miyake 

(1982); LeCun, Bottou, Bengio et al. (1998); Krizhevsky, Sutskever and Hinton (2012)], 

RNN (Recurrent Neural Networks) to process time-series data [Rumelhart, Hinton and 

Williams (1986)], and so forth. 

The appropriate choice of the activation functions for neural networks is a key factor in 

the deep learning simulations. Heretofore, there have been significantly proposed various 

activation functions in the CNN/RNN-frameworks. The standard activation function is 

the rectified linear unit (ReLU) introduced firstly by Hahnloser et al. [Hahnloser, 

Sarpeshkar, Mahowald et al. (2000)] in the theory of symmetric networks with 

rectification (It was called a rectification nonlinearity or ramp function [Cho and Saul 

(2009)]). Nair et al. [Nair and Hinton (2010)] have successfully performed by applying 

the ReLU activation functions based on the restricted Boltzmann machines to the deep 
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neural networks. The activation function of ReLU has been widely used by many 

researchers for visual recognition tasks [Glorot, Bordes and Bengio (2011); Krizhevsky, 

Sutskever and Hinton (2012); Srivastava, Hinton, Krizhevsky et al. (2014); LeCun, 

Bengio and Hinton (2015); Kuo (2016); Agarap (2018)]. The ReLU activation function 

leads to better recognition performances than conventional sigmoid/tanh units involving 

the vanishing gradient problem, while has parameter-free, and zero-gradients in the 

negative part. 

In order to provide meaningful such negative values, there have been presented some 

activation functions, such as leaky rectified linear unit (LReLU) [Maas, Hannun and Ng 

(2013)], parametric rectified linear unit (PReLU) [He, Zhang, Ren et al. (2015)], 

exponential linear unit (ELU) [Clevert, Unterthiner and Hochreiter (2016)], and so forth. 

The LReLU has been slightly improved for ReLU by replacing the negative part of the 

ReLU with a linear function involving small constant gradient. The PReLU has been 

generalized by adaptively learning the parameters introduced in the negative part of 

LReLU. They have improved significantly the learning performances on large image 

datasets called ImageNet. Clevert et al. [Clevert, Unterthiner and Hochreiter (2016)] have 

proposed an activation function, ELU, and shown applicability and validity for various 

benchmark datasets. As another approach, Goodfellow et al. [Goodfellow, Warde-Farley, 

Mirza et al. (2013)] have also proposed an activation function called maxout that has 

features both for optimization and model averaging with dropout [Hinton, Srivastava, 

Krizhevsky et al. (2012)]. 

In our previous work, we have presented newly the characteristic function (i.e., activation 

function) as an optimum function which is derived on the advection-diffusion system in 

fluid dynamics framework [Kakuda (2002)]. The purpose of this paper is to propose the 

activation functions based on the concept of fluid dynamics framework. We present two 

types of activation functions by applying the so-called parametric softsign [Glorot and 

Bengio (2010)] to the negative part of ReLU. By using the well-known TensorFlow 

[Abadi, Agarwal, Barham et al. (2015)] as the deep learning framework, we utilize the 

CNN architecture that consists of three convolutional layers with the max-pooling and 

one fully-connected softmax layer. The workability and the validity of the present 

approach are demonstrated on three benchmark datasets, namely, MNIST [LeCun, Bottou, 

Bengio et al. (1998)], CIFAR-10 and CIFAR-100 [Krizhevsky and Hinton (2009)], 

through comparison with other numerical performances. 

2 Construction of nonlinear activation functions 

2.1 Neural network model 

In the field of neural networks, the input-output (I/O) relationship known as the back-

propagation is represented by inputs 𝑈𝑗, output 𝑉𝑗 and the characteristic function h (i.e., 

activation function) as follows:  

𝑉𝑗 = ℎ(𝑈𝑗)                         (1) 

𝑈𝑗 = ∑ 𝑆𝑖𝑗𝑤𝑖𝑗 + 𝐼𝑗 − 𝑇𝑗
𝑛
𝑖=1                      (2) 

where 𝑆𝑖𝑗 are j-th input values as shown in Fig. 1, 𝑤𝑖𝑗 are the connection weights, 𝐼𝑗 is the 

bias value, and 𝑇𝑗 denotes threshold. 
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The sigmoid function (see Fig. 2(a)) has been mainly used as the following continuous 

function. 

ℎ(𝑣) =
1

2
{1 + 𝑡𝑎𝑛ℎ (

𝑣

2𝑘
)}                   (3) 

where k is ad hoc parameters. 

 

Figure 1: Neuron model 

2.2 Nonlinear activation functions based on fluid dynamics 

Heretofore, we have presented the following activation function as an optimum function 

which is derived on the steady advection-diffusion system in fluid dynamics framework 

[Kakuda (2002)] (see Eq. (25) in next Subsection 2.3). 

ℎ(𝑣) =
1

2
{1 + 𝑔(𝑣)}        (4) 

𝑔(𝑣) = 𝑐𝑜𝑡ℎ(𝛾) −
1

𝛾
           (5) 

where 𝛾 = 𝑣 2𝑘 > 0⁄ . 

Mizukami [Mizukami (1985)] has presented significantly the following approximation 

function instead of Eq. (5) involving the singularity. 

�̃�(𝑣) = 1 −
1

𝛾+1
    (6) 

Therefore, we obtain the functions by substituting Eq. (6) into Eq. (4) and considering the 

sign of v as follows (see Fig. 2(b)): 

ℎ(𝑣) = {

1

2
(2 −

1

1+|𝛾|
)       (𝛾 ≥ 0)

1

2
(

1

1+|𝛾|
)               (𝛾 < 0)

   (7) 

In this stage, we adjust the functions, h(v), so that 𝑔(0) = 0. 

𝑔(𝑣) = �̂�{ℎ(𝑣) − ℎ(0)},   ℎ(0) =
1

2
      (8) 

As a result, we obtain the following form by taking into account that �̂� = 2𝜅. 



 

 

4   Copyright © 2019 Tech Science Press                  CMES, vol.118, no.1, pp.1-14, 2019 

𝑔(𝑣) =
𝜅𝑣

𝜅+|𝑣|
    (9) 

in which 𝜅 = 2𝑘. Eq. (9) represents the softsign function with 𝜅 = 1 [Glorot and Bengio 

(2010)]. The so-called parametric softsign is equivalent to the ReLU [Nair and Hinton 

(2010)] under the conditions, such as 𝜅 = +∞ for 𝑣 ≥ 0 and 𝜅 = 0 for 𝑣 < 0. 

In order to avoid zero-gradients in the negative part of v, by applying Eq. (9) to the 

negative region, we propose two types of activation function involving parameter, a, as 

follows (see Fig. 3): 

     

(a) Sigmoid functions with k                           (b) Characteristic functions of Eq. (7) 

Figure 2: Characteristic functions 

Rational-type activation function and its derivatives 

𝑔(𝑣) = {
𝑣                   (𝑣 ≥ 0)

𝑎𝑣

𝑎+|𝑣|
        (𝑣 < 0)

        (10) 

𝜕𝑔(𝑣)

𝜕𝑣
= {

1                       (𝑣 ≥ 0)

(
𝑎

𝑎+|𝑣|
)

2
     (𝑣 < 0)

   ,   
𝜕𝑔(𝑣)

𝜕𝑎
= {

0                      (𝑣 ≥ 0)
𝑣|𝑣|

(𝑎+|𝑣|)2      (𝑣 < 0)
          (11) 

Exponential-type activation function and its derivatives 

𝑔(𝑣) = {
𝑣                     (𝑣 ≥ 0)

𝑒𝑎𝑣

𝑒𝑎+|𝑣|
        (𝑣 < 0)

         (12) 

𝜕𝑔(𝑣)

𝜕𝑣
= {

1                          (𝑣 ≥ 0)

(
𝑒𝑎

𝑒𝑎+|𝑣|
)

2

     (𝑣 < 0)
   ,   

𝜕𝑔(𝑣)

𝜕𝑎
= {

0                        (𝑣 ≥ 0)
𝑒𝑎𝑣|𝑣|

(𝑒𝑎+|𝑣|)2      (𝑣 < 0)
          (13) 

The corresponding derivatives of the activation functions are also shown in Fig. 4. 
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(a) Rational-type activation function          (b) Exponential-type activation function 

Figure 3: Nonlinear activation functions 

      

(a) Rational-type activation function          (b) Exponential-type activation function 

Figure 4: Derivatives of activation functions 

2.3 Steady advection-diffusion equation 

2.3.1 Problem statement 

Let us briefly consider the one-dimensional advection-diffusion equation in spatial 

coordinate, x, given by 

𝑓,𝑥 = 𝑘𝜑,𝑥𝑥       (14) 

with the adequate boundary conditions, where 𝑓 = 𝑢φ, u and k are the given velocity and 

diffusivity, respectively. 

2.3.2 Finite element formulation 

In order to solve the flux, 𝑓 = 𝑢φ, in a stable manner, we shall adopt the Petrov-Galerkin 
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finite element formulation using exponential weighting function [Kakuda and Tosaka 

(1992)]. On the other hand, the conventional Galerkin finite element formulation can be 

applied to solve numerically Eq. (14). 

First of all, we start with the following weighted integral expression in a subdomain Ω𝑖 =
[𝑥𝑖−1, 𝑥𝑖] with respect to weighting function �̃�: 

∫ (𝑓 − 𝑢𝜑)�̃�𝑑𝑥 = 0
Ω𝑖

         (15) 

The weighting function �̃� can be chosen as a general solution which satisfies 

𝑢�̃� + Δ𝑥𝑖𝜎(𝑢)�̃�,𝑥 = 0            (16) 

where Δ𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1, and σ(𝑢) denotes some function described by Yee et al. [Yee, 

Warming and Harten (1985)], which is sometimes referred to as the coefficient of 

numerical viscosity. The solution of Eq. (16) is as follows: 

�̃� = 𝐴𝑒−�̂�𝑥         (17) 

where A is a constant, and �̂� = 𝑢 Δ𝑥𝑖𝜎(𝑢)⁄ . 

By applying the piecewise linear function to the flux f and φ, we obtain the following 

integral form 

∫ 𝑀𝛼𝑁𝛽Ω𝑖
𝑑𝑥𝑓𝛽 − 𝑢 ∫ 𝑀𝛼𝑁𝛽Ω𝑖

𝑑𝑥𝜑𝛽 = 0             (18) 

in which 

𝑀𝛼 = 𝑒−�̂�(𝑥−𝑥𝛼)       (𝛼 = 1, 2)          (19) 

Here, applying an element-wise mass lumping to the first term of the left-hand side of Eq. 

(18), and carrying out exactly those integrals in Eq. (18), we can obtain the following 

numerical fluxes 𝑓𝑖−1/2 and 𝑓𝑖+1/2 in the subdomains Ω𝑖 and Ω𝑖+1, respectively 

𝑓𝑖−1/2 = 𝑓𝑖 +
𝑢

2
[1 + {𝑠𝑔𝑛(𝛾)𝑐𝑜𝑡ℎ|𝛾| −

1

𝛾
}] (𝜑𝑖−1 − 𝜑𝑖)         (20) 

𝑓𝑖+1/2 = 𝑓𝑖 +
𝑢

2
[−1 + {𝑠𝑔𝑛(𝛾)𝑐𝑜𝑡ℎ|𝛾| −

1

𝛾
}] (𝜑𝑖 − 𝜑𝑖+1)         (21) 

where 𝛾 = 𝑢 2𝜎(𝑢)⁄ , and 𝑠𝑔𝑛(𝛾) denotes the signum function. 

Let us next derive the Galerkin finite element model for Eq. (14). The weighted residual 

equation in Ω𝑖 is given as follows: 

\∫ (𝑓,𝑥 − 𝑘𝜑,𝑥𝑥)𝑤𝑑𝑥 = 0
Ω𝑖

          (22) 

In this stage, we assume a uniform mesh Δ𝑥𝑖 = Δ𝑥  for simplicity of the formulation. 

Taking into consideration the continuity of 𝜑,𝑥  at nodal point i, we can obtain the 

following discrete form 

𝑓𝑖−1/2 − 𝑓𝑖+1/2 +
𝑘

Δ𝑥
(𝜑𝑖−1 − 2𝜑𝑖 + 𝜑𝑖+1) = 0         (23) 

Substituting Eq. (20) and Eq. (21) into Eq. (23) and after some manipulations, we obtain 

the following finite difference form 
𝑢

2Δ𝑥
(𝜑𝑖+1 − 𝜑𝑖−1) = (𝑘 + �̃�)

𝜑𝑖−1−2𝜑𝑖+𝜑𝑖+1

Δ𝑥2         (24) 

where for any velocity u 
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�̃� =
|𝑢|Δ𝑥

2
{𝑐𝑜𝑡ℎ|𝛾| −

1

|𝛾|
}         (25) 

Using the element Peclet number 𝑃𝑒(≡ ∆𝑥𝑢/2𝑘)  as 𝛾 , we reduce Eq. (24) to the 

following form 

{𝑠𝑔𝑛(𝑃𝑒) − 𝑐𝑜𝑡ℎ|𝑃𝑒|}𝜑𝑖+1 + 2𝑐𝑜𝑡ℎ|𝑃𝑒|𝜑𝑖 − {𝑠𝑔𝑛(𝑃𝑒) + 𝑐𝑜𝑡ℎ|𝑃𝑒|}𝜑𝑖−1 = 0      (26) 

This equation has the same structure as the SUPG scheme developed by Brooks et al. 

[Brooks and Hughes (1982)], and it leads to nodally exact solutions for all values of 𝑃𝑒 

[Christie, Griffiths, Mitchell et al. (1976)]. 

3 CNN architecture 

We adopt the similar approach as the PReLU [He, Zhang, Ren et al. (2015)] which can be 

trained using back-propagation and optimized simultaneously with other layers. As the 

variables, v and a, in Eq. (10) through Eq. (13), we define 𝑣𝑗 and 𝑎𝑗 with respect to the 

input and the coefficient, respectively, on the j-th channel. The momentum approach 

when updating 𝑎𝑗 is given as follows: 

Δ𝑎𝑗 ≔ 𝜇Δ𝑎𝑗 + 𝜀
𝜕𝐸

𝜕𝑎𝑗
        (27) 

∂𝐸

∂𝑎𝑗
= ∑

𝜕𝐸

𝜕𝑔(𝑣𝑗)𝑣𝑗

𝜕𝑔(𝑣𝑗)

𝜕𝑎𝑗
        (28) 

where E represents the objective function, 𝜇 is the momentum to accelerate learning, 𝜀 is 

the learning rate. The parameters, 𝑎𝑗, are optimally obtained by using back-propagation 

analysis. 

Fig. 5 shows the CNN architecture consisting of three convolutional (i.e., conv) layers 

with some max-pooling and one fully-connected (i.e., fc) softmax layer. 

 

Figure 5: CNN architecture 

4 Numerical experiments 

In this section, we use the well-known TensorFlow [Abadi, Agarwal, Barham et al. 

(2015)] as the deep learning framework, and present numerical performances obtained 

from applications of the above-mentioned CNN approach to three typical datasets, 

namely, MNIST [LeCun, Bottou, Bengio et al. (1998)], CIFAR-10 and CIFAR-100 

[Krizhevsky and Hinton (2009)]. We utilize the Adam [Kingma and Ba (2015)] as the 

learning algorithm for the stochastic gradient-based optimization.  
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The model is previously trained for some epochs on mini-batches of size 100 with the 

learning rate, 𝜀 = 10−3, and the momentum, 𝜇 = 0. The specification of CPU and GPU 

using CUDA is summarized in Tab. 1. 

Table 1: A summary of the specification of CPU and GPU 

CPU 

Cores 

Base Clock 

Cashe Memory 

Intel® CoreTM i7-8700 K 

12 

4.2 GHz 

12 MB 

GPU 

Global Memory 

CUDA core 

GPU Max Clock rate 

GPU Boost Clock rate 

Memory Clock rate 

Memory Bandwidth 

NVIDIA® GeForce GTX 1080 

8 GB 

2560 

1607 MHz 

1733 MHz 

10 Gbps 

320 GB/s 

CUDA Driver Version 9.0 

4.1 MNIST 

Let us first consider the MNIST dataset which consists of 28×28 pixel gray-scale 

handwritten digit images with 50,000 for training and 10,000 for testing images.  

Fig. 6 shows the behaviors of training accuracy and loss (i.e., cross-entropy) obtained by 

using various activation functions for the MNIST. The corresponding validation accuracy 

and loss behaviors are shown in Fig. 7. We can see from Fig. 6 and Fig. 7 that our 

approaches are similar to the ones using other activation functions. Tab. 2 summarizes 

the transitions of the learned parameter, a, at each layer of CNN architecture (see Fig. 5) 

for the MNIST. The validation accuracy rate and loss for the MNIST are given in Tab. 3. 

In this case, the quantitative agreement between our results and other ones appears also 

satisfactory. 

Table 2: Transitions of the learned parameter, a, for the MNIST 

 PReLU 
Present 

Rational-type 

Present 

Exponential-type 

Initial value 

conv1 

conv2 

conv3 

0.25 

0.3629 

0.1410 

0.1241 

1.0 

0.8776 

1.091 

1.054 

0.0 

-0.1513 

0.01067 

0.03090 
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(a) Training accuracy                                 (b) Training loss 

Figure 6: Training accuracy and loss behaviors for the MNIST 

        

(a) Validation accuracy                                 (b) Validation loss 

Figure 7: Validation accuracy and loss behaviors for the MNIST 

Table 3: Accuracy rate and loss for the MNIST 

 ReLU ELU PReLU 
Present 

Rat.-type 

Present 

Exp.-type 

Accuracy [%] 

Loss 

98.92 

0.050503 

98.61 

0.065178 

98.79 

0.054787 

98.77 

0.055806 

98.79 

0.052109 

4.2 CIFAR-10 

As the second benchmark dataset, we consider the CIFAR-10 which consists of 32×32 

color images drawn from 10 classes with 50,000 for training and 10,000 for testing 

images. 

Fig. 8 shows the behaviors of training accuracy and loss (i.e., cross-entropy) obtained by 

using various activation functions for the CIFAR-10. The corresponding validation 

accuracy and loss behaviors are shown in Fig. 9. We can see from Fig. 8 and Fig. 9 that 

our approaches outperform entirely the ones using other activation functions. Tab. 4 

summarizes the transitions of the learned parameter, a, at each layer of CNN architecture 

(see Fig. 5) for the CIFAR-10. The validation accuracy rate and loss for the CIFAR-10 

are given in Tab. 5. For the accuracy rate on the CIFAR-10, we obtain best result of 
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80.76% using the exponential-type activation function. On the other hand, our approaches 

for the loss outperform other ones. 

Table 4: Transitions of the learned parameter, a, for the CIFAR-10 

 PReLU 
Present 

Rational-type 

Present 

Exponential-type 

Initial value 

conv1 

conv2 

conv3 

0.25 

0.05603 

0.02731 

0.03020 

1.0 

0.1178 

0.1032 

0.2062 

0.0 

-2.110 

-2.029 

-1.656 

       
            

(a) Training accuracy                                 (b) Training loss 

Figure 8: Training accuracy and loss behaviors for the CIFAR-10 

       

(a) Validation accuracy                                 (b) Validation loss 

Figure 9: Validation accuracy and loss behaviors for the CIFAR-10 

 

 

 



 

 

Nonlinear Activation Functions in CNN Based on Fluid Dynamics                          11 

Table 5: Accuracy rate and loss for the CIFAR-10 

 ReLU ELU PReLU 
Present 

Rat.-type 

Present 

Exp.-type 

Accuracy [%] 

Loss 

77.68 

0.56802 

80.40 

0.50304 

79.76 

0.55520 

80.23 

0.38574 

80.76 

0.39621 

4.3 CIFAR-100 

As the third benchmark dataset, the CIFAR-100 is the same size and format as the 

CIFAR-10 one, while contains 100 classes for consisting of 20 super-classes with five 

classes each.  

Table 6: Transitions of the learned parameter, a, for the CIFAR-100 

 PReLU 
Present 

Rational-type 

Present 

Exponential-type 

Initial value 

conv1 

conv2 

conv3 

0.25 

0.01511 

0.02066 

0.02695 

1.0 

0.02385 

0.06526 

0.08438 

0.0 

-3.405 

-2.455 

-2.564 

 

       

(a) Training accuracy                                 (b) Training loss 

Figure 10: Training accuracy and loss behaviors for the CIFAR-100 

Table 7: Accuracy rate and loss for the CIFAR-100 

 ReLU ELU PReLU 
Present 

Rat.-type 

Present 

Exp.-type 

Accuracy [%] 

Loss 

54.96 

1.83145 

56.03 

1.71715 

56.56 

1.81471 

56.91 

1.66373 

56.52 

1.55405 
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(a) Validation accuracy                                 (b) Validation loss 

Figure 11: Validation accuracy and loss behaviors for the CIFAR-100 

Fig. 10 shows the behaviors of training accuracy and loss obtained by using various 

activation functions for the CIFAR-100. The corresponding validation accuracy and loss 

behaviors are shown in Fig. 11. We can see from Fig. 10 and Fig. 11 that our approaches 

outperform the ones using other activation functions. Tab. 6 summarizes the transitions of 

the learned parameter, a, at each layer of CNN architecture for the CIFAR-100. The 

validation accuracy rate and loss for the CIFAR-100 are given in Tab. 7. For the accuracy 

rate on the CIFAR-100, we obtain best result of 56.91% using the rational-type activation 

function. On the other hand, our approaches for the loss outperform also other ones. 

5 Conclusions 

We have proposed new activation functions which were based on the steady advection-

diffusion system in fluid dynamics framework. In our formulation, two types of 

activation functions have been reasonably presented by applying the so-called parametric 

softsign to the negative part of ReLU. By using the TensorFlow as the deep learning 

framework, we have utilized the CNN architecture that consists of three convolutional 

layers with some max-pooling and one fully-connected softmax layer. 

The performances of our approaches were carried out on three benchmark datasets, 

namely, MNIST, CIFAR-10 and CIFAR-100, through comparison with the ones using 

other activation functions. The learning performances demonstrated that our approaches 

were capable of recognizing somewhat accurately and in less loss (i.e., cross-entropy) the 

object images in comparison with other ones. 
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