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Abstract: The priming effect (PE) induced by biochar provides a basis for 
evaluating its carbon (C) sequestration potential in soils. A 60 days’ laboratory 
incubation was conducted, which involved the amendment of biochar (1% of soil 
mass) produced from rice straw at 300ºC (B300) and 500ºC (B500) to young (Y) 
and old (O) poplar plantation soils, with the aim of studying the responses of 
biochar-induced PEs to poplar plantation ages. This incubation included six 
treatments: Y + CK (control), Y + B300, Y + B500, O + CK, O + B300, and O + 
B500. Carbon dioxide (CO2) emissions were significantly increased (p < 0.05) in 
the B300 amended soils, while it was decreased in the B500 amended soils 
compared to the CK. The primed CO2 emissions were 2.35 times higher in the Y 
+ B300 than the O + B300 treatments, which was measured to be 18.6 and 5.56 
mg C·kg-1 with relative PEs of 12.4% and 3.35%, respectively. However, there 
was little difference between the primed CO2 emissions in Y + B500 and O + 
B500 treatments, which were measured to be -24.9 and -29.6 mg·C·kg-1 with 
relative PEs of -16.6% and -17.8%, respectively. Dissolved organic carbon 
(DOC) was significantly lower in the young poplar plantation soil than that in the 
old poplar plantation soil regardless of biochar amendment throughout the 
incubation, indicating greater C-limit of soil microorganisms in the young poplar 
plantation soil. Using 13C isotope tracing, neither B300 nor B500 decreased 
native soil-derived DOC, which indicated that the negative B500-induced PEs 
were not due to a reduction in the availability of native soil-derived C. In 
conclusion, the response of biochar-induced PEs to poplar plantation age 
depends on biochar types while soil available C indirectly affects biochar-
induced PEs. Further studies should focus on how the interactive effects between 
soil C availability and microbial community impacts biochar-induced PEs. 

Keywords: Biochar; dissolved organic carbon; pyrolysis temperature; poplar 
plantation age; priming effect 

1 Introduction 
The soil carbon (C) storage depends on the balance between input and output to the soil. The input of 

exogenous organic carbon (OC) to soils might change the decomposition of native soil organic carbon 
(SOC), and thus induce positive or negative priming effects (PEs) [1-4]. The negative PE could mitigate 
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the loss of soil C [5-6], while positive PE could enhance the loss of soil C [7]. Therefore, PE is an 
important ecological process affecting soil C sequestration. 

Biochars are generated through pyrolysis and primarily comprised of recalcitrant compounds [8]. It 
has been demonstrated that biochar amendment is a potentially effective measure for mitigating carbon 
dioxide (CO2) emissions, while improving soil properties [9-12]. Recently, the PEs induced by biochars 
in soils are garnering the attention of researchers [13-19]. Pyrolysis temperature is a critical factor that 
influences the properties of biochar, and thus impacts biochar-induced PEs. For example, an earlier study 
by [20] examined the PEs of a variety of biochar-amended soils, and found that the biochars produced at 
low temperatures (250°C-400°C) induced positive PEs, while those created at high temperatures (525°C-
600°C) induced negative PEs. However, inconsistent results have arisen in recent studies [21-23]. 

The mechanisms involved in biochar-induced PEs were complicated and have not reached 
consistency. The positive PEs induced by biochars have generally been ascribed to the stimulation of soil 
microorganisms following biochar amendment [24], which may be induced by co-metabolism or nutrient 
(e.g., N or P) mining [25-26]. Positive PEs were often observed at the initial stages of incubation 
following biochar amendment due to the relief of energy or C-limit of soil microorganisms by the readily 
available C contained in the biochar [14]. As for biochar-induced negative PEs, there are two types. On 
one hand, the negative PEs induced by biochars are thought to result from a reduction in the availability 
of native soil-derived C, due to biochar adsorption [27-29], or the formation of stable aggregates for the 
longer term addition of biochar [30], which are termed as “negative apparent PEs”. It has been suggested 
that the negative PEs induced by biochar pyrolyzed at higher temperatures were primarily through 
sorption, as the specific surface area of biochar increased while mineralizable C decreased with 
temperature [26,31]. On the other hand, negative PEs were suggested to be induced by changes in soil 
microbial communities [32], or by substrate switching (also referred to as “preferential substrate 
utilization” [19]) which means the most labile organic fraction of biochar is preferentially utilized by 
microbes to temporarily replace the use of native SOC and thus the decomposition of native SOC is 
decreased [14], which are referred to as “negative real PEs”. Therefore, the biochar-induced negative 
apparent and real PEs resulted from soil physiochemical and microbial processes, respectively. At present, 
it is still debating whether biochar-induced negative PEs are mediated by soil physiochemical or 
microbial processes. 

Global C storage has been estimated to be 861 Pg C in forests, which comprises the most extensive 
and persistent terrestrial C sink [33]. The belowground soil C pool accounts for 44% of the global C 
storage (383 Pg C) of forests and thus is the most important component of forest C pools [33]. Poplar is 
one of the most afforested tree species due to its rapid growth and robust adaptability. The poplar 
plantation area has been estimated to be 7.57 million·hm2, accounting for 18.9% of the total arbor 
plantation areas in China. The C sequestration capacity of soils along a chronosequence of poplar 
plantations in coastal China was examined by [34], who found that 15 yrs is optimal for the sequestration 
of atmospheric CO2, with a mean annual increment of C in soils of 0.573 t·ha-1·yr-1. Furthermore, it was 
demonstrated that soil attributes such as microbial biomass and C availability were altered with the 
establishment of poplar plantations [34-35], which might affect PEs following biochar amendment [36]. 
Therefore, the objectives of this study were as follows: (1) to examine the response of biochar-induced 
PEs to poplar plantation ages; (2) to explore whether biochar-induced negative PEs resulted from a 
decrease in the availability of native soil-derived C. To accomplish these goals, we conducted a 
laboratory incubation experiment through the amendment of the 13C spiked biochars pyrolyzed at 300ºC 
and 500ºC to soils in young and old poplar plantations. Subsequently, the SOC mineralization as well as 
C availability were monitored for 60 days during the incubation. Soil respired CO2 and dissolved organic 
carbon (DOC) were assigned to native SOC and the applied biochars using 13C tracing. 
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2 Materials and Methods 
2.1 Site Description 

The study area was at the Dongtai Forest Farm (32°52’37” N, 120°49’44” E), Dongtai City, Jiangsu 
Province, China, which is in a coastal area of the Yellow Sea and located on the alluvial plains in the 
middle and lower reaches of the Yangtze River. The area is a transition zone from a north subtropical to 
warm temperate climate, which is influenced by monsoon. The annual mean temperature, rainfall, and 
relative humidity is 13.7°C, 1051 mm, and 88.3%, respectively, where the frost-free period and average 
sunlight duration are 220 d·y-1 and 2169.6 h·y-1, respectively. 

2.2 Soil Sampling and Biochar Preparation 
Surface soil (0 cm-20 cm) samples were collected from two pure poplar plantations located at the 

Dongtai Forest Farm. These poplar plantations had been established 4 yrs and 23 yrs (referred to as young 
and old in this paper) prior to the soil sampling in October, 2016. The understory vegetation in these two 
plantations was primarily composed of Humulus scandens and Pteris biaurita. The poplar species was 
Populus deltoides CL’35’ and ‘I-69’, while the afforestation densities were 4 m × 6 m and 6 m × 8 m in 
the young and old poplar plantations, respectively. The soil samples used in this study possessed a silt 
loam texture according to the USDA textural classification, with a pH of 7.42 and 8.15 and SOC of 
1.40% and 1.45% in the young and old poplar plantation soils, respectively (Tab. 1). 

Table 1: Properties of soils in young and old poplar plantations located in a coastal area of Eastern China 
(means ± standard errors, n = 3) 

Poplar 
plantation pH 

SOC 

(%) 
DOC Cmic 

TN 

(%) 

NH4
+-N 

(mg·kg-1) 

NO3
--N 

(mg·kg-1) 
SOC:SON 

SOC-δ13C 

(‰) 

DOC-δ13C 

(‰) 

Clay 

(%) 

Silt 

(%) 

Sand 

(%) 

Young (7.42 ± 
0.31) a 

(1.40 ± 
0.08) a 

(395 ± 
85) b 

(493 ± 
20) b 

(0.13 ± 
0.02) a 

(3.92 ± 
0.36) a 

(7.85 ± 
0.77) a (11.6 ± 1.11) a (-25.1 ± 

0.13) b 
(-24.4 ± 
0.51) a 

(11.3 ± 
0.29) a 

(71.0± 
0.58) a 

(17.7 ± 
0.64) a 

Old (8.15 ± 
0.02) a 

(1.45 ± 
0.01) a 

(686 ± 
12) a 

(1023 ± 
61) a 

(0.10 ± 
0.01) a 

(2.82 ± 
0.45) a 

(6.55 ± 
0.26) a (15.0 ± 1.72) a (-23.6 ± 

0.11) a 
(-25.3 ± 
0.33) a 

(11.5 ± 
0.58) a 

(70.8 ± 
0.69) a 

(17.7 ± 
0.69) a 

SOC, soil organic carbon; DOC, dissolved organic carbon; Cmic, microbial biomass carbon; TN, total nitrogen; NH4
+, 

ammonium; NO3
-, nitrate; SON, soil organic nitrogen. Particle dimensions of clay, silt and sand were < 2 μm, 2-50 

μm and 50-2000 μm, respectively. 
Values with the same letter were not significantly different, while the values with different letters were 
significantly different at p = 0.05. 

The biochar used for this study was prepared using 13C labelled rice straw. To obtain the labelled plant 
material, a pot experiment was conducted at the Xiashu Forest Farm (32°7’19” N, 119°13”53” E), Jurong 
City, Jiangsu Province, China from June to September 2016 and the labelling method proceeded according 
to [37]. Following harvest, rice straw was chopped into 3 cm-5 cm pieces, oven-dried, and transferred into a 
special reactor (China patent No. ZL200920232191.9) for slow-pyrolysis. The reactor was heated by a step-
wise procedure, where the temperature was initially set at 200°C, and then incrementally elevated to 250°C, 
300°C, 350°C, 400°C, 450°C, and 500°C. The pyrolysis process was terminated when there was no visible 
smoke emanating from the vent, where the entire process for the final temperatures of 300°C and 500°C 
continued for about 3.5 and 9.5 h, respectively. Compared with biochar pyrolyzed at 500°C (B500), the 
biochar pyrolyzed at 300°C (B300) had a lower pH and contained more labile C, which was measured as 
DOC, O/N-alkyl C and carbonyl C (Tab. 2). 

Table 2: Properties of biochars pyrolyzed at 300°C (B300) and 500°C (B500) using rice straw as the raw 
material (means ± standard errors, n = 3) 
 

Biochar 
pH 

TC 

(%) 

IC 

(%) 

TN 

(%) 

NH4
+-N 

(mg·kg-1) 

NO3
--N 

(mg·kg-1) 
OC:ON 

DOC 

(mg· kg-1) 

OC-
δ13C 

(‰) 

Ash 
content 

(%) 

Volatile 
component 

(%) 

SOC functional groups (%) 

Alkyl C O/N-
alkyl C Aryl C Carbonyl 

C 

B300 (8.23 ± 
0.02) b 

(57.1 ± 
1.67) a 

(0.68 ± 
0.02) b  

(3.98 ± 
0.48) a 

(27.7 ± 
3.50) a 

(65.8 ± 
6.02) a 

(15.2 ± 
1.61) a 

(5336 ± 
109) a 

(254 ± 
18.7) a 

(15.8 ± 
0.21) b 

(78.9 ± 1.23) 
a 

(25.6 ± 
1.50) a 

(6.93 ± 
0.45) a 

(59.4 ± 
3.12) b 

(8.11 ± 
0.64) a 

B500 (9.86 ± 
0.01) a 

(62.7 ± 
3.27) a 

(1.18 ± 
0.06) a 

(3.19 ± 
0.04) a 

(28.8 ± 
4.04) a 

(11.7 ± 
1.33) b 

(19.7 ± 
1.94) a 

(2100 ± 
182) b 

(284 ± 
18.1) a 

(22.8 ± 
0.41) a 

(61.1 ± 7.39) 
a 

(4.15 ± 
0.20) b 

(2.58 ± 
0.19) b 

(89.5 ± 
1.44) a 

(3.74 ± 
0.34) b 
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TC, total carbon; IC, inorganic carbon; TN, total nitrogen; NH4
+-N, ammonium nitrogen; NO3

--N, nitrate 
nitrogen; OC, organic carbon; ON, organic nitrogen; DOC, dissolved organic carbon. 

The spectroscopic range of nuclear magnetic resonance for alkyl C, O/N-alkyl C, aryl-C, and carbonyl C 
was 50 ppm -0 ppm, 95 ppm -50 ppm, 165 ppm -95 ppm and 220 ppm -165 ppm, respectively. 
Values with the same letter were not significantly different, while the values with different letters were 
significantly different at p = 0.05. 

2.3 Characterization of Soil and Biochar 
The soil texture was determined using a laser particle size analyzer (Beckman Coulter, LS, USA) at 

the Institute of Soil Science, Chinese Academy of Sciences (CAS). Moist soil was dried at 105°C to 
determine soil moisture content. The pH of the soil was determined with a glass electrode using a soil-to-
water ratio of 1:5. Soil microbial biomass was analyzed by chloroform fumigation method. The total C 
(TC) and total N (TN) contents were determined via an elemental analyzer (PE 2400 II, PekinElmer, 
USA). The soil inorganic carbon (IC) was measured by the titration method. Soil ammonium nitrogen 
(NH4

+-N) and nitrate nitrogen (NO3
--N) was analyzed by indophenol blue colorimetry and ultraviolet 

spectrophotometry, respectively. The SOC and SON was calculated as the difference between the TC and 
IC, and between the TN and IN (NH4

+-N + NO3
--N), respectively. 

To analyze the soil DOC, the soil samples were extracted by hot deionized water, filtrated through 
0.45 μm filters, and then examined using a TOC analyzer (TOC-L CPH/CPN, Shimadzu, Japan). The 
DOC extract was initially dried in a freeze drier (FreeZone 2.5 L, Labconco, USA) before the DOC-δ13C 
was determined. To determine the SOC-δ13C values, a soil subsample was subjected to acid rinsing to 
remove the IC according to the method by [38]. The δ13C values of both the SOC and DOC were 
quantified using an isotope ratio mass spectrometer interfaced with an element analyzer (Flash EA δV, 
Thermo Fisher Scientific, USA) at the Advanced Analysis and Testing Center, Nanjing Forestry 
University (AATC-NFU). 

The pH of the biochar was determined using a glass electrode with a solid-to-water ratio of 1:15 to 
accommodate the low density of the biochar [24]. The TC, TN, DOC and δ13C of the OC and DOC of the 
biochar were determined using the same methods as for the soil samples. The biochar was combusted at 
760°C for 6 h to determine the ash content [39]. The volatile component was determined by combusting the 
biochar at 950°C for 6 min, and was calculated as the mass difference prior to and following combustion 
[40]. The quantitative direct-polarization magic angle-spinning (DPMAS) 13C nuclear magnetic resonance 
(NMR) spectral pattern of the biochar was obtained using a Bruker AV III 400 MHz spectrometer at 
Nanjing University. Further details regarding this analysis can be found in [41]. The functional groups of the 
biochar OC were divided into alkyl, O/N-alkyl, aryl and carbonyl C according to [42]. 

2.4 Incubation Experiment 
The incubation included the following six treatments: (1) young poplar plantation soil without 

biochar amendment (Y + CK), (2) young poplar plantation soil amended with B300 (Y + B300), (3) 
young poplar plantation soil amended with B500 (Y + B500), (4) old poplar plantation soil without 
biochar amendment (O + CK), (5) old poplar plantation soil amended with B300 (O + B300), (6) old 
poplar plantation soil amended with B500 (O + B500). The soil samples and the biochar were crushed 
and passed through 2 mm and 0.25 mm sieves, respectively. A series of 500 mL flasks containing 100 g 
of soil sample (on an oven-dried basis) were prepared. The biochar was added to designated flasks at the 
application rate of 1% of soil mass, which was equivalent to a field application rate of 26 t·ha-1 (20 cm 
soil depth, bulk density of 1.30 g·cm-3), and mixed thoroughly with the soil. The soil moisture was 
adjusted to 60% water-filled pore space (WFPS) through the addition of deionized water. All of the flasks 
were covered by aluminum foil with needle-punctured holes to maintain aerobic conditions and then 
incubated at 25°C in the dark. To maintain a constant soil water content, deionized water was added with 
a mini-pipette every other day to bring to the original weight during incubation.  
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Each treatment was repeated in triplicate to quantify the efflux and δ13C value of the CO2 emitted 
from the soil samples on days 0 (specifically, 1 h after biochar amendment), 1, 3, 7, 14, 30, 45, and 60 
during incubation. For gas sampling, each flask was sealed using an airtight stopper. Immediately and 
after 12 h of enclosure, 25 mL of headspace gas in the flask was sampled using an airtight syringe. To 
maintain the balance of gas pressure in the flask, an additional 25 mL of high purity nitrogen gas (N2, 
99.999%) was injected into the flask immediately following gas sampling. The CO2 concentration was 
measured using a gas chromatograph equipped with a flame ionization detector (FID) operated at 60°C 
(Agilent 7890B, Santa Clara, CA, USA). The gas standards of CO2 were supplied by the National 
Research Center for Certified Reference Materials, Beijing, China. The δ13C values of the emitted CO2 
were measured using an isotope ratio mass spectrometer (Flash δV, Thermo Fisher Scientific, USA) at 
AATC-NFU. Triplicates in each treatment were destructively sampled on days 0, 1, 7, 30, and 60 to 
measure the δ13C and content of the DOC in soils following the procedures described in Section 2.3. 

2.5 Calculations 
The CO2 efflux derived from decomposition of native SOC was calculated using a linear mixing 

model [43]: 

( ) ( )b s b s = -  / - f δ δ δ δ  
                                                                                                                         (1) 

where δs (‰) is the δ13C of native SOC, δb (‰) is the δ13C of OC in biochar, and δ (‰) is the δ13C of CO2 
emitted from the biochar-amended soils, which is calculated based on a mass balance equation [44]: 

( ) ( )2 1 2 1/C C C Cδ δ δ2 1 =  × −  × −                                                                                                                (2) 
where C1 and C2 is the concentration of CO2 (μL L-1), while δ1 and δ2 is the δ13C of CO2 (‰) in gases 
sampled at zero time and 12 h following flask enclosure, respectively. 

Biochar-primed CO2 emission and the relative PE were calculated according to the method of [45]. 
The quantity of native soil-derived DOC in biochar-amended soils was calculated using the same method 
as that of native soil-derived CO2 efflux. 

2.6 Statistical Analysis 
All data were reported on an oven-dried soil basis. Repeated measures of ANOVA were employed 

to examine the differences of total and primed CO2 effluxes between incubation times. One-way ANOVA 
was used to examine the differences of total CO2 efflux, total and native soil-derived DOC between 
treatments. Least significant difference (LSD) was used for post hoc multiple comparisons if the 
difference was significant. The independent samples t test was used to examine the differences in 
magnitudes of the PEs, between the two biochar or soil types, where the significance was set at the p < 
0.05 level. Distribution normality and variance homogeneity were examined prior to ANOVA. Pearson 
correlation analysis was carried out to examine the relationship between total or biochar-primed CO2 
efflux and total DOC content. All tests were performed with SPSS 16.0 for Windows (SPSS Inc., 
Chicago, IL, USA).  

3 Results 
3.1 Total CO2 Efflux and Emission 

The total CO2 efflux decreased gradually from the onset of incubation until day 30, which was 
followed by a slight increase from day 30 to 60 in both the young and old poplar plantation soils (Fig. 1). 
Compared to CK, the B300 amendment generally significantly increased the total CO2 efflux in both the 
young and old poplar plantation soils during incubation (Fig. 1). The B500 amendment had little 
influence on the total CO2 efflux in both young and old poplar plantation soils except that it resulted in a 
decreased effect at the end of incubation in the old poplar plantation soil (Fig. 1). Compared to CK, the 
B300 was significantly increased, however, the B500 decreased the total CO2 emission in both the young 
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and old poplar plantation soils during 60 days of incubation, and there was no difference between young 
and old poplar plantation soils within the same biochar treatment (Tab. 3).  
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Figure 1: Temporal variations in carbon dioxide (CO2) efflux from young (a) and old (b) poplar plantation 
soils amended without (CK) and with biochars pyrolyzed at 300ºC (B300) and 500ºC (B500) during 60 days 
of incubation. Different lowercase letters denote significant differences between treatments at the same 
incubation time at p < 0.05. Vertical bars denote the standard error of the mean (n = 3) 

3.2 Primed SOC Decomposition 
Based on the two-component linear mixing model, the total CO2 efflux was attributed to the CO2 

from the native-soil and that derived from the amended biochar. The B300-primed CO2 efflux exhibited 
similar dynamics, while that of B500-primed showed nearly the opposite dynamics of the “W” and “M” 
shape in the young and old poplar plantation soils, respectively (Fig. 2). The primed CO2 efflux peaked on 
day 1 (0.19 and 0.10 mg·C·kg-1·h-1), then decreased sharply to negative values on day 3 (-0.10 and -0.08 
mg C·kg-1·h-1), which was followed by low values ranging from 0 to 0.034 and 0.012 mg·C·kg-1·h-1 from 
day 7 until the end of incubation in the Y + B300 and O + B300 treatments, respectively (Fig. 2). The 
primed CO2 efflux attained the minimum (-0.070 mg·C·kg-1·h-1) and maximum (-0.009 mg·C·kg-1·h-1) on 
day 3 in the Y + B500 and O + B500 treatments, respectively (Fig. 2). Overall, the B300 amendment 
induced positive PEs, however, the B500 amendment resulted in negative PEs in both the young and old 
poplar plantation soils (Tab. 3). The primed cumulative CO2 emissions from the Y + B300 treatment were 
2.35 times higher than that from the O + B300 treatment (18.6 vs. 5.56 mg·C·kg-1), while the difference 
between the Y + B500 and O + B500 treatments (-24.9 vs. -29.6 mg·C·kg-1) was small (Tab. 3). This 
corresponded to relative PEs of 12.4% and 3.35% in the Y + B300 and O + B300 treatments, and -16.6% 
and -17.8% in the Y + B500 and O + B500 treatments, respectively (Tab. 3). Generally, the primed CO2 
emissions accounted for less than 1% of the initial SOC during the 60 days of incubation (Tab. 3). 
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Figure 2: Temporal variations in carbon dioxide (CO2) efflux primed by biochars pyrolyzed at 300ºC 
(B300) and 500ºC (B500) in young (a) and old (b) poplar plantation soils during 60 days of incubation. 
Different lowercase letters denote significant differences between treatments at the same incubation time 
at p < 0.05. Vertical bars denote the standard error of the mean (n = 3) 

3.3 DOC Content 

Table 3: Carbon dioxide (CO2) emission and magnitude of priming effect on soil organic carbon (SOC) 
decomposition induced by biochars pyrolyzed at 300°C (B300) and 500°C (B500) in young (Y) and old 
(O) poplar plantation soils during 60 days of incubation (means ± standard errors, n = 3) 

Treatment 

CO2 emission (mg·C· kg-1) Primed CO2 emission relative to (%) 

Total Native soil-derived Biochar-derived Primed by biochar CO2 emission in CK Initial SOC Initial Cmic
 

Y+CK (150 ± 9.98) b A (150 ± 9.98) a A - - - - - 

Y+B300 (210 ± 4.23) a A (168 ± 4.02) a A (41.9 ± 0.54) a A (18.6 ± 4.02) a A (12.4 ± 2.68) a A (0.13 ± 0.03) a A (3.77 ± 0.82) a A 

Y+B500 (136 ± 5.61) b A (125 ± 3.33) b B (10.6 ± 2.58) b A (-24.9 ± 3.33) b A (-16.6 ± 2.22) b A (-0.18 ± 0.02) b 
A (-5.04 ± 0.67) b B 

O+CK (166 ± 8.88) b A (166 ± 8.88) a A - - - - - 

O+B300 (211 ± 4.96) a A (172 ± 1.29) a A (39.7 ± 3.81) a A (5.56 ± 1.29) a B (3.35 ± 0.78) a B (0.04 ± 0.01) a B (0.54 ± 0.13) a B 

O+B500 (142 ± 1.52) c A (136 ± 1.49) b A (5.79 ± 0.28) b A (-29.6 ± 1.49) b A (-17.8 ± 0.90) b A (-0.20 ± 0.01) b 
A (-2.89 ± 0.15) b A 

Cmic, soil microbial biomass carbon; CK, control without biochar amendment. 

Within one soil type, the values followed by different lowercase letters were significantly different between biochar 
types at p < 0.05; within one biochar type, the values followed by different uppercase letters were significantly 
different between soil types at p < 0.05. 

The DOC content fluctuated in the young poplar plantation soil while it gradually decreased in the 
old poplar plantation soil during incubation (Figs. 3(a) and 3(b)). The biochar amendment did not show 
significant influence on the DOC content throughout the incubation in either the young or old poplar 
plantation soils (Figs. 3(a) and 3(b)). The DOC content of the young poplar plantation soil was 
significantly lower than that of the old poplar plantation soil (Figs. 3(a) and 3(b); Tab. 4). The correlation 
between total DOC content and CO2 efflux (total or biochar-primed) was not significant except that in O 
+ CK treatment (with total CO2 efflux, r = 0.977**, p < 0.01, n = 5). The portion of native soil-derived 
DOC was > 90% in biochar-amended young and old poplar plantation soils throughout the incubation, 
which indicated that most of the DOC in the soil-biochar mixtures was derived from native soil and thus 
biochar had a relatively small contribution. The two biochars had no influence on the native soil-derived 
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DOC throughout the incubation in either soils (Figs. 3(c) and 3(d); Tab. 4), except that B500 significantly 
decreased it on day 0 compared to CK in the young poplar plantation soil (Figs. 3(c) and 3(d)).  
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Figure 3: Temporal variations in total dissolved organic carbon (DOC) (a, b) and native soil-derived 
DOC (c, d) in young (a, c) and old (b, d) poplar plantation soils amended without (CK) and with biochars 
pyrolyzed at 300ºC (B300) and 500ºC (B500) during 60 days of incubation. Different lowercase letters 
denote significant differences between treatments at the same incubation time at p < 0.05. Vertical bars 
denote the standard error of the mean (n = 3) 

Table 4: Average content of dissolved organic carbon (DOC) and that derived from native soil in young 
(Y) and old (O) poplar plantation soils amended without (CK) and with biochars pyrolyzed at 300ºC 
(B300) and 500ºC (B500) during 60 days of incubation (means ± standard errors, n = 3) 

Treatment Total DOC (mg·C· kg-1) Native soil-derived DOC (mg·C·kg-1) 
Y + CK 366 ± 17.0 a B 366 ± 17.0 a B 

Y + B300 349 ± 4.39 a B 325 ± 5.61 a B 

Y + B500 353 ± 3.65 a B 349 ± 3.15 a B 

O + CK 513 ± 17.0 a A 513 ± 17.0 a A 

O + B300 546 ± 16.0 a A 501 ± 12.5 a A 

O + B500 497 ± 38.5 a A 492 ± 38.4 a A 

Within one soil type, the values followed by different lowercase letters were significantly different 
between treatments at p < 0.05; within one biochar type, the values followed by different uppercase letters 
were significantly different between soil types at p < 0.05. 
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4 Discussion 
4.1 Magnitudes and Directions of PEs Induced by Biochars Pyrolyzed at 300°C and 500°C 

The biochar produced at 300°C generally induced positive PE, while that produced at 500°C induced 
negative PE in both young and old poplar plantation soils in this study (Fig. 2, Tab. 3), which was 
consistent with [20]. In contrast, the negative PE induced by biochar produced at lower temperatures 
(200°C-300°C) [21-22], and positive PE induced by biochar produced at higher temperatures (500°C-
600°C) were also reported in recent studies [21,23]. In earlier studies, the magnitudes of biochar-induced 
PEs were not often quantified [28,30,46]. However, more data on the magnitude of PEs are available (Tab. 
5). It was not surprising to find that the magnitudes of PEs had a rather wide range between different 
studies, as soil and biochar attributes were crucial factors in the control of biochar-induced PEs [15]. The 
primed native SOC decomposition ranged from -29.6 to 18.6 mg·kg-1, with the relative PEs ranging from 
-17.8% to 12.4% during the 60 days’ incubation period (Tab. 3). Overall, the magnitudes of the biochar-
induced PEs in this study were within previously reported ranges. 

It is worth noting that the primed CO2 efflux dropped to negative values on day 3, which was 
followed by negligible PEs in both Y + B300 and O + B300 treatments (Fig. 2). Previous studies 
demonstrated that the direction of the PEs might change over the course of the incubation period [15,49-
50]. Several studies observed that initial positive biochar-induced PEs diminished over time [20,51]. In 
particular, a number of studies found that the positive PE was followed by a negative PE in biochar-
amended soils [22,52]. It was suggested that several mechanisms involved in PEs might exist 
simultaneously, with one mechanism being dominant [36]. Furthermore, a succession of mechanisms 
involved in PEs can occur during incubation [53-54]. Consequently, the negative PEs that appeared on 
day 3 under the B300-amended soils were most likely due to the shift of dominant mechanisms. 

Table 5: Directions and magnitudes of biochar-induced priming effect (PE) in reported studies with 
different soil and biochar types and incubation durations 

Soil type Biochar type Incubation 
time (d) 

Primed CO2 

emission 
(mg· C·kg-1 

soil) 

Relative PE 
(%) 

Primed CO2 
emission/initial SOC 

(%) 
Method Reference 

Alfisol, Entisol and 
Mollisol 

Grass and wood 
(250°C, 400°C, 

525°C and 650°C) 
365 – -52 – 89 – No isotope [20] 

Aquic paleudalf (silty 
loam) 

Grass (350°C and 
700°C) 87 77.6 – 319 50.9 – 1110 0.8 – 3.3 Isotope [24] 

Silty arable Luvisol Maize (600°C) 57 – -24 and -38 – Isotope [47] 

Silty stagnic Luvisol Grass (600°C) 37 – -56 – Isotope [32] 

Various Various 365 300 – – Meta-analysis [15] 

Various Crop – – -20.3 – Meta-analysis [48] 

Sandy loam Corn straw (500°C) 30 
-95.9 –  
-64.4 

-66.9 –  
-72.0 

-1.46 –  
-0.98 

Isotope [45] 

Sandy (Typic 
Orthods) 

Wood (200°C, 
300°C, 450°C and 

600°C) 

About 300 
(10 months) – -3 – -40 – Isotope [22] 

Utisol 

Grass, maize straw, 
sugarcane and peanut 
shells (300°C, 400°C 

and 500°C) 

80 -135 – 1214 -19.0 – 172 -0.46 – 4.17 Isotope [21] 

Sandy loam Rice straw (300°C 
and 500°C) 60 -29.6 – 18.6 -17.8 – 12.4 -0.20 – 0.13 Isotope This study 

CO2, carbon dioxide; SOC, soil organic carbon. 

4.2 Response of B300-Induced Positive PEs to Poplar Plantation Ages 
The increased CO2 emission by B300 amendment in both the young and old poplar plantation soils 

indicated that soil microbes were activated by B300 (Tab. 3). The positive PEs induced by the B300 were 
considered to be apparent in this study, which was assumed to be a result of increased maintenance 
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respiration due to the activation of dormant microorganisms and was supported by the following indicators: 
(i) The added readily available OC contained in biochar was lower than the initial soil microbial biomass 
carbon (Cmic, 10.8% and 5.22% of Cmic in the young and old poplar plantation soils, respectively), which was 
an insufficient quantity to induce a real PE [36,55]; (ii) The quantity of primed C was lower than that of soil 
Cmic (Tab. 3) [56]. The less available C in young poplar plantation soil (Tab. 1), which primarily resulted 
from less C input from vegetation, such as litter and root [57], was concurrent with the higher B300-primed 
extra native soil-derived CO2 emission when compared with the old poplar plantation soil (Tab. 3). 
Therefore, the soil microorganisms in the studied soils were most probably C or energy-limited, and the 
stronger C-limit or greater activation of soil microbes by B300 was speculated to be responsible for the 
stronger positive PEs in the young poplar plantation soil. The limiting effect of available C on SOC 
decomposition in the subsoil was also reported by [5]. Our interpretation was consistent with [14] who 
found that soil having less easily mineralizable SOM was more susceptible to SOC decomposition through 
the addition of biochar. Furthermore, this interpretation was consistent with [29,58], both of which found 
negative PEs in soils with relatively high mineralizable SOC. Therefore, our results supported the notion 
that the easily available C contained in biochar pyrolyzed at low temperatures could alleviate, to some 
extent, the C- or energy-limit of soil resident microorganisms, and supported the hypothesis that the 
mineralizability of SOC impacts the magnitude and direction of biochar-induced PEs [14]. 

4.3 Effects of B500 on Native Soil-Derived DOC and Implications for the Mechanisms Involved in 
B500-Induced Negative PEs 

It has been commonly suggested that the negative PEs induced by biochar pyrolyzed at high 
temperatures resulted from the decrease of native soil-derived C availability [26,29]. However, the data 
collected in this study did not support this hypothesis. We did not find a significant decrease of native 
soil-derived DOC in the B500-amended soils compared to the CK using 13C isotope tracing (Figs. 3(c) 
and 3(d)). This indicated that the decreased availability of native soil-derived C due to adsorption or soil 
aggregate formation was not responsible for the negative PEs induced by B500. Our finding was 
consistent with [32], who also found that the negative PEs induced by biochars were primarily due to 
reduced microbial activity and biomass instead of adsorption of DOC by biochars. However, our results 
contradicted our previous study in a sandy loam arable soil, where we found that biochar derived from 
corn stover produced at 500ºC significantly decreased native soil-derived DOC [29]. Furthermore, a 
recent study concluded that the sorptive protection of DOC was responsible for the majority of negative 
PEs induced by biochars based on adsorption isotherm experiments, as well as the co-location of native 
SOC on biochar surfaces as shown by nanoSIMs [59]. These inconsistencies might have been due to the 
differences of soil and biochar properties and their subsequent interactions in the reported studies. In this 
study, the small proportion of biochar within the soil matrix might have been responsible for the lack of 
adsorption by B500 [60]. In addition, the relatively higher SOC content (1.40% and 1.45% in the young 
and old poplar plantation soils respectively) in the studied soils might also contribute, since previous 
investigations revealed that the adsorption affinity of biochar decreased with higher solute concentrations 
[60-61]. Therefore, the B500-induced negative PEs were indirectly demonstrated to be due to the change 
of soil microbial community in this study, which warrants further conformation in the future studies. 

5 Conclusions  
Rice straw-derived biochar pyrolyzed at 300ºC and 500ºC induced positive and negative PEs, 

respectively, in amended poplar plantation soils in a coastal area of Eastern China. Young poplar 
plantation soil was more vulnerable to native SOC loss due to stronger C-limit of soil microorganisms 
when amended with biochar pyrolyzed at 300°C. In contrast, the negative PEs induced by biochar 
pyrolyzed at 500ºC were similar in young and old poplar plantation soils. 13C analysis indicated that 
negative PEs induced by biochar pyrolyzed at 500ºC was not due to the decrease of native soil-derived C 
availability. In conclusion, the response of biochar-induced PEs to poplar plantation ages depends on 
biochar’s pyrolysis temperatures while soil available C indirectly affects biochar-induced PEs. 
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