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Abstract: This paper proposes a novel method of lane detection, which adopts VGG16 as 
the basis of convolutional neural network to extract lane line features by cavity 
convolution, wherein the lane lines are divided into dotted lines and solid lines. 
Expanding the field of experience through hollow convolution, the full connection layer 
of the network is discarded, the last largest pooling layer of the VGG16 network is 
removed, and the processing of the last three convolution layers is replaced by hole 
convolution. At the same time, CNN adopts the encoder and decoder structure mode, and 
uses the index function of the maximum pooling layer in the decoder part to upsample the 
encoder in a counter-pooling manner, realizing semantic segmentation. And combined 
with the instance segmentation, and finally through the fitting to achieve the detection of 
the lane line. In addition, the currently disclosed lane line data sets are relatively small, 
and there is no distinction between lane solid lines and dashed lines. To this end, our 
work made a lane line data set for the lane virtual and real identification, and based on the 
proposed algorithm effective verification of the data set achieved by the increased 
segmentation. The final test shows that the proposed method has a good balance between 
lane detection speed and accuracy, which has good robustness. 

Keywords: CNN, VGG16, semantic segmentation, instance segmentation, lane detection. 

1 Introduction 
The installation of the advanced driver assistance system [He, Shan and Song (2018)] 
(ADAS) with lane detection function on the vehicle not only prompts the driver to shift 
the lane in time, but also alerts the nearby vehicle to avoid in time. To a certain extent, 
accidents can avoid. The advanced driver assistance system is designed to help drivers 
work safely. It has many functions such as adaptive cruise control, blind spot detection, 
collision avoidance, and traffic sign detection. In addition, the system also includes the 
functions of lane line detection and lane departure monitoring. Modern cars combined 
with ADAS are becoming more standard. With the rapid development of driverless cars, 
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the automatic lane keeping function in ADAS plays an increasingly important role, and 
the car correctly positioned to travel. In the lane, it provides an important basis for 
subsequent lane departure and trajectory planning decisions. 
This paper proposes a robust lane detection method based on the current mainstream deep 
learning algorithm. This method mainly uses convolutional neural network, in which the 
encoder and decoder structure are added. Based on the existing algorithms, this paper 
improves the Encoder and Decoder parts respectively. The Encoder discards the fully 
connected layer of the VGG16 network and the last 2×2 maximum pooling layer, and the 
Encoder end three-volume layer is set to hole convolution. Decoder has two branches, 
one is the upsampling of Encoder, which implements semantic segmentation. In this 
paper, the indexing function of the pooling layer is used to perform upsampling in an 
unpooling manner. Each upsampling followed by multiple convolutional layers, and the 
standard cross entropy loss function is used to train the segmentation network. The other 
branch is the instance segmentation branch. The network generates the pixel vector is in 
the high-dimensional feature space. The discriminant loss function has combined with the 
semantic segmentation result to realize the instance segmentation. Finally, the instance 
detection of the lane line has realized by fitting. 
In addition, this paper has made a research on the data set of the lane virtual line to 
distinguish the lane virtual reality detection. By increasing the decoder’s semantic 
segmentation of the branch network output, the transition lane line and background are 
transformed into the solid lane. The accuracy and robustness of the dashed verified by 
actual tests, which is the same with the solid line identification of the proposed algorithm. 

2 Related work 
Regarding the detection of lane lines, the traditional method of detecting [Talib and 
Ramli (2015); Li, Long, Ming et al. (2014); Wu, Lin and Lee (2012); Yoo, Yang, Sohn et 
al. (2013)] mainly uses image processing technology to perform edge detection, 
thresholding processing and curve fitting on road images. The main steps are to pre-
process the image, select the Region of Interest (ROI), and perform edge detection. After 
Hough transform, thresholding is performed, and then the result is processed by the 
straight line or curve fit. Common fitting methods mainly include least squares method, 
polynomial fitting, and random sample Consensus (RANSAC) algorithm fitting. Many 
scholars at home and abroad have a lot of research on this. 
In 2014, the literature [Kim and Lee (2014)] proposed a Convolutional Neural Networks 
(CNN) combined with RANSAC lane detection method. Firstly, the original image is 
edge-detected and the lane information is enhanced. Then, in the simple road scene, the 
author thinks that the detection can have completed by using the RANSAC method. For 
complex road conditions such as shadows and fences, it is processed by CNN, the used 
the RANSAC method. The CNN network structure consists of three convolutional layers, 
two downsampling layers, a multi-layer perceptron, and three fully connected layers. The 
edge image of ROI is input, and the CNN network output only contains white lane lines 
and black background. The complexity judgment of the scene depends on the setting of 
the conditional threshold. The requirements of the different scenarios are different. At the 
same time, the CNN network structure is very simple, so the robustness of the whole 
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algorithm is not high. 
The lane line detection [Xiao, Luo, Yao et al. (2018)] is based in part on visual sensors. 
First, the road information captured by the monocular camera on the windshield of the 
vehicle, and then the edge point information is extracted. Then, the lane line selected 
according to the custom parameter space voting method, and combined with the 
Extended Kalman Filter (EKF) pair. The coordinate parameters of the edge points of the 
lane line are tracked and estimated. Finally, the current vehicle position information is 
obtained according to the GPS positioning system, and the lateral offset between the 
vehicle and the current lane line is calculated to realize the early warning function. 
Parameter space voting is a classic method, but it is susceptible to interference points, 
which require high extraction of edge points and does not handle cornering well. 
Traditional lane detection methods [Narote, Bhujbal, Narote et al. (2018)] rely on highly 
specialized, handcrafted features and heuristic constraints, often requiring various post-
processing techniques for optimization, which are extremely unstable due to changes in 
road scenes. 
In 2016, the literature [He, Ai, Yan et al. (2016)] obtained the corresponding top view 
from the front view of the image through the inverse perspective transformation method, 
and the candidate region and the candidate lane line through the hat-weighting filter. The 
double view network architecture of Double View Convolutional Neural Network 
designed, which input the original forward-looking image. The top view corresponds to 
the candidate region into the DVCNN network at the same time, and the last optimal lane 
obtained by using the global optimization function considering information including the 
length, number, probability, direction, and width of the lane line. The combined different 
views improve the accuracy of detection, but it also increases the speed of the algorithm. 
In considering speed, in 2017, Kim et al. [Kim, Kim, Jang et al. (2017)] proposed a fast 
learning algorithm based on Extreme Learning Machine (ELM) convolutional neural 
network and applied it to lane line detection. The input image before lane detection is 
enhanced by eliminating noise and obstacles, which are not related to the edge detection 
result. ELM is a fast learning method for calculating the network weight between the 
output layer and the hidden layer in one iteration. This approach reduces the learning 
time of the network, but the role of the network is focused on image enhancement. 
In 2018, Liu et al. [Liu and Deng (2018)] proposed an RPP model based on single 
convolution visual road detection. Specifically, RPP is a deep full convolution residual 
partition network with pyramid pool. In order to improve the prediction accuracy of the 
KITTI-ROAD detection task, Liu proposes a new strategy by adding road edge tags and 
introducing appropriate data enhancements. It is an effective idea to use the semantic 
segmentation in deep learning to complete the detection of roads or lanes. 

3 Proposed method 
The algorithm is based on the road segmentation and lane detection algorithm [Oliveira, 
Burgard, Brox et al. (2016)], and draws on the use of the discriminant loss function [De, 
Neven and Van (2017)] in LaneNet [Neven, De, Georgoulis et al. (2018)] algorithm and 
the cavity convolution [Yu and Koltun (2016)] applied in the algorithm of DeepLabv1 
[Chen, Papandreou, Kokkinos et al. (2014)] and LMD [Chen, Lo, Hang et al. (2018)]. 
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Void convolution is the replacement of the common convolutional layer of the extracted 
feature part to expand the receptive field. The distinguishing feature of the discriminant 
loss function is that it is easy to integrate into different network structures [Ren, He, 
Girshick et al. (2015)], and the instance segmentation is realized by post-processing. In 
addition, there are some works on image denoising preprocessing presented in previous 
articles [Xiao, Tian, Zhang et al. (2018); Ding, Zhang, Xiao et al. (2018)]. 

3.1 Network structure 
The algorithm adopts the Encoder-Decoder structure mode [Redmon, Divvala, Girshick 
et al. (2016)]. The Encoder part uses the VGG16 network as the base model to extract the 
lane line features, discards the fully connected layer of the VGG16 network, retains only 
the first four 2×2 maximum pooling layers in VGG16, and uses the holes. Convolution 
can expand the characteristics of the receptive field [Liu, Anguelov, Erhan et al. (2016)]. 
In this paper, the 11th, 12th, and 13th layers are set as a cavity convolution with a void 
ratio of 2. Decoder has two branches; one is the upsampling of Encoder, which 
implements semantic segmentation [Chen, Papandreou, Kokkinos et al. (2016)]. It mainly 
uses the index function of the largest pooling layer. It consists of four Upsampling layers 
and ten convolution layers. The Upsampling layer is used to better handle the gradient 
disappearance problem using the activation function ReLU, and the segmentation 
network is trained using the standard cross entropy loss function. The other branch is the 
instance segmentation branch. The segmentation loss function based on the distance 
metric learning is used to implement the instance segmentation on the generated pixel 
vector feature map. Finally, the instance detection of the lane line is completed by cluster 
fitting. The specific network structure and work flow chart are shown in Fig. 1: 
 

 
Figure 1: Network structure and workflow of this paper 

3.2 Encoder 
Encoder is the part of the algorithm network structure to extract image features. Based on 
vgg16, it is mainly composed of convolution layer and pooling layer. The specific 
parameters are shown in Tab. 1. 
 
 

Dilated convolution Max - pooling Upsampling + Relu Softmax Convolution 

Semantic segmentation 

Instance segmentation 
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Table 1: Encoder network structure 

Name Kernel Stride Output 
conv1_1 3×3 1 512×256×64 
conv1_2 3×3 1 512×256×64 

Pool1,max_indices 2×2 2 256×128×64 
conv2_1 3×3 1 256×128×128 
conv2_1 3×3 1 256×128×128 

Pool2,max_indices 2×2 2 128×64×128 
conv3_1 3×3 1 128×64×256 
conv3_2 3×3 1 128×64×256 
conv3_3 3×3 1 128×64×256 

Pool3,max_indices 2×2 2 64×32×256 
conv4_1 3×3 1 64×32×512 
conv4_2 3×3 1 64×32×512 
conv4_3 3×3 1 64×32×512 

Pool4,max_indices 2×2 2 32×16×512 
Dilated conv5_1 3×3 1 32×16×512 
Dilated conv5_2 3×3 1 32×16×512 
Dilated conv5_3 3×3 1 32×16×512 

 
The input training sample resolution is adjusted to 512×256, convoluted with the filter 
bank to generate a set of feature maps, and then they are mass normalized, followed by 
the activation function linear rectification function. Then, the maximum pooling is used 
for 2-x downsampling, and the position of the largest eigenvalue in each pooled window 
is stored for each feature map before downsampling. In the last three convolutional layers, 
the maximum pooling operation is not continued, but a hole convolution [Chen, 
Papandreou, Schroff et al. (2017)] with a hole ratio of 2 is used instead of the ordinary 
convolution operation. Therefore, the resolution of the feature map at the end of the 
encoder network with a 2-x increase, the void convolution can expand the receptive field 
without any additional parameters and computational costs. 

3.3 Remove the fully connected layer 
In many common algorithms, Fully Connected Layers generally follow the convolutional 
and pooling layers, which act as a “classifier”. The convolutional layer and the pooling 
layer map the input raw data to the hidden layer feature space for feature extraction, and 
the fully connected layer maps the learned features to the sample mark space. As shown 
in Fig. 2, the nodes a, b, and c of the fully connected layer are respectively connected to 
the nodes X, Y, and Z of the upper layer, and function to synthesize the previously 
extracted features. Nevertheless, at the same time, in view of the fact that all the nodes 
are connected, the parameters of the full connection layer generally account for the 
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largest proportion in the network structure. For example, in the familiar VGG16, for the 
input of 224×224×3, the first fully connected layer FC6 has 4096 nodes, and the upper 
layer of FC6 is the fifth largest pooling layer with 7×7×512, which has a total of 25088 
nodes, then it means that 4096×25088 weights are needed, which consumes a huge 
amount of memory. 
 

a

b

c

X

Y

Z  
Figure 2: Schematic diagram of the full connection layer 

In the semantic segmentation FCN network and the literature [Oliveira, Burgard, Brox et 
al. (2016)] network, the full connection layer is used, which reduces the filters number of 
the fully connected layer from 4096 to 1024. However, even the parameters of the fully 
connected layer are still redundant. In order to maintain the resolution of the feature map 
and consider the running speed of the algorithm, this paper chooses to discard the 
operation of the fully connected layer directly, thereby greatly reducing the number of 
parameters, and the speed comparison is confirmed by the final comparison experiment. 

3.4 Increase the cavity convolution 
The existence of downsampling makes the running filter have a larger receptive field, 
which is beneficial to collect more context information and improve the accuracy of 
segmentation. However, the result of semantic segmentation requires the same resolution 
as the input, which means that powerful downsampling will require the same powerful 
upsampling. On the other hand, downsampling will also lose edge resolution if the 
feature resolution is reduced. The important spatial information, and the operability of the 
original information for the lost information is greatly reduced. In this regard, the 
proposed and well-conceived cavity convolution [Yu and Koltun (2016)] avoids these 
problems. The cavity convolution provides an effective mechanism to control the field of 
view. It can expand the receptive field of the filter without downsampling to include 
larger Contextual information. 

3.5 Semantic segmentation 
The semantic segmentation [Chen, Papandreou, Schroff et al. (2017); Chen, Zhu, 
Papandreou et al. (2018); Peng, Zhang, Yu et al. (2017)] part mainly realizes the 
segmentation of the lane line and the background. By upsampling the encoder, the output 
has the same resolution as the input data. Upsampling in computer vision generally 
includes three methods, which are namely bilinear interpolation, inverse pooling, and 
deconvolution. The main idea of bilinear interpolation is to perform linear interpolation 
in two directions, respectively. Deconvolution is the inverse of convolution operation. 
Compared with the former two, the parameters in the deconvolution process need to train. 
In theory, if the convolution kernel parameters are set properly, deconvolution can 
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achieve anti-pooling. Anti-pooling operations tend to be more efficient in terms of 
memory usage because they only need to store fewer indexes. The de-pooling and 
deconvolution diagram is shown in Fig. 3, where Fig. 3(a) shows the maximum pooling 
and the corresponding de-pooling operation, and Fig. 3(b) shows the convolution and the 
corresponding deconvolution operation. 
 

 

 

(a) 

 
 (b) 

Figure 3: Comparison of anti-pooling and deconvolution 

The role of semantic segmentation is mainly to provide a mask for instance segmentation. 
The case segmentation involves the post-processing of clustering. If clustering acts 
overall image, it will consume a lot of time, and the mask provided by semantic 
segmentation can ignore the proportion of the scale. Large background information can 
speed up clustering. 

3.6 Data imbalance 
Data imbalance means that the proportion of each category varies greatly. If the data is 
not balanced, such as category 1 accounting for 1% and category 2 accounting for 99%, 
then the network model biased prediction result to category 2 will get the highest. The 
rate is accuracy, but the effect is not good in practical applications. 
To solve the data imbalance problem, the class weight adds to weight the cross entropy, 
as shown in Eq. (1). 
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Among them, p is the probability that the corresponding category appears in the overall 
sample, c  is a hyperparameter, which is set to 1.03. 

3.7 Instance segmentation 
The instance segmentation branch network has realized by discriminating the loss 
function. The discriminant loss function contains three items, which are the variance term, 
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the distance term, and the regular term. Both the variance term and the distance term have 
a certain range of distances, which is manifested in that the embedded pixels are no 
longer subjected to tension when they are within the center vδ  of the cluster, which 
means that the embedded pixels do not have to be aggregated to a single point. Similarly, 
the embedded pixels are no longer subject to thrust when they are farther away from the 
center of the cluster than 2 dδ . Where vδ  and dδ  are the thresholds associated with the 
training samples, based on the distance between the instances. 
The specific calculation of the discriminant loss function is shown in the following equations: 
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Eq. (2) represents the pulling force, and Eq. (3) represents the thrust, C  represents the 
number of instances in the real label, cN indicates the total number of pixels in an 

instance. ix  denotes the embedding vector generated by the pixel i  mapping in the 

example, and cµ  is the center of the embedding vector of the mapping corresponding to 
all the pixels of the instance in the real label, that is, the embedded average value, which 
is calculated by the Eq. (5). Eq. (4) is a regular term to ensure that the distance between 
each cluster center mapped to the feature space and the origin does not become very far. 
Finally, the loss function of the whole algorithm is the weighted sum of the respective 
loss functions of the two branch networks, and the weights are all 0.5. 
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Figure 4: Clustering fit result graph 

As shown in Fig. 4, Figs. 4(a) and 4(b) are effect diagrams after clustering, Figs. 4(c) and 
4(d) are the results after corresponding fitting. It can be clearly seen from the figure that 
the clustering has completed the detection of the lane line [He, Gkioxari, Dollar et al. 
(2017); Kim and Park (2017)], but contains more background information, which can 
more accurately represent the specific position of the lane line after fitting. 

4 Identification of lane lines 
If only the lane line is identified, the final output of the segmentation network actually has 
two types, the lane line, and the image background. After the virtual reality detection 
function is added, the actual output of the segmentation network becomes three categories, 
which are namely the lane solid line, the lane dotted line, and the image background. 

4.1 Building a data set 
The dataset used in this paper is the labelme tool, which uses the monocular camera on 
the windshield of the vehicle to record video in the surrounding area including the high-
speed section to obtain the data material. 50 video clips are sampled every 30 frames for 
each video. The image with no lane line is culled, the image size is 1280×720, and 1800 
images are selected as the training set, and the data set is increased by random left and 
right flip. 

4.2 Identification process 
The algorithm in this paper uses the semantic segmentation method. It only needs to change 
the last output channel of the semantic segmentation from the original 2 channels to 3 
channels to increase the recognition of a category. The specific operations are as follows: 
(1) Change of data set: As shown in Fig. 5, in the Fig. 5(a), all the lane line pixel values are 

（a） （b）

（c） （d）
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255, and the pixel value is 0 for the background and in the Fig. 5(b), the pixel value is 255. 
The dotted line indicates that the pixel value is 100 for the solid line; the pixel value for 0 
indicates the background. The training data Fig. 5(d) is corresponding to the example 
segmentation and the original Fig. 5(c) do not need to be changed. In actual training, 0, 1, 
and 2 correspond to the category background, solid line, and dotted line respectively. 
 

 
Figure 5: Virtual and real identification data set 

(2) Algorithm change: The last convolutional layer of the semantic segmentation branch 
network adds an output channel; the feature vector of the lane dotted line and the lane 
solid line are respectively obtained on the instance segmentation map by the semantic 
segmentation mask map. 
The final lane virtual recognition effect is shown in Fig. 6. 
 

 
Figure 6: Lane virtual reality recognition effect map 

Fig. 6(a) shows the original image to detect, and Fig. 6(b) shows the effect of the lane 
virtual reality recognition. The solid line drawn in the figure indicates the actual lane solid 
line, and the dotted line indicates the actual lane dotted line. As shown in Fig. 6, the 
effectiveness of the proposed algorithm in the lane virtual identification function is verified. 
 
 

(a) (b)

(c) (d)

(a) (b)
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5 Experimental results 
5.1 Experimental environment and network parameters 
The experimental software environment of this article includes ubuntu16.04 (x64), 
python3.5, cuda-9.0, cudnn-7.0, TensorFlow 1.10. Hardware platform: GTX-1060GPU 
6g memory. The processor is intel(R)core(TM)i5- 6500M CPU@3.20GHZ. 
The parameters involved in this algorithm mainly have learning rate, the size is set to 
0.0001, the training sample image resolution is 512×216, and the batch size is set to 4. The 
size of the Batch size cannot have continued by the limitation of GPU memory. The 
experimental data set respectively is a KITTI dataset and a self-made dataset. The KITTI 
dataset does not distinguish between virtual lanes and real lanes. The self-made dataset is 
used for lane virtual reality detection. The corresponding embedded pixel mapping feature 
spatial dimensions are 3 and 4, respectively, dδ  set to 3, vδ  set to 0.5. A suitable neural 
network optimization algorithm helps the model to produce better and faster results. 

5.2 Experimental results and analysis 
The algorithm is used to test the video sequences in various environmental scenarios, 
including daytime, high-speed, night, rainy days, and so on. These scenes also include 
corners, vehicle interference, occlusion, strong illumination, ground strip interference, 
and so on. In the complicated road conditions, 8 sets of video were used and the 
algorithm running speed and accuracy were used as evaluation criteria.  
The test results are shown in each scene of the self-made data set, different colors 
represent different lane instances, solid lines indicate solid lanes, and dashed lines 
indicate lane dashed lines. 
 

 
(a)                                          (b)                                         (c) 

Figure 7: Test results in different environments: (a) Test results of curved road sections; 
(b) Test results of rainy days; (c) Test results of night 

Fig. 7 shows the lane line recognition of good road conditions in different environments. 
Fig. 7(a) shows the correct detection results of the lanes of the multi-vehicle road 
segment, and lane line recognition. Fig. 7(b) shows the corners. The lane line is accurate 
detection results, which includes the effect of lane line detection in the rainy environment 
[Xiao, Zou, Chen et al. (2018)], and Fig. 7(c) shows the result of lane line recognition in 
the night environment. 
Open source dataset test results: different colors represent different lane instances, solid 
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lines indicate solid lanes, and dashed lines indicate lane dashed lines. 
 

 
Figure 8: Test results of Tucson dataset 

Fig. 8 shows the materials of the Tucson dataset are taken from the highway, but it is not 
easy to detect. The difficulty lies in the serious wear of the lane line, and the lane line 
features are not obvious, but the detection result of the algorithm is better. 
 

 
Figure 9: CULane data set test results 

Fig. 9 shows the resolution of CULane dataset is relatively large, and it contains the 
interference information of many vehicle heads. In the case of good road conditions, the 
algorithm can still accurately identify the lane line. 
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Figure 10: KITTI dataset detection 

Fig. 10 shows the KITTI dataset provides two types of markings, the road, and the 
current lane. It is mainly used for the segmentation of the vehicle’s travelable area. The 
lane line mainly exists in the middle of the road [Behrendt and Witt (2017)]. The method 
accurately identifies the lane line. 

6 Conclusion 
This paper proposes a robust lane detection method based on the current mainstream deep 
learning algorithm. The algorithm tested by different datasets and lanes in different 
weather environments, the accuracy and robustness of the proposed algorithm are verified. 
In the algorithm comparison experiment, the detection speed of the algorithm is faster 
than the algorithm in ref. [Oliveira, Burgard, Brox et al. (2016)], and the corresponding 
accuracy is almost the same, only about 1.39%. In contrast to the traditional method 
based on voting of ref. [Li, Zhou, Li et al. (2018)], the algorithm is much slower in 
detection speed, but it is much higher in detection accuracy, especially for the detection 
of false real lane lines and the detection of corners. To achieve effective detection, in 
contrast, the algorithm using deep learning does not have these problems, and can 
achieve accurate detection. 
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