

Copyright © 2019 Tech Science Press CMES, vol.118, no.1, pp.1-14, 2019

CMES. doi:10.31614/cmes.2019.04676 www.techscience.com/cmes

Nonlinear Activation Functions in CNN Based on Fluid Dynamics

and Its Applications

Kazuhiko Kakuda1, *, Tomoyuki Enomoto1 and Shinichiro Miura2

Abstract: The nonlinear activation functions in the deep CNN (Convolutional Neural

Network) based on fluid dynamics are presented. We propose two types of activation

functions by applying the so-called parametric softsign to the negative region. We use

significantly the well-known TensorFlow as the deep learning framework. The CNN

architecture consists of three convolutional layers with the max-pooling and one fully-

connected softmax layer. The CNN approaches are applied to three benchmark datasets,

namely, MNIST, CIFAR-10, and CIFAR-100. Numerical results demonstrate the

workability and the validity of the present approach through comparison with other

numerical performances.

Keywords: Deep learning, CNN, activation function, fluid dynamics, MNIST, CIFAR-

10, CIFAR-100.

1 Introduction

The state-of-the-art on the deep learning in artificial intelligence is nowadays

indispensable in engineering and science fields, such as robotics, automotive engineering,

web-informatics, bio-informatics, and so on. There are recently some neural networks in

the deep learning framework [LeCun, Bengio and Hinton (2015)], i.e., CNN

(Convolutional Neural Networks) to recognize object images [Fukushima and Miyake

(1982); LeCun, Bottou, Bengio et al. (1998); Krizhevsky, Sutskever and Hinton (2012)],

RNN (Recurrent Neural Networks) to process time-series data [Rumelhart, Hinton and

Williams (1986)], and so forth.

The appropriate choice of the activation functions for neural networks is a key factor in

the deep learning simulations. Heretofore, there have been significantly proposed various

activation functions in the CNN/RNN-frameworks. The standard activation function is

the rectified linear unit (ReLU) introduced firstly by Hahnloser et al. [Hahnloser,

Sarpeshkar, Mahowald et al. (2000)] in the theory of symmetric networks with

rectification (It was called a rectification nonlinearity or ramp function [Cho and Saul

(2009)]). Nair et al. [Nair and Hinton (2010)] have successfully performed by applying

the ReLU activation functions based on the restricted Boltzmann machines to the deep

1 Department of Mathematical Information Engineering, College of Industrial Technology, Nihon University,

Chiba 275-8575, Japan.

2 Department of Liberal Arts and Basic Sciences, College of Industrial Technology, Nihon University, Chiba

275-8576, Japan.

* Corresponding Author: Kazuhiko Kakuda. Email: kakuda.kazuhiko@nihon-u.ac.jp.

2 Copyright © 2019 Tech Science Press CMES, vol.118, no.1, pp.1-14, 2019

neural networks. The activation function of ReLU has been widely used by many

researchers for visual recognition tasks [Glorot, Bordes and Bengio (2011); Krizhevsky,

Sutskever and Hinton (2012); Srivastava, Hinton, Krizhevsky et al. (2014); LeCun,

Bengio and Hinton (2015); Kuo (2016); Agarap (2018)]. The ReLU activation function

leads to better recognition performances than conventional sigmoid/tanh units involving

the vanishing gradient problem, while has parameter-free, and zero-gradients in the

negative part.

In order to provide meaningful such negative values, there have been presented some

activation functions, such as leaky rectified linear unit (LReLU) [Maas, Hannun and Ng

(2013)], parametric rectified linear unit (PReLU) [He, Zhang, Ren et al. (2015)],

exponential linear unit (ELU) [Clevert, Unterthiner and Hochreiter (2016)], and so forth.

The LReLU has been slightly improved for ReLU by replacing the negative part of the

ReLU with a linear function involving small constant gradient. The PReLU has been

generalized by adaptively learning the parameters introduced in the negative part of

LReLU. They have improved significantly the learning performances on large image

datasets called ImageNet. Clevert et al. [Clevert, Unterthiner and Hochreiter (2016)] have

proposed an activation function, ELU, and shown applicability and validity for various

benchmark datasets. As another approach, Goodfellow et al. [Goodfellow, Warde-Farley,

Mirza et al. (2013)] have also proposed an activation function called maxout that has

features both for optimization and model averaging with dropout [Hinton, Srivastava,

Krizhevsky et al. (2012)].

In our previous work, we have presented newly the characteristic function (i.e., activation

function) as an optimum function which is derived on the advection-diffusion system in

fluid dynamics framework [Kakuda (2002)]. The purpose of this paper is to propose the

activation functions based on the concept of fluid dynamics framework. We present two

types of activation functions by applying the so-called parametric softsign [Glorot and

Bengio (2010)] to the negative part of ReLU. By using the well-known TensorFlow

[Abadi, Agarwal, Barham et al. (2015)] as the deep learning framework, we utilize the

CNN architecture that consists of three convolutional layers with the max-pooling and

one fully-connected softmax layer. The workability and the validity of the present

approach are demonstrated on three benchmark datasets, namely, MNIST [LeCun, Bottou,

Bengio et al. (1998)], CIFAR-10 and CIFAR-100 [Krizhevsky and Hinton (2009)],

through comparison with other numerical performances.

2 Construction of nonlinear activation functions

2.1 Neural network model

In the field of neural networks, the input-output (I/O) relationship known as the back-

propagation is represented by inputs 𝑈𝑗, output 𝑉𝑗 and the characteristic function h (i.e.,

activation function) as follows:

𝑉𝑗 = ℎ(𝑈𝑗) (1)

𝑈𝑗 = ∑ 𝑆𝑖𝑗𝑤𝑖𝑗 + 𝐼𝑗 − 𝑇𝑗
𝑛
𝑖=1 (2)

where 𝑆𝑖𝑗 are j-th input values as shown in Fig. 1, 𝑤𝑖𝑗 are the connection weights, 𝐼𝑗 is the

bias value, and 𝑇𝑗 denotes threshold.

Nonlinear Activation Functions in CNN Based on Fluid Dynamics 3

The sigmoid function (see Fig. 2(a)) has been mainly used as the following continuous

function.

ℎ(𝑣) =
1

2
{1 + 𝑡𝑎𝑛ℎ (

𝑣

2𝑘
)} (3)

where k is ad hoc parameters.

Figure 1: Neuron model

2.2 Nonlinear activation functions based on fluid dynamics

Heretofore, we have presented the following activation function as an optimum function

which is derived on the steady advection-diffusion system in fluid dynamics framework

[Kakuda (2002)] (see Eq. (25) in next Subsection 2.3).

ℎ(𝑣) =
1

2
{1 + 𝑔(𝑣)} (4)

𝑔(𝑣) = 𝑐𝑜𝑡ℎ(𝛾) −
1

𝛾
 (5)

where 𝛾 = 𝑣 2𝑘 > 0⁄ .

Mizukami [Mizukami (1985)] has presented significantly the following approximation

function instead of Eq. (5) involving the singularity.

�̃�(𝑣) = 1 −
1

𝛾+1
 (6)

Therefore, we obtain the functions by substituting Eq. (6) into Eq. (4) and considering the

sign of v as follows (see Fig. 2(b)):

ℎ(𝑣) = {

1

2
(2 −

1

1+|𝛾|
) (𝛾 ≥ 0)

1

2
(

1

1+|𝛾|
) (𝛾 < 0)

 (7)

In this stage, we adjust the functions, h(v), so that 𝑔(0) = 0.

𝑔(𝑣) = �̂�{ℎ(𝑣) − ℎ(0)}, ℎ(0) =
1

2
 (8)

As a result, we obtain the following form by taking into account that �̂� = 2𝜅.

4 Copyright © 2019 Tech Science Press CMES, vol.118, no.1, pp.1-14, 2019

𝑔(𝑣) =
𝜅𝑣

𝜅+|𝑣|
 (9)

in which 𝜅 = 2𝑘. Eq. (9) represents the softsign function with 𝜅 = 1 [Glorot and Bengio

(2010)]. The so-called parametric softsign is equivalent to the ReLU [Nair and Hinton

(2010)] under the conditions, such as 𝜅 = +∞ for 𝑣 ≥ 0 and 𝜅 = 0 for 𝑣 < 0.

In order to avoid zero-gradients in the negative part of v, by applying Eq. (9) to the

negative region, we propose two types of activation function involving parameter, a, as

follows (see Fig. 3):

(a) Sigmoid functions with k (b) Characteristic functions of Eq. (7)

Figure 2: Characteristic functions

Rational-type activation function and its derivatives

𝑔(𝑣) = {
𝑣 (𝑣 ≥ 0)

𝑎𝑣

𝑎+|𝑣|
 (𝑣 < 0)

 (10)

𝜕𝑔(𝑣)

𝜕𝑣
= {

1 (𝑣 ≥ 0)

(
𝑎

𝑎+|𝑣|
)

2
 (𝑣 < 0)

 ,
𝜕𝑔(𝑣)

𝜕𝑎
= {

0 (𝑣 ≥ 0)
𝑣|𝑣|

(𝑎+|𝑣|)2 (𝑣 < 0)
 (11)

Exponential-type activation function and its derivatives

𝑔(𝑣) = {
𝑣 (𝑣 ≥ 0)

𝑒𝑎𝑣

𝑒𝑎+|𝑣|
 (𝑣 < 0)

 (12)

𝜕𝑔(𝑣)

𝜕𝑣
= {

1 (𝑣 ≥ 0)

(
𝑒𝑎

𝑒𝑎+|𝑣|
)

2

 (𝑣 < 0)
 ,

𝜕𝑔(𝑣)

𝜕𝑎
= {

0 (𝑣 ≥ 0)
𝑒𝑎𝑣|𝑣|

(𝑒𝑎+|𝑣|)2 (𝑣 < 0)
 (13)

The corresponding derivatives of the activation functions are also shown in Fig. 4.

Nonlinear Activation Functions in CNN Based on Fluid Dynamics 5

(a) Rational-type activation function (b) Exponential-type activation function

Figure 3: Nonlinear activation functions

(a) Rational-type activation function (b) Exponential-type activation function

Figure 4: Derivatives of activation functions

2.3 Steady advection-diffusion equation

2.3.1 Problem statement

Let us briefly consider the one-dimensional advection-diffusion equation in spatial

coordinate, x, given by

𝑓,𝑥 = 𝑘𝜑,𝑥𝑥 (14)

with the adequate boundary conditions, where 𝑓 = 𝑢φ, u and k are the given velocity and

diffusivity, respectively.

2.3.2 Finite element formulation

In order to solve the flux, 𝑓 = 𝑢φ, in a stable manner, we shall adopt the Petrov-Galerkin

6 Copyright © 2019 Tech Science Press CMES, vol.118, no.1, pp.1-14, 2019

finite element formulation using exponential weighting function [Kakuda and Tosaka

(1992)]. On the other hand, the conventional Galerkin finite element formulation can be

applied to solve numerically Eq. (14).

First of all, we start with the following weighted integral expression in a subdomain Ω𝑖 =
[𝑥𝑖−1, 𝑥𝑖] with respect to weighting function �̃�:

∫ (𝑓 − 𝑢𝜑)�̃�𝑑𝑥 = 0
Ω𝑖

 (15)

The weighting function �̃� can be chosen as a general solution which satisfies

𝑢�̃� + Δ𝑥𝑖𝜎(𝑢)�̃�,𝑥 = 0 (16)

where Δ𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1, and σ(𝑢) denotes some function described by Yee et al. [Yee,

Warming and Harten (1985)], which is sometimes referred to as the coefficient of

numerical viscosity. The solution of Eq. (16) is as follows:

�̃� = 𝐴𝑒−�̂�𝑥 (17)

where A is a constant, and �̂� = 𝑢 Δ𝑥𝑖𝜎(𝑢)⁄ .

By applying the piecewise linear function to the flux f and φ, we obtain the following

integral form

∫ 𝑀𝛼𝑁𝛽Ω𝑖
𝑑𝑥𝑓𝛽 − 𝑢 ∫ 𝑀𝛼𝑁𝛽Ω𝑖

𝑑𝑥𝜑𝛽 = 0 (18)

in which

𝑀𝛼 = 𝑒−�̂�(𝑥−𝑥𝛼) (𝛼 = 1, 2) (19)

Here, applying an element-wise mass lumping to the first term of the left-hand side of Eq.

(18), and carrying out exactly those integrals in Eq. (18), we can obtain the following

numerical fluxes 𝑓𝑖−1/2 and 𝑓𝑖+1/2 in the subdomains Ω𝑖 and Ω𝑖+1, respectively

𝑓𝑖−1/2 = 𝑓𝑖 +
𝑢

2
[1 + {𝑠𝑔𝑛(𝛾)𝑐𝑜𝑡ℎ|𝛾| −

1

𝛾
}] (𝜑𝑖−1 − 𝜑𝑖) (20)

𝑓𝑖+1/2 = 𝑓𝑖 +
𝑢

2
[−1 + {𝑠𝑔𝑛(𝛾)𝑐𝑜𝑡ℎ|𝛾| −

1

𝛾
}] (𝜑𝑖 − 𝜑𝑖+1) (21)

where 𝛾 = 𝑢 2𝜎(𝑢)⁄ , and 𝑠𝑔𝑛(𝛾) denotes the signum function.

Let us next derive the Galerkin finite element model for Eq. (14). The weighted residual

equation in Ω𝑖 is given as follows:

\∫ (𝑓,𝑥 − 𝑘𝜑,𝑥𝑥)𝑤𝑑𝑥 = 0
Ω𝑖

 (22)

In this stage, we assume a uniform mesh Δ𝑥𝑖 = Δ𝑥 for simplicity of the formulation.

Taking into consideration the continuity of 𝜑,𝑥 at nodal point i, we can obtain the

following discrete form

𝑓𝑖−1/2 − 𝑓𝑖+1/2 +
𝑘

Δ𝑥
(𝜑𝑖−1 − 2𝜑𝑖 + 𝜑𝑖+1) = 0 (23)

Substituting Eq. (20) and Eq. (21) into Eq. (23) and after some manipulations, we obtain

the following finite difference form
𝑢

2Δ𝑥
(𝜑𝑖+1 − 𝜑𝑖−1) = (𝑘 + �̃�)

𝜑𝑖−1−2𝜑𝑖+𝜑𝑖+1

Δ𝑥2 (24)

where for any velocity u

Nonlinear Activation Functions in CNN Based on Fluid Dynamics 7

�̃� =
|𝑢|Δ𝑥

2
{𝑐𝑜𝑡ℎ|𝛾| −

1

|𝛾|
} (25)

Using the element Peclet number 𝑃𝑒(≡ ∆𝑥𝑢/2𝑘) as 𝛾 , we reduce Eq. (24) to the

following form

{𝑠𝑔𝑛(𝑃𝑒) − 𝑐𝑜𝑡ℎ|𝑃𝑒|}𝜑𝑖+1 + 2𝑐𝑜𝑡ℎ|𝑃𝑒|𝜑𝑖 − {𝑠𝑔𝑛(𝑃𝑒) + 𝑐𝑜𝑡ℎ|𝑃𝑒|}𝜑𝑖−1 = 0 (26)

This equation has the same structure as the SUPG scheme developed by Brooks et al.

[Brooks and Hughes (1982)], and it leads to nodally exact solutions for all values of 𝑃𝑒

[Christie, Griffiths, Mitchell et al. (1976)].

3 CNN architecture

We adopt the similar approach as the PReLU [He, Zhang, Ren et al. (2015)] which can be

trained using back-propagation and optimized simultaneously with other layers. As the

variables, v and a, in Eq. (10) through Eq. (13), we define 𝑣𝑗 and 𝑎𝑗 with respect to the

input and the coefficient, respectively, on the j-th channel. The momentum approach

when updating 𝑎𝑗 is given as follows:

Δ𝑎𝑗 ≔ 𝜇Δ𝑎𝑗 + 𝜀
𝜕𝐸

𝜕𝑎𝑗
 (27)

∂𝐸

∂𝑎𝑗
= ∑

𝜕𝐸

𝜕𝑔(𝑣𝑗)𝑣𝑗

𝜕𝑔(𝑣𝑗)

𝜕𝑎𝑗
 (28)

where E represents the objective function, 𝜇 is the momentum to accelerate learning, 𝜀 is

the learning rate. The parameters, 𝑎𝑗, are optimally obtained by using back-propagation

analysis.

Fig. 5 shows the CNN architecture consisting of three convolutional (i.e., conv) layers

with some max-pooling and one fully-connected (i.e., fc) softmax layer.

Figure 5: CNN architecture

4 Numerical experiments

In this section, we use the well-known TensorFlow [Abadi, Agarwal, Barham et al.

(2015)] as the deep learning framework, and present numerical performances obtained

from applications of the above-mentioned CNN approach to three typical datasets,

namely, MNIST [LeCun, Bottou, Bengio et al. (1998)], CIFAR-10 and CIFAR-100

[Krizhevsky and Hinton (2009)]. We utilize the Adam [Kingma and Ba (2015)] as the

learning algorithm for the stochastic gradient-based optimization.

8 Copyright © 2019 Tech Science Press CMES, vol.118, no.1, pp.1-14, 2019

The model is previously trained for some epochs on mini-batches of size 100 with the

learning rate, 𝜀 = 10−3, and the momentum, 𝜇 = 0. The specification of CPU and GPU

using CUDA is summarized in Tab. 1.

Table 1: A summary of the specification of CPU and GPU

CPU

Cores

Base Clock

Cashe Memory

Intel® CoreTM i7-8700 K

12

4.2 GHz

12 MB

GPU

Global Memory

CUDA core

GPU Max Clock rate

GPU Boost Clock rate

Memory Clock rate

Memory Bandwidth

NVIDIA® GeForce GTX 1080

8 GB

2560

1607 MHz

1733 MHz

10 Gbps

320 GB/s

CUDA Driver Version 9.0

4.1 MNIST

Let us first consider the MNIST dataset which consists of 28×28 pixel gray-scale

handwritten digit images with 50,000 for training and 10,000 for testing images.

Fig. 6 shows the behaviors of training accuracy and loss (i.e., cross-entropy) obtained by

using various activation functions for the MNIST. The corresponding validation accuracy

and loss behaviors are shown in Fig. 7. We can see from Fig. 6 and Fig. 7 that our

approaches are similar to the ones using other activation functions. Tab. 2 summarizes

the transitions of the learned parameter, a, at each layer of CNN architecture (see Fig. 5)

for the MNIST. The validation accuracy rate and loss for the MNIST are given in Tab. 3.

In this case, the quantitative agreement between our results and other ones appears also

satisfactory.

Table 2: Transitions of the learned parameter, a, for the MNIST

 PReLU
Present

Rational-type

Present

Exponential-type

Initial value

conv1

conv2

conv3

0.25

0.3629

0.1410

0.1241

1.0

0.8776

1.091

1.054

0.0

-0.1513

0.01067

0.03090

Nonlinear Activation Functions in CNN Based on Fluid Dynamics 9

(a) Training accuracy (b) Training loss

Figure 6: Training accuracy and loss behaviors for the MNIST

(a) Validation accuracy (b) Validation loss

Figure 7: Validation accuracy and loss behaviors for the MNIST

Table 3: Accuracy rate and loss for the MNIST

 ReLU ELU PReLU
Present

Rat.-type

Present

Exp.-type

Accuracy [%]

Loss

98.92

0.050503

98.61

0.065178

98.79

0.054787

98.77

0.055806

98.79

0.052109

4.2 CIFAR-10

As the second benchmark dataset, we consider the CIFAR-10 which consists of 32×32

color images drawn from 10 classes with 50,000 for training and 10,000 for testing

images.

Fig. 8 shows the behaviors of training accuracy and loss (i.e., cross-entropy) obtained by

using various activation functions for the CIFAR-10. The corresponding validation

accuracy and loss behaviors are shown in Fig. 9. We can see from Fig. 8 and Fig. 9 that

our approaches outperform entirely the ones using other activation functions. Tab. 4

summarizes the transitions of the learned parameter, a, at each layer of CNN architecture

(see Fig. 5) for the CIFAR-10. The validation accuracy rate and loss for the CIFAR-10

are given in Tab. 5. For the accuracy rate on the CIFAR-10, we obtain best result of

10 Copyright © 2019 Tech Science Press CMES, vol.118, no.1, pp.1-14, 2019

80.76% using the exponential-type activation function. On the other hand, our approaches

for the loss outperform other ones.

Table 4: Transitions of the learned parameter, a, for the CIFAR-10

 PReLU
Present

Rational-type

Present

Exponential-type

Initial value

conv1

conv2

conv3

0.25

0.05603

0.02731

0.03020

1.0

0.1178

0.1032

0.2062

0.0

-2.110

-2.029

-1.656

(a) Training accuracy (b) Training loss

Figure 8: Training accuracy and loss behaviors for the CIFAR-10

(a) Validation accuracy (b) Validation loss

Figure 9: Validation accuracy and loss behaviors for the CIFAR-10

Nonlinear Activation Functions in CNN Based on Fluid Dynamics 11

Table 5: Accuracy rate and loss for the CIFAR-10

 ReLU ELU PReLU
Present

Rat.-type

Present

Exp.-type

Accuracy [%]

Loss

77.68

0.56802

80.40

0.50304

79.76

0.55520

80.23

0.38574

80.76

0.39621

4.3 CIFAR-100

As the third benchmark dataset, the CIFAR-100 is the same size and format as the

CIFAR-10 one, while contains 100 classes for consisting of 20 super-classes with five

classes each.

Table 6: Transitions of the learned parameter, a, for the CIFAR-100

 PReLU
Present

Rational-type

Present

Exponential-type

Initial value

conv1

conv2

conv3

0.25

0.01511

0.02066

0.02695

1.0

0.02385

0.06526

0.08438

0.0

-3.405

-2.455

-2.564

(a) Training accuracy (b) Training loss

Figure 10: Training accuracy and loss behaviors for the CIFAR-100

Table 7: Accuracy rate and loss for the CIFAR-100

 ReLU ELU PReLU
Present

Rat.-type

Present

Exp.-type

Accuracy [%]

Loss

54.96

1.83145

56.03

1.71715

56.56

1.81471

56.91

1.66373

56.52

1.55405

12 Copyright © 2019 Tech Science Press CMES, vol.118, no.1, pp.1-14, 2019

(a) Validation accuracy (b) Validation loss

Figure 11: Validation accuracy and loss behaviors for the CIFAR-100

Fig. 10 shows the behaviors of training accuracy and loss obtained by using various

activation functions for the CIFAR-100. The corresponding validation accuracy and loss

behaviors are shown in Fig. 11. We can see from Fig. 10 and Fig. 11 that our approaches

outperform the ones using other activation functions. Tab. 6 summarizes the transitions of

the learned parameter, a, at each layer of CNN architecture for the CIFAR-100. The

validation accuracy rate and loss for the CIFAR-100 are given in Tab. 7. For the accuracy

rate on the CIFAR-100, we obtain best result of 56.91% using the rational-type activation

function. On the other hand, our approaches for the loss outperform also other ones.

5 Conclusions

We have proposed new activation functions which were based on the steady advection-

diffusion system in fluid dynamics framework. In our formulation, two types of

activation functions have been reasonably presented by applying the so-called parametric

softsign to the negative part of ReLU. By using the TensorFlow as the deep learning

framework, we have utilized the CNN architecture that consists of three convolutional

layers with some max-pooling and one fully-connected softmax layer.

The performances of our approaches were carried out on three benchmark datasets,

namely, MNIST, CIFAR-10 and CIFAR-100, through comparison with the ones using

other activation functions. The learning performances demonstrated that our approaches

were capable of recognizing somewhat accurately and in less loss (i.e., cross-entropy) the

object images in comparison with other ones.

References

Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z. et al. (2015): TensorFlow:

large-scale machine learning on heterogeneous system. https://www.tensorflow.org/.

Agarap, A. F. M. (2018): Deep learning using rectified linear units (ReLU).

arXiv:1803.08375v1.

Brooks, A.; Hughes, T. J. R. (1982): Streamline upwind/Petrov-Galerkin formulations

for convection dominated flow with particular emphasis on the incompressible Navier-

Stokes equations. Computer Methods in Applied Mechanics and Engineering, vol. 32, pp.

Nonlinear Activation Functions in CNN Based on Fluid Dynamics 13

199-259.

Cho, Y.; Saul, L. K. (2009): Kernel methods for deep learning. Advances in Neural

Information Processing Systems, vol. 22, pp. 342-350.

Christie, I.; Griffiths, D. F.; Mitchell, A. R.; Zienkiewicz, O. C. (1976): Finite element

methods for second order differential equations with significant first derivatives.

International Journal for Numerical Methods in Engineering, vol. 10, pp. 1389-1396.

Clevert, D. A.; Unterthiner, T.; Hochreiter, S. (2016): Fast and accurate deep network

learning by exponential linear units (ELUs). International Conference on Learning

Representations (ICLR), arXiv:1511.07289v5.

Fukushima, K.; Miyake, S. (1982): A new algorithm for pattern recognition tolerant of

deformations and shifts in position. Pattern Recognition, vol. 15, pp. 455-469.

Glorot, X.; Bengio, Y. (2010): Understanding the difficulty of training deep feedforward

neural networks. 13th International Conference on Artificial Intelligence and Statistics,

pp. 249-256.

Glorot, X.; Bordes, A.; Bengio, Y. (2011): Deep sparse rectifier neural networks. 14th

International Conference on Artificial Intelligence and Statistics, pp. 315-323.

Goodfellow, I. J.; Warde-Farley, D.; Mirza, M.; Courville, A.; Bengio, Y. (2013):

Maxout networks. 30th International Conference on Machine Learning, pp. 1319-1327.

Hahnloser, R. H. R.; Sarpeshkar, R.; Mahowald, M. A.; Douglas, R. J.; Seung, H. S.

(2000): Digital selection and analogue amplification coexist in a cortex-inspired silicon

circuit. Nature, vol. 405, pp. 947-951.

He, K.; Zhang, X.; Ren, S.; Sun, J. (2015): Delving deep into rectifiers: surpassing

human-level performance on ImageNet classification. IEEE International Conference on

Computer Vision, arXiv:1502.01852v1.

Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. R.

(2012): Improving neural networks by preventing co-adaptation of feature detectors.

Technical Report, arXiv:1207.0580v1.

Kakuda, K. (2002): Applications of fluid dynamic approach to neural network. 15th

Computational Mechanics Conference, JSME, pp. 529-530. (In Japanese)

Kakuda, K.; Tosaka, N. (1992): Finite element approach for high Reynolds number

flows. Theoretical and Applied Mechanics, vol. 41, pp. 223-232.

Kingma, D. P.; Ba, J. L. (2015): ADAM: a method for stochastic optimization.

International Conference on Learning Representations, arXiv:1412.6980v8.

Krizhevsky, A.; Hinton, G. E. (2009): Learning multiple layers of features from tiny

images. Technical Report, University of Toronto, Canada.

Krizhevsky, A.; Sutskever, I.; Hinton, G. E. (2012): ImageNet classification with deep

convolutional neural networks. 25th International Conference on Neural Information

Processing Systems, pp. 1097-1105.

Kuo, C. C. J. (2016): Understanding convolutional neural networks with a mathematical

model. arXiv:1609.04112v2.

LeCun, Y.; Bengio, Y.; Hinton, G. E. (2015): Deep learning. Nature, vol. 521, pp. 436-

14 Copyright © 2019 Tech Science Press CMES, vol.118, no.1, pp.1-14, 2019

444.

LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. (1998): Gradient-based learning applied

to document recognition. Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324.

Maas, A. L.; Hannun, A. Y.; Ng, A. Y. (2013): Rectifier nonlinearities improve neural

network acoustic models. 30th International Conference on Machine Learning.

Mizukami, A. (1985): An implementation of the streamline-upwind/Petrov-Galerkin

method for linear triangular elements. Computer Methods in Applied Mechanics and

Engineering, vol. 49, pp. 357-364.

Nair, V.; Hinton, G. E. (2010): Rectified linear units improve restricted Boltzmann

machines. 27th International Conference on Machine Learning, pp. 807-814.

Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. (1986): Learning representations by

back-propagating errors. Nature, vol. 323, pp. 533-536.

Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. R.

(2014): Dropout: a simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, vol. 15, pp. 1929-1958.

Yee, H. C.; Warming, R. F.; Harten, A. (1985): Implicit total variation diminishing

(TVD) schemes for steady-state calculations. Journal of Computational Physics, vol. 57,

pp. 327-360.

