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Abstract: A multi-scale damage model of concrete is proposed based on the concept of 
energy equivalent strain for generic two- or three-dimensional applications. Continuum 
damage mechanics serves as the framework to describe the basic damage variables, 
namely the tensile and compressive damage. The homogenized Helmholtz free energy is 
introduced as the bridge to link the micro-cell and macroscopic material. The crack 
propagation in micro-cells is modeled, and the Helmholtz free energy in the cracked 
micro-structure is calculated and employed to extract the damage evolution functions in 
the macroscopic material. Based on the damage energy release rates and damage 
consistent condition, the energy equivalent strain is used to expand the uniaxial damage 
model to the multi-dimensional damage model. Agreements with existing experimental 
data that include uniaxial tensile and compressive tests, biaxial compression and biaxial 
peak stress envelop demonstrate the capacity of the multi-scale damage model in 
reproducing the typical nonlinear performances of concrete specimens. The simulation of 
precast laminated concrete slab further demonstrates its application to concrete structures. 
 
Keywords: Concrete, multi-scale, damage, energy equivalent strain. 

1 Introduction 
In the past decades, several continuum damage models [Faria, Oliver and Cervera (1998); 
Ju (1989); Krajcinovic and Silva (1982); Mazars and Pijaudier-Cabot (1989); Simo and 
Ju (1987); Wu, Li and Faria (2006)] were developed based on the continuum damage 
mechanics (CDM) framework. The continuum damage models have been applied to 
various engineering problems [Feng, Ren and Li (2018); Feng and Li (2015)], whereas 
the damage laws are somehow empirical. It is widely accepted that the damage of 
concrete is related to its complex microstructural behaviors, resulting from the 
development of micro-cracks and intrinsic interaction between cracking and plasticity. 
Therefore, the multi-scale modeling approach has been introduced to link the microscopic 
cracking process and the corresponding macroscopic damage law. Based on multi-scale 
modeling, the macroscopic constitutive equations are usually defined under the CDM 
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framework, while the damage variables and damage laws are obtained from the 
simulation of microstructures.  
Stemming from the fundamental work of representative volume element (RVE) and 
homogenization [Hill (1984)], a number of multi-scale damage models [Bosco, 
Kouznetsova and Geers (2015); Dascalu, Bilbie and Agiasofitou (2008); Fish, Yu and 
Shek (1999); Sun and Li (2015)] had been brought by homogenization approach, among 
which the damage laws are particularly essential since they provide reliable descriptions 
of overall material degradation caused by the development of micro-defects. In order to 
simplify the homogenization process, Helmholtz free energy (HFE) bridging [Ren, Chen, 
Li et al. (2011)] was introduced to link the macro- and microscopic material properties 
for quasi-brittle material, such as concrete and rock. Chen et al. [Liang, Chen, Li et al. 
(2017); Lin, Chen and Liang (2016)] thoroughly studied the properties of the multi-scale 
damage model and evaluated the macrosopic concrete mechanical properties and 
microscopic random variations. Admittedly, these models incorporated the uniaxial 
multi-scale damage law into the CDM framework. Nevertheless, under the multi-
dimensional loading conditions, it is numerically expensive to perform micro-cell 
analysis for all the stress states to attain the damage evolution. As a consequence, the 
damage evolution laws from uniaxial load in the aforementioned papers limit the 
application of the multi-scale damage model in the non-linear analysis of concrete 
structures, where most structural members are under multi-dimensional stresses. 
In this paper, we are aiming at providing a multi-scale damage model of concrete which 
is applicable for multi-dimensional stress states. The paper is organized as follows. In 
Section 2, we consider the energy release rate based plastic damage model as the 
continuum damage framework. Two scalar damage variables, namely the tensile and 
compressive damage, are introduced, and each of them related to the basic degradation 
mechanisms of tension and shear. The decomposition of the effective stress enables us to 
define elastic HFE. The evolution law for plastic strains describes the plastic HFE, by 
which the total HEF and damage energy release rate can be acquired. In Section 3, the 
damage evolution law of the concrete is developed by the homogenization method and 
the multi-scale energy bridging from the micro-cell analysis. In Section 4, we apply the 
energy equivalent strain to bridge the gap between the damage law from the uniaxial 
micro-cell analysis and multi-dimensional damage model. Section 5 is devoted to the 
generation of micro-cell of concrete, in which the random distribution of multi-phases 
such as aggregates and mortar is represented by the two-phase random field. The 
cohesive crack model is considered as the tool in the micro-cell simulation, due to the 
highly nonlinear and discontinuous performance in the cracking process. In Section 6, the 
predictive capabilities of the model are assessed by means of numerical simulations, 
including the numerical verification on uniaxial tensile and compression tests, biaxial 
tests, biaxial peak stress and reinforced laminated concrete slab. Agreements between the 
numerical and the experimental results not only verify the proposed model but also reveal 
its application to two and three dimensions. 
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2 Continuum damage framework 
2.1 Decomposition of effective stress 
In CDM, concrete is considered as a homogeneous material, whereas the stiffness 
degradation caused by the micro-cracks are represented by a series of damage variables. In 
this case, proper damage variables that meet the experimental observation should be 
selected firstly. It is widely accepted that the degradation of concrete properties such as 
stiffness and strength are caused by tensile damage under tension. While under 
compression, there exist no tensile stress in the deviatoric space, the compressive failure of 
concrete is induced by the development of shear cracks rather than the compressive stress 
[Resende (1987)]. It is also observed that the strength of the concrete is increased greatly 
under triaxial compression due to the confinement of the shear cracks. Therefore, the 
damage is activated by the shear damage mechanism under compression [Resende (1987)]. 
Continuum  damage  mechanics  is  based  on  the  thermodynamics  of  irreversible  
processes [Lubliner (1972)]. As the foundation of the constitutive model, the effective 
stress concept [Simo and Ju (1987)] serves as the extension of the “net area” assumption. 
The continuum effective stress σ  in the damaged material with the consideration of the 
elastoplastic behavior can be assumed as 

 0 0: :e p  σ C ε C ε ε   (1) 

where 0C  is the fourth-order isotropic linear-elastic stiffness;  ε  , eε  and pε  indicate the 
total strain, elastic strain and plastic strain tensor, respectively.  
In order to clearly distinguish stress contributions due to tension or compression, 
thereafter to produce independent tensile and compressive damage, the decomposition of 
the effective stresses [Faria, Oliver and Cervera (1998); Ortiz (1985); Wu, Li and Faria 
(2006)] are given in Eqs. (2) and (3) as 

: σ P σ   (2) 

:    σ σ σ P σ   (3) 
where P and P  are the fourth-order projection tensors. The expression of P and P   
[Faria, Oliver and Cervera (1998)] can be provided as 

  i ii ii
i

H σ  P p p


  (4) 

  P I P   (5)
 

where I is the fourth-order identity tensor;  iH σ


 is the Heaviside function computed 

for the i -th eigenvalue iσ


 . 

And the second-order symmetric tensor ijp  is defined as  

 1
2ij ji i j j i    p p n n n n

  (6) 
where in  is the i -th order normalized eigenvector corresponding to iσ



. 
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Substitute the effective stress of Eqs. (2) and (3) into the definition of HFE, the initial 
elastic HFE can be written as 

 0 0 0
1 1 1: : :
2 2 2

e e e e e e eψ ψ ψ       ε σ ε σ ε σ ε   (7) 

Considering the tensile and compressive damage definition, the damaged elastic HFE can 
be defined as 

     , , , ,e e e e e ed d d dψ ψ ψ      ε ε ε   (8) 

where the corresponding eψ   and eψ   are defined as 

    0, 1e e ed dψ ψ    ε   (9) 

2.2 Constitutive equations 
For a constitutive law to be established, the total HFE potential can be defined as the sum 
of elastic HFE eψ  and plastic HFE pψ  as  

     , , , , , , , ,e e e p ed d d d d dψ ψ ψ      ε ζ ε ε ζ   (10) 

where ζ denotes a set of plastic parameters.  
Differentiating equation with respect to time, one gets 

:
e p

e
e d d

d d
ψ ψ ψ ψψ + −

+ −

∂ ∂ ∂ ∂
= + + + ⋅
∂ ∂ ∂ ∂

ε ζ
ε ζ

 

    (11) 

According to the second principle of thermodynamics, for any purely isothermal 
mechanical process, the Clausius-Duheim inequality has to be fulfilled  

: 0γ ψ= − + ≥σ ε     (12)
 

The assumption that the damage and plastic unloading are irreversible processes is 
applied to represent the thermodynamic conditions as 

e

e
ψ∂
∂

σ =
ε

  (13) 

0d d d
d d
ψ ψγ + −
+ −

∂ ∂ = − + ≥ ∂ ∂ 
 

   (14) 

: 0
p

p p ψγ ∂
= − ⋅ ≥

∂
σ ε ζ

ζ
   (15) 

Substituting Eqs. (7)-(9) into Eq.  (13), it yields 

( ) ( ) ( ) ( ) ( )01 : 1 : : : :
e

p
e d dψ + + − −∂
= − + − − − −

∂
σ = P σ P σ = I D σ = I D C ε ε

ε
  (16) 
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where D  is the fourth order damage tensor with the expression ( )d d+ + − −= +D P P . It can 
be seen in Eq. (16) that the evolution of both damage and plastic strain should be 
calculated for the integration of constitutive relationship. 
By the observation of Eq. (16), the tensile and compressive damage energy release rates 
(DERRs) can be defined as Y +  and Y − with the expressions as [Wu, Li and Faria (2006)] 

 0 0 0 02 : :Y E E
d
ψ ψ  



  


σ Λ σ   (17) 

0 0 1 2/ 3Y = b I J
d
ψ ψ ϕ 



  


  (18) 

where 0Λ  is the fourth-order compliance tensor; 1I  is the first invariants of  effective 
stress σ ; 2J is the second invariants of s (the deviatoric components of σ ); 0b  is the 
material parameter. Parameter ϕ  is related to the ratio between the yield strengths under 
equal-biaxial and uniaxial compression ϑ  (usually taken as 1.16) as 

1
2 1
ϑϕ
ϑ





  (19) 

According to the thermodynamical principles, consistent damage laws are based on Y   
in a group of damage models and DERRs are considered as the conjugated forces to the 
damage variables. 

2.3 Plastic strain evolution 
Li et al. [Li and Ren (2009)] proposed a practical plastic evolution model with the 
coupling of plasticity and damage as 

 1
0 0: : :p Fε C D C ε   (20)

 

where  F D  is a forth-order tensor function of damage scalars and takes the form 

     p pF f d f d      D P P   (21)
 

A linear function of the function pf   is adopted as 

 p pf d dζ      (22) 

The plastic parameter pζ
  matches the criteria 

0 1pζ
    (23) 

Since the multi-scale damage representation is the main concern in this study, the 
empirical plastic strain evolution is applied for the simplicity of the model. The 
theoretical models such as “effective stress space plasticity” [Ju (1989)] can also be 
resorted to establish the evolution laws for the plastic strain. 
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3 Multi-scale damage representation 
For the integrity of the constitutive law, evolution of the plastic strain has been 
formulated in Section 2.3, whereas the damage evolution should be determined to 
account for the degradation of the mechanical properties. Initiating from the development 
of the micro-defects (micro-cracks, micro-voids, etc.), the damage should be studied and 
investigated on micro-scale [Bazant and Planas (1997)].  

3.1 Multi-scale energy bridging 
Introduce 1 2( , )x x=x   and 1 2( , )y y=y  to indicate the macroscopic coordinate and the 
microscopic coordinate in a 2-D problem, the transformation between x  and the y   
could be defined by a parameter λ  as 

λ


yx   (24) 

As depicted in Fig. 1, the domain Ω  and the boundary Γ  are considered on the macro-
scale. Within the Ω , the micro-cell yΩ  contains a distribution of arbitrary micro-cracks. 

cΓ  indicates the sum of all the micro-void/crack surfaces. When it comes to the concrete, it 
is generally considered as a kind of a homogeneous material on macro-scale, which is 
demonstrated as domain Ω . However, the randomly distributed heterogeneities in concrete 
micro-structures (aggregates, cement, etc.) and defects (micro-cracks and micro-voids) are 
too big to neglect comparing to micro-cell sizes. Thus, we consider the micro-cell as a 
heterogeneous material with micro-cracks in it. It is believed that the micro-cell should 
contain sufficient microscopic information and its size should not be too small. As the 
foundation of multi-scale analysis, the representative volume element (RVE) and its 
properties [Hill (1984); Ostoja-Starzewski (2006)] are also considered in the present paper. 

h

cΓ

x y

tΓ
t

Ω
Ω yuΓ

Γ
 

Figure 1: Macro structure and micro-cell 

According to the aforementioned two-scale description of the material, the equilibrium 
equation without body forces and boundary conditions contain the information both on 
micro-scale and macro-scale as 

0λσ =  in Ω   (25) 
λ  σ n t  in tΓ   (26) 
λ u u  in uΓ   (27) 
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λ  σ n h  on cΓ   (28) 

where λσ  is the total stress; superscript “λ ” is the total solution combines the coarse and 
fine scale; n  is the surface normal vector; λu  is the total displacement; u  is the 
prescribed displacement on the surface uΓ ; t  is the surface traction on tΓ  and h  is the 
surface traction on cΓ .  
Based on the homogeneous definition on macro-scale, the homogenized stress and stain 
are defined based on the tractions and displacements prescribed on the outer boundary of 
the micro-cell as follows 

 1 d
yyV

λ Ω


 σ t x


  (29) 

 1 d
2 yyV

λ λ Γ


   ε u n n u


  (30) 

where yV  is the volume the micro-cell. Since concrete is considered as a homogeneous 
material in the CDM framework, the definition of homogenized stress and strain in Eqs. 
(29) and (30) is consistent with the definition of the stress and strain in CDM. The same 
notations σ , ε  are used both for the homogenized stress and strain herein and the stress 
and strain in CDM framework. 
To consider the heterogeneities on micro-scale, we introduce the averaged stress and 
strain of a micro-cell as 

1 d
yyV

λ λ

Ω
Ω σ σ   (31) 

1 d
yyV

λ λ

Ω
Ω ε ε   (32) 

Substituting Eq. (31) into Eq. (29), we can attain the relationship between the average 
stress and homogenized stress 

 

1 d

1= d

y

c

y

y

V

V

λ λ

λ

Ω

Γ

Ω

Γ



 







σ σ

σ t x

σ


  (33) 

Inserting Eq. (32) into Eq. (30), the relationship between average strain and homogenized 
strain is as follows: 

 

1 d

1 d
2

y

c

y

y

V

V

λ λ

λ λ

Γ

Ω

Γ




     





ε ε

ε n u u n


  (34) 
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With the micro-cracks in the domain, the homogenized strain contains two parts: the 
average strain which is the same as the elastic domain and the additional strain induced 
by the displacement discontinuity across the crack surfaces.  
After the definition of homogenized and averaged stress and strain on macro- and micro-
scale, a micro-crack informed damage representing framework [Ren, Chen, Li et al. 
(2011)] is adopted in this manuscript to obtain the macroscopic damage evolution from 
the cracked micro-cell. Taking the relationship between the homogenized and averaged 
stress and strain into the HFE definition, the multi-scale energy bridging [Ren, Chen, Li 
et al. (2011)] is given as (see Appendix A for detailed derivations based on the 
divergence theorem) 

1 :
2
1 1: d d

2
1 1d d

2

y c

y c

e

y

y

V

V

λ λ λ

λ λ

ψ

ε

ψ

Γ

Γ

Ω Γ

Ω Γ







      
      

 

 

σ ε

σ u h

u h





  (35) 

As implied in Eq. (35) that the homogenized HFE is equal to sum of averaged HEF and 
the energy brought by the micro-cracks in a micro-cell.  
Recalling the definition of the tensile and compressive damage in Eq. (9), we can rewrite 
the damage as 

0

1
e

ed ψ
ψ




    (36) 

In the application, the uniaxial tensile and shear loads, which represent the tensile and 
compressive damage correspondingly, can be applied to the micro-cell for the tensile and 
compressive damage evolution curves.  

3.2 Tensile damage variable 
As mentioned in Section 2.1, the micro-cell under uniaxial tension can be formulated to 
obtain the tensile damage evolution curve, in which 0 0eψ − = , 0d − = . The uniaxial tension 
applied on the micro-cell is given in Fig. 2. 
 

 

Figure 2: Uniaxial tension 

The tensile damage can be expressed as 
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( )
0

1
e e

ed
ψ
ψ

+
+

+= −
ε

  (37) 

where the tensile HFE eψ +  is obtained by multi-scale energy bridging in Eq. (36), 0
eψ +  is 

the elastic tensile HFE. 

3.3 Compressive damage variable 
It is emphasized before that the compressive damage is actually brought about shear 
damage mechanics. Hence, in order to attain the compressive damage, the shear should 
be applied to the micro-cell. The micro-cell under pure shear can be formulated to obtain 
the shear damage evolution curve, in which 0 =0ψ  , 0d  . The boundary condition of 
micro-cell is depicted in Fig. 3. 

 
Figure 3: Pure shear 

The shear damage can be expressed as 

( )
0

1
s

s

e e

s ed
ψ
ψ

= −
ε

  (38) 

where the shear HFE seψ  is obtained by multi-scale energy bridging in equation, 0
seψ  is 

the elastic shear HFE. 
Noting that the shear damage sd  cannot be interpolated in Eqs. (9) and (37) as the 
compressive damage, a relationship between the compressive damage variable and shear 
damage variable should be established. Under uniaxial compression, the damage 
evolution caused by crack development in the micro-cell is shown in Fig. 4. 

 

σ σ

 

Figure 4: Crack under compression 
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Assuming that the angle between the compression and main crack is α , we can 
transform the coordinate xy  to ' 'x y  as 

( )

2

2

' cos

' sin

' sin 2 2

x

y

σ σ α

σ σ α

τ σ α

 =


=
 =

  (39) 

where 'xσ , ' yσ  and 'τ  are the stresses in ' 'x y .  

The corresponding normal strain is obtained as 

2 2

2 2

1' [ cos sin ]

1' [ sin cos ]

x

y

E

E

ε σ α νσ α

ε σ α νσ α

 = −

 = −


  (40) 

where ν  is the Poisson’s ratio. 
While, the damage should be considered with shear strain as 

(1 )sd Gτ γ= −   (41) 

where G  is the shear modulus. 
Back to xy  coordinate, it yields 

( )
2 2

2

1 11 sin 2 sin 2
2 2 1

11 sin 2
1 2

v v
E Ed

d v
d E

σ σε α α

σα

−

−

−

 + + = − +    −    
   +

= +  −  

  (42) 

Eq. (42) can be simplified as 

(1 )d Eσ ε−= −   (43) 

(1 )
1

s

s

dd
d

β
β

− −
=

−
  (44) 

211 sin 2
2

vβ α+
= −   (45) 

With substitution the shear damage sd  into Eq. (44), the compressive damage can be 
attained.  

4 Multi-dimensional damage law 
Indeed, the most accurate way to obtain the damage under multi-dimensional stress state 
is the simulated strain-damage curve directly from the micro-cell analysis under the same 
stress-state. In other words, we can obtain exactly the same energy dissipation, which can 
be represented by the damage for each stress state from the micro-cell simulation rather 
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than introducing the simplification and empirical assumption. In the engineering 
problems, especially for the structures under multi-dimensional loads, it is difficult to 
perform micro-cell analysis for all the stress states to attain the damage evolution. Hence, 
in this section the energy equivalent strain is introduced to link the uniaxial damage law 
from micro-cell analysis to the multi-dimensional continuum damage model.  
Under CDM framework, authors in this paper utilize the energy equivalent strain into the 
multi-scale damage model which can be considered as the expansion of the energy 
equivalent strain. A general form can be given to represent the relationship between the 
damage and DERRs as 

( )d g Y± ± ±=   (46)
 

Eq. (46) implies that the damage will be the same if the DERRs are the same, no matter 
the uniaxial or multi-axial loads are applied to the concrete. Eq. (46) is called damage 
consistent condition [Li and Ren (2009)]. 
Let us recall the DERRs in Eqs. (17) and (18) and rewrite them as 

( ) ( ) ( )1 2 3, ,e e e eY Y Y Y ε ε ε± ± ± ±= = =σ ε   (47) 

Actually, for the uniaxial loading ( )2 30; 0σ σ= = , Eq. (17) and are converted to 

0
eY E ε    (48) 

  01 eY Eϕ ε     (49)
 

Under the damage consistent condition, for any multi-axial stress state, there exists a 
uniaxial stress state that has the same DERRs as 

( ) ( )1 2 3, ,e e e e
qY Y Yε ε ε ε± ± ±= =   (50) 

where e
qε   is the energy equivalent strain. 

Substituting Eqs. (48) and (49) into (50), we can address the expression of the energy 
equivalent strain as 

0

e
q

Y
E

ε
+

+ =   (51) 

( ) 01
e
q

Y
E

ε
α

−
− =

−
  (52) 

Replacing eε of tensile and shear given in Eqs. (37) and (38) by energy equivalent 
strain e

qε
+ , we can interpolate the uniaxial damage curve into the multi-dimensional CDM 

framework.  

5 Micro-cell simulation approach 
Under the multi-scale damage representation given in Section 3, the essential step in 
obtaining the damage evolution functions is the micro-cell analysis. In the present study, 
the cohesive element is adopted to model discontinuities in the cracking process. In order 
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to capture the heterogeneous micro-structure of concrete, fracture property (fracture 
energy) of the micro-cell is represented by the random field approach.  

5.1 Random cohesive model 
Since the initiation, development and coalescence of micro-cracks are highly irregular 
and random, the random cohesive model is generated to simulate the cracking process of 
concrete [Li and Siegmund (2004); Liang, Ren and Li (2018, 2012)]. As depicted in Fig. 
5, each Delaunay triangle is directly modeled by a linear displacement based finite 
element, while zero-thickness cohesive elements are inserted between each finite element. 
Due to the strong nonlinearities introduced by the cracking process, we choose ABAQUS 
Explicit solution algorithm to get the integration of the cracking process. The numerical 
model of the uniaxial tensile micro-cell and its boundary conditions are given in Fig. 5. 
And the corresponding pure shear micro-cell can also be formulated by changing its 
boundary conditions. 

 
Figure 5: Numerical model of micro-cell 

The fracture behaviors are described by the linear decay cohesive law (Fig. 6), with 
which the cohesion on the crack tips can be solely determined by the maximum cohesive 
stress tf   and the cohesive energy fG .  

 
( )σ τ

w

( )t tf τ

1 2( )w w  
Figure 6: Linear decay cohesive law 

where w  is the crack opening displacement,  1 2w w  is the maximum width of the cracks.  
Introduce the fracture energy as an intrinsic property of concrete, and specify its 
formulation as 

1

0

w

fG fdw    (53) 

Apparently, for the f w  diagram shown in Fig. 6, fG  can be expressed as 
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1 2 /f tw G f   (54) 

As for the shear fracture (Model-Ⅱfracture), the cohesive stress can be expressed as the 
function of crack shear displacement (Fig. 6). Then the shear fracture energy sG  is 
introduced for Model-Ⅱ fracture and the cohesive stress can be obtained as the Model-Ⅱ
fracture.  

5.2 Random field representation for fracture energy 
Since the damage evolution is brought by the development of micro-cracks, the fracture 
energy is the primary parameter in the cracking process. Thus, the fracture energy is 
modeled as a random field to capture the heterogeneities of concrete. 
In order to represent the random distribution of aggregates and mortar in concrete, a two-
phase random field is generated by Hermite polynomial expansions [Ilango, Sarkar and 
Sameen (2013)], which transfers the original stochastic harmonic function [Chen, Sun, Li 
et al. (2013)] based Gaussian random field into two-phase random field. The fracture 
energy is chosen as the two-phase random field as 

if  is in the strong phase (aggregate)
( )

      if  is in the weak phase (mortar)f

A
G

B


x  
x

x  
  (55) 

where ( )1 2,x xx  is a 2-D vector which indicates the position; A  and B  are the value of 
fracture energy of aggregates and mortar, respectively. 
Define the probability of strong phase as ρ , and the probability of weak phase can be 
easily calculate as 1 ρ− . From the above definition, we can see that strong phase of 
concrete has a probability equal to the ratio of aggregate as ρ , and weak phase has the a 
probability equal to the ratio of mortar as  1 ρ .  

2 2
2 1 2

1 2 1 2
1 2

( , ) exp , ,ZZR x x
b b
ξ ξξ ξ σ

                               
  (56) 

where 1ξ , 2ξ  are the separation distances along the 1x  and 2x  directions respectively;  
and 1b  , 2b   are the correlation length with 1x  and 2x . 
In the multi-scale analysis of this paper, the microscopic as well as the macroscopic 
parameters are from experimental results [Ren, Yang, Zhou et al. (2008)]. As for the 
random field of micro-cell, the ratio of the aggregate is =0.451ρ , according to 
experimental mix proportion. The fracture energy of aggregates and mortar are 

180N/mmA  and 60N/mmB  . The correlation length is chosen as the maxim aggregate 
size with 1 2 8mmb b  . By the aforementioned procedure, 100 samples are generated 
and 2 samples are given in Fig. 7. 
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  (a) sample 1                                                (b) sample 2 

Figure 7: Random samples of fracture energy 

5.3 Micro-cell simulation results 
According to the test results, the material properties of Young’s modulus and Poisson’s 
ratio are =37559MPaE , =0.2ν . The tensile strength of the matrix is 3.25MPatf  . The 
crack propagation in a micro-cell at different loading stages under uniaxial tension and 
pure shear are shown in Figs. 8 and 9, where uε  denotes maximum strain. 

                     
(a) =0.2 uε ε                                  (b) =0.7 uε ε                                     (c) = uε ε   

Figure 8: Crack propagation of micro-cell under tensile test (Sample 23) 

                     
(a) =0.2 uε ε                                  (b) =0.7 uε ε                                     (c) = uε ε   

Figure 9: Crack propagation of micro-cell under pure shear (Sample 23) 
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Then the homogenized stress-strain relationship and damage evolutions of each micro-
cell can be obtained by Eqs. (33), (34), (37) and (38). The samples of tensile 
homogenized stress and mean value of damage variable are depicted in Fig. 10. Similarly, 
the samples of shear homogenized stress and damage variable are demonstrated in Fig. 11. 
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(a) homogenized stress-strain                        (b) tensile damage curves 

Figure 10: Tensile homogenization results 
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(a) homogenized stress-strain                          (b) shear damage curves 

Figure 11: Shear homogenization results 

6 Model verification 
To illustrate the applicability and effectiveness of the proposed model, several numerical 
examples of various loading conditions of concrete are presented in this section. 

6.1 Uniaxial test results 
The experimental data for the high performance concrete [Ren, Yang, Zhou et al. 
(2008)] are used to calibrate the multi-scale damage model. The concrete samples, 
with the dimension of 150 mm 150 mm 50 mm  , under uniaxial and biaxial loading 
are investigated in this paper. Since the CDM framework has been applied in the 
macro-scale analysis, the material involving in the simulation both for the uniaxial and 
biaxial tests are chosen based on the experimental identification as =37559 MPaE , 

=0.2ν , =1.16ϑ , + =0.2pξ  and =0.9pξ
 . The mean curve of tensile and shear damage 

evolution in Section 6.1 is used in the uniaxial test, correspondingly. It is observed 
from Figs. 12 and 13, predictions from the numerical model agree well with the 
experimental data both for uniaxial tensile and compressive tests, especially for the 
post-peak nonlinear softening branches.               
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Figure 12: Uniaxial tensile test 
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Figure 13: Uniaxial compressive test 

6.2 Biaxial test results 
The capacity to predict the multi-axial behavior of the multi-scale damage model is also 
verified by the biaxial compressive tests reported by Ren et al. [Ren, Yang, Zhou et al. 
(2008)]. In the biaxial compressive concrete simulation, the same material parameters are 
adopted as the uniaxial tests. Fig. 14 depict the both the experimental data and the 
numerical results for different strain ratio ( 2 1/ 0.1;  0.4;  1ε ε = ). 
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(a) Biaxial compressive test ( 2 1/ 0.1/ 1ε ε = − − ) 
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(b) Biaxial compressive test ( 2 1/ 0.4 / 1ε ε = − − ) 
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(c) Biaxial compressive test ( 2 1/ 1/ 1ε ε = − − ) 

Figure 14: Biaxial compressive tests 

As shown in Fig. 14, the present multi-scale damage model can capture the stress-strain 
behavior of concrte when comparing with the experimental data under the primary 
loading direction. However, there exists a rehardening after the softenning stage under 
the secondary loading direction by the experimental observation in Fig. 14(b). To the best 
knowledge of the authors, this rehardening is possibily attributed to the complex 
combination of residual stress of the unloading stage and the shear dilation involving in 
the concrete. Since the physical priciple of the this rehardening is still unclear, some 
further studies should be carried from the micro-scale simulation to emplify the given 
multi-scale damge model. 

6.3 Biaxial envelop 
The data for the biaxial envelop is from the well-documented experimental results  
[Kupfer, Hilsdorf and Rusch (1969)]. Based on the aforementioned multi-scale 
simulation, the biaxial peak stress envelop can be simulated.  
To illustrate the difference between the energy equivalent strain provided in this paper 
and the classical definition of equivalent strain, a similar but distinct equivalent strain 
notion from Mazars [Mazars (1986)] is given, herein. As for the bi-axial stress, the tensile 
and shear damage are intrigued by the tensile and compressive strain, respectively. 
Therefore, the equivalent ˆeε + and ˆeε −  are given as 

 
2 2

1

ˆ
2

e e
i ie e e

i i
i

ε ε
ε ε ε  




    (57) 
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 
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1

ˆ
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e e
i ie e e

i i
i

ε ε
ε ε ε  




    (58) 

where e
iε  are the principle elastic strains. 

The comparison between the experimental data and the simulation results is demonstrated 
in Fig. 15.  
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Figure 15: Biaxial peak stress envelop 

It should be noted that the ratio between the tensile and compressive strength for the high 
performance concrete in this simulation is less than the ordinary concrete in the 
experiment. Therefore, the overall simulation results for biaxial envelop under the 
tensile-compressive loading and biaxial tensile loading is slightly less than the 
experimental results. However, the similar trends under the tensile-compressive loading 
and biaxial loading show the good agreement of the simulation results and experimental 
results. Meanwhile, as for the bi-compressive part, the agreement between the simulation 
and test results validate the multi-scale damage model. It is also demonstrated in Fig. 15 
that the bi-compressive behavior of the concrete is well captured by using the energy 
equivalent strain when compare to the equivalent strain results. 

6.4 Precast laminated concrete slab 
In order to further apply the present multi-scale damage model to the structural analysis, 
the simulation of a precast laminated concrete slab is carried. The size of the precast 
laminated concrete slab is 6 m×6 m, and the thickness of both the precast and cast-in-situ 
layer is 80 mm. The set-up of the slab and arrangement of reinforcement are depicted in 
Figs. 16 and 17. 
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Figure 16: Precast laminated concrete slab 

 
Figure 17: Reinforcement of the slab 

Concrete and steel reinforcing bars are modelled by 3-D continuum elements and truss 
elements, respectively. The material behavior of concrete is described by the proposed 
multi-scale damage model, which has been implemented in ABAQUS by the user’s 
subroutines. The material properties of concrete are chosen as the same in Section 6.1 
where the damage curves are from the same micro-cell simulations for simplicity. And 
the non-linearity of steel is reproduced by the standard plastic model. The load-deflection 
curve is shown in Fig. 18. And Figs. 19 and 20 depict the stresses of both the concrete 
slab and rebars. The simulation results indicate good compatibility of the model into the 
structural analysis. 
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Figure 18: Load-deflection curve 
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Figure 19: Stress of concrete slab 

 
Figure 20: Stress of rebar 

7 Conclusion 
This manuscript is devoted to the presentation of a multi-scale damage model, mainly 
intended to expand it into two- or three-dimensional stress combinations. To this end, the 
CDM is firstly introduced as the framework of the multi-scale damage model to introduce 
the constitutive law and basic damage variables, the tensile and shear damage. As the 
bridge of cracked micro-structure and homogenized macro continua, the HFE between the 
macro-scale and micro-scale has been given. Then, the damage on the macro-scale can be 
represent as the function of homogenized HFE. Both the uniaxial tensile and shear damage 
evolution can be obtained by the micro-void cell analysis and multi-scale energy bridging 
equation. Stemming from the DERRs and damage consistent condition in CDM framework, 
the energy equivalent strain is introduced to link the uniaxial and multi-dimensional 
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damage law. As such, the damage model from the uniaxial stress state analysis can be 
expanded to the multi-dimensional stress state in the engineering application.  
A series of numerical simulations have been presented that illustrate the qualitative 
agreement between multi-scale damage model and the experimental results of high-
performance concrete. In particular, the biaxial compression and peak stress envelop of 
concrete is well captured by this model, whereas only uniaxial micro-cell analysis needs 
to be performed instead of the time consuming micro-cell analysis for each strain ratio to 
attain the damage evolution. An attractive feature of the present multi-scale damage is 
that it is straightforward to construct a multi-scale damage model from micro-structure of 
concrete, and is applicable handle the multi-dimensional complex problems in the 
concrete structural nonlinear analysis.  
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Appendix A.  
With the consideration of the equilibrium equation given in Eq. (25), the averaged 
Helmholtz free energy can be written as 
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  (59) 

By using the divergence theorem  [Ren, Chen, Li et al. (2011)], Eq. (59) becomes  
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  (60) 

In seeking the relationship of the HFE between the macro-continuum and micro-cell, a 
linear essential boundary condition, which serves as a standard procedure in 
homogenization [Gross and Seelig (2011)], is applied to the entire boundary of the elastic 
microscopic cell 
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λ  u ε x  on yΩ  (61) 

Then, substitute Eq. (61) into the first term on the right hand side of Eq. (60) as 
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Incorporating both Eqs. (59) and (62), the multi-scale energy bridging can be attained as 
follows 

1 1d d
2y c

e

yV
λ λψ ψ

Γ
Γ



        u h


  (63) 
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