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Stability and Bifurcation Analysis of a Discrete Predator-Prey
Model with Mixed Holling Interaction
M. F. Elettreby1, 2, *, Tamer Nabil1, 3 and A. Khawagi4

Abstract: In this paper, a discrete Lotka-Volterra predator-prey model is proposed that
considers mixed functional responses of Holling types I and III. The equilibrium points of
the model are obtained, and their stability is tested. The dynamical behavior of this model
is studied according to the change of the control parameters. We find that the complex
dynamical behavior extends from a stable state to chaotic attractors. Finally, the analytical
results are clarified by some numerical simulations.

Keywords: Predator-prey model, functional response of Holling type, stability and
bifurcation analysis, chaos.

1 Introduction
Mathematical biology tries to model, study, analyze, and interpret biological phenomena,
such as the interactions among individuals of different species, which can be predatory,
competitive, or mutual. Some simple mathematical models have been suggested to
understand the prey-predator interaction. The first attempt in this field was accomplished
independently by Lotka [Lotka (1925)] and Volterra [Volterra (1926)], and it is known
as the Lotka-Volterra model. This consists of two ordinary differential equations. Many
researchers became interested in these models due to their complex behavior [Elettreby
and El-Metwally (2007); Elettreby (2009); Danca, Codreanu and Bako (1997)]. Many
natural factors, such as viz, delay, daily, seasonal effects, and regularity effects, cause
complex behaviors in these models [Albert (2012); Gakkhar, Singh and Singh (2012);
Hu, Li and Yan (2009)]. Delays due to maturation time of prey, gestation time of the
predator, and hunting can induce periodic solutions as well as chaos in the prey-predator
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model. Many research papers have studied fractional analysis and its applications in 
prey-predator phenomena [Elettreby, Nabil and Al-Raezah (2017); Elettreby, Al-Raezah 
and Nabil (2017)].

There is growing evidence that the dynamics of discrete-time prey-predator models can 
present a much richer set of patterns than those observed in continuous-time models [Jing 
and Yang (2006); Liu and Xiao (2007); Agiza, Elabasy, El-Metwally et al. (2009); 
Saratchandran, Ajithprasad and Harikrishnan (2015)].

Holling introduced three kinds of functional responses for different species to model the 
phenomena of predation [Holling (1965)].

He et al. [He and Li (2014)] investigated the dynamics of a discrete prey-predator model
with the functional response of Holling type III in the closed first quadrant R2

+. Their model 
consists of two difference equations. The prey-predator interaction term is presented by 
Holling type III in both equations. They showed that the system undergoes a flip bifurcation 
and a Neimark-Sacker bifurcation. Saratchandran et al. [Saratchandran, Ajithprasad 
and Harikrishnan (2015)] proposed a discrete Lotka-Volterra model for prey-predator 
interactions. The interaction term in the two equations is of Holling type I. They showed 
how the condition for the survival of the predator depends on the natural death rate of the 
predator and the efficiency of predation. Their model supported different dynamical regimes 
asymptotically, including predator extinction, stable fixed p oint, l imit cycle attractors for 
coexistence of predator and prey, and more complex dynamics involving chaotic attractors.

In this paper, we formulate a discrete Lotka-Volterra prey-predator model with a mixed
functional response of Holling types I and III in R2

+. First, we discuss the existence and 
stability of the equilibrium points of the system. Second, we study the effects on the 
long-term behavior of the model of changing each control parameter. Finally, we show 
some numerical simulations to illustrate and support the analytical results.

The remainder of this paper is organized as follows. In Section 2, we introduce a discrete 
prey-predator model with mixed functional response of Holling types I and III. We study 
the stability of its equilibrium solutions in Section 3. In Section 4, we study the effects of 
changing the parameter values and their corresponding regimes. Also, we give different 
dynamical behaviors, including bifurcation diagrams and different types of attractors. 
Section 5 discusses our conclusions.

2 The model

Let yn, xn represent the population of predator species (tiger) density and prey species 
(zebra) density, respectively, at a discrete time step n. Suppose that the evolution of the 
prey population follows the logistic map xn+1 = axn (1 − xn), where xn ∈ (0, 1) and the 
positive parameter a represents the constant intrinsic growth rate which is restricted to the 
interval (0, 4) [May (1976)].
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The discrete form of the Lotka-Volterra model can be rewritten as
xn+1 = axn (1− xn)− p(xn)yn

yn+1 = q(xn)yn− cyn
(1)

where c (0 < c < 1) is the natural death rate of the predator population. The term
p(xn)yn represents the prey-predator interaction that decreases the prey population, p(xn)
measures the efficiency of predation, and q(xn)yn represents the prey-predator interaction
that increases the predator population. The function q(xn) is the measure of how effectively
the predator can exploit the advantage of predation to increase its population [Shonkwiler
and Herod (2009)]. Here, we suppose that q(xn) = (1 + λ bxn), where the positive
parameter λ is the evolution rate of the survival predator. The parameter λ measures
how effectively the predators develop their predation skills to the new generation for their
survival. The positive parameter b represents the efficiency of predation (the fraction of the
predator population yn that can prey is denoted by b < 1). Thus the predator population
increases by the factor bλ xn in each generation.

We suppose that p(xn) is a Holling type III functional saturation response of a predator or
sigmoidal function of the form [Huang, Ruan and Song (2014); He and Li (2014); Li and
Liu (2016); Cui, Zhang, Qiu et al. (2016)]

p(xn) =
d x2

n

e+ x2
n

where d and e are positive constants. The parameter d represents the predation of the
predator coefficient, which reflects the predator’s ability, and e is the half saturated. We get
the following discrete predator-prey model with the mixed functional response of Holling
types I and III:

xn+1 = axn (1− xn)− d x2
n yn

e+x2
n

yn+1 = (1+bλ xn)yn− cyn
(2)

The main idea in this model is the use of a mixed functional response of Holling types I and
III.

3 Equilibrium points and their stability analysis
It is challenging to solve system (2) analytically, so we will use qualitative analysis to study
it. We will try to find its equilibrium points and study their stabilities. We consider the
following Lotka-Volterra prey-predator system with Holling mixed functional responses of
types I and III:

xn+1 = F(xn, yn) = axn (1− xn)− d x2
n yn

e+x2
n

yn+1 = G(xn, yn) = (1+bλ xn)yn− cyn
(3)

Proposition 3.1. The equilibrium points of model (3) are

E1 = (0, 0), E2 =

(
a−1

a
, 0
)
, and E3 =

(
c

bλ
,
(bλ (a−1)−ac)(b2 eλ 2 r+ c2)

b2 cd λ 2

)
.
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Proof. To calculate the equilibrium points (x, y) of system (3), we let xn+1 = xn = x̄, and
yn+1 = yn = ȳ. Using Eq. (3), we get

x̄ = F(x̄, ȳ) = a x̄(1− x̄)− d x̄2 ȳ
e+x̄2 = x̄

(
a(1− x̄)− d x̄ ȳ

e+x̄2

)
ȳ = G(x̄, ȳ) = (1+bλ x̄) ȳ− c ȳ = ȳ (1+bλ x̄− c)

(4)

Simplifying Eq. (4), we obtain

x̄
(

a(1− x̄)− d x̄ ȳ
e+x̄2 −1

)
= 0

ȳ (bλ x̄− c) = 0
(5)

Solving Eq. (5) gives the following equilibrium points:

(x̄1, ȳ1) = (0,0), (x̄2, ȳ2) =
(a−1

a , 0
)
, (x̄3, ȳ3) =

(
c

bλ
, (bλ (a−1)−ac)(b2 eλ 2+c2)

b2 cd λ 2

)
.

The existence of the second equilibrium point (x̄2, ȳ2) implies that x̄2 should be positive.
Then the growth rate a should be greater than 1 (a > 1). Also, the existence of the third
equilibrium point (x̄3, ȳ3) implies that ȳ3 should be positive. Then the existence condition
of the third equilibrium point is

a > 1 and λ > ac
b(a−1) .

The topoligical nature of the equilibrium point can be a sink, source, or saddle, or it can
be non-hyperbolic, according to the eigenvalues for the Jacobian matrix evaluated at an
equilibrium point (x̄, ȳ) [Albert (2012)]. To study the stability of the above equilibrium
points, we must compute the coefficients ai j of the Jacobian matrix J [Muller and Kuttler
(2015)]. Using system (3), we get

J =

 a(1−2 x̄)− 2d e x̄ ȳ
(e+ x̄2)2 − d x̄2

(e+ x̄2)
bλ ȳ 1− c+bλ x̄

 .
The stability of the equilibrium points can be established by calculating the eigenvalues m
of the Jacobian matrix J corresponding to each equilibrium point using the characteristic
equation |J−mI| = 0, where I is the identity matrix and m is the eigenvalue [Muller and
Kuttler (2015); Chou and Friedman (2016)].

Proposition 3.2. The trivial equilibrium point E1 = (x̄1, ȳ1) = (0,0) of system (3) is stable
if 0 < a < 1 and 0 < c < 1.

Proof. The characteristic equation of the equilibrium point E1 is∣∣ J1−mI
∣∣= ∣∣∣∣ a−m 0

0 1− c−m

∣∣∣∣= 0.

Thus the eigenvalues are m1 = a and m2 = 1− c. Then the trivial equilibrium point E1 =
(0,0) is locally asymptotically stable if each eigenvalue satisfies |mi|< 1, i = 1, 2.

|m1|= |a|< 1 then −1 < a < 1,
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but we assume that a is positive, hence, the first condition becomes 0 < a < 1. Also,

|m2| = |1 − c| < 1 then 0 < c < 2.
Since c is the death rate of the predator, this leads to 0 < c < 1. Then the trivial 
steady state E1 = (0,0) is stable if 0 < a < 1 and 0 < c < 1. The two conditions 0 < 
a < 1, 0 < c < 1 make the trivial equilibrium point E1 = (0,0) stable, which means that 
both prey and predator vanish. This case is biologically unimportant.

Proposition 3.3. The second equilibrium point E2 = (x̄2, ȳ2) =
(a−1

a , 0
)

of system (3) is
stable if the following two inequalities are satisfied:

1 < a < 3 and λ < ac
b(a−1) .

Proof. For the equilibrium point E2 =
(a−1

a , 0
)
, (a > 1), the characteristic equation of the

second equilibrium point has the form

∣∣ J2−mI
∣∣=
∣∣∣∣∣∣ a(1−2 x̄2)−m − d x̄2

2

e+ x̄2
2

0 1− c+bλ x̄2−m

∣∣∣∣∣∣= 0,

which can be written as

(a(1−2 x̄2)−m)(1− c+bλ x̄2−m) = 0.

Thus the eigenvalues of the characteristic equation are

m1 = 2−a, m2 = 1− c+ bλ (a−1)
a .

Then the second equilibrium point E2 = (x̄2, ȳ2) is stable if |mi|< 1, where i = 1, 2.

|m1|= |2−a|< 1 then 1 < a < 3.

|m2|=
∣∣∣1− c+ bλ (a−1)

a

∣∣∣< 1 then 0 < c− bλ (a−1)
a < 2,

which gives the following two conditions:
a(c−2)
b(a−1) < λ , λ < ac

b(a−1) ,

since the death rate parameter c must be less than 1 (c< 1), so the first condition a(c−2)
b(a−1) < λ

is always satisfied. Therefore, the equilibrium point (x̄2, ȳ2) is stable if the following two
conditions are satisfied:

1 < a < 3, λ < ac
b(a−1) .

Note that the stability of the second equilibrium point (x̄2, ȳ2) implies the instability of the
first trivial equilibrium point (x̄1, ȳ1). Also, it means the presence of the prey and extinction
of the predator.

Proposition 3.4. The third equilibrium point E3 of system (3) is stable if the following
condition is satisfied:

−1− c(bλ (a−1)−ac)
2bλ

< a− 2ac
bλ
− (2beλ )(bλ (a−1)−ac)

(b2 eλ 2 + c2)
< 1− c(bλ (a−1)−ac)

bλ
.
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Proof. The existence of this equilibrium point implies that λ > ac
b(a−1) . The characteristic

equation of the third equilibrium point E3 =
(

c
bλ

, (bλ (a−1)−ac)(b2 eλ 2+c2)
b2 cd λ 2

)
is

∣∣ J3−mI
∣∣= ∣∣∣∣∣ a− 2ac

bλ
− (2beλ )(bλ (a−1)−ac)

(b2 eλ 2+c2)
−m − d c2

(b2 eλ 2+c2)
(bλ (a−1)−ac)(b2 eλ 2+c2)

bcd λ
1−m

∣∣∣∣∣= 0,

which can be written as m2−β m+ γ = 0, where

β = tr(J3) = a− 2ac
bλ
− (2beλ )(bλ (a−1)−ac)

(b2 eλ 2+c2)
+1

γ = det(J3) = a− 2ac
bλ
− (2beλ )(bλ (a−1)−ac)

(b2 eλ 2+c2)
+ c(bλ (a−1)−ac)

bλ

(6)

Then the equilibrium point (x̄3, ȳ3) is stable, using the Jury test [Keshet (2005); Sayama
(2016)], if

|β |< 1+ γ < 2,

which means that both eigenvalues |m1,2| < 1. This condition can be split into two
conditions:

γ < 1 and −1− γ < β < 1+ γ.

Let us discuss each condition separately. With some calculations, the first condition, γ < 1,
leads to

a− 2ac
bλ
− (2beλ )(bλ (a−1)−ac)

(b2 eλ 2+c2)
< 1− c(bλ (a−1)−ac)

bλ
.

The left side of the inequality of the second condition, −1− γ < β , leads to

−1− c(bλ (a−1)−ac)
2bλ

< a− 2ac
bλ
− (2beλ )(bλ (a−1)−ac)

(b2 eλ 2+c2)
.

Also, the right side of the inequality of the second condition, β < 1+ γ , leads to
c(bλ (a−1)−ac)

2bλ
> 0,

which is always satisfied.

From the above discusion, we conclude that the third steady state (x̄3, ȳ3) is stable if

−1− c(bλ (a−1)−ac)
2bλ

< a− 2ac
bλ
− (2beλ )(bλ (a−1)−ac)

(b2 eλ 2 + c2)
< 1− c(bλ (a−1)−ac)

bλ

(7)

3.1 Bifurcation analysis of E3

Since the interior equilibrium point implies the coexistence of prey and predator, this
situation is more real and vital than the other two equilibrium points. Thus, we discuss
the bifurcation analysis of the equilibrium point E3 of system (3).
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Definition 3.1. The Neimark-Sacker bifurcation (NSB) is the principal tool to determine
the existence of quasi-periodic orbits for a map [Asheghi (2018)]. NSB is analogous
to the Hopf bifurcation that occurs in a continuous system. In the circumstance that a
stable focus loses its stability as a specific parameter is varied with the consequent birth of
quasi-periodicity is called a supercritical NSB. In this case, a stable focus enclosed by an
unstable closed curve loses its stability, with the consequent disappearance of the closed
invariant curve as a parameter is varied.

Definition 3.2. The flip bifurcation (FB) occurs when a new limit cycle emerges from
a current limit cycle, and the period of the new limit cycle is twice that of the old one.
Sometimes flip bifurcation is called period-doubling bifurcation.

Definition 3.3. The fold bifurcation is a collision or disappearance of two equilibria in the
system. Fold bifurcation is also called saddle-node bifurcation.

Lemma 3.1. The interior equilibrium point E3 transforms from the stable state to:

(I) NSB when a− 2ac
bλ
− (2beλ )(bλ (a−1)−ac)

(b2 eλ 2 + c2)
= 1− c(bλ (a−1)−ac)

bλ
,

(II) FB when a− 2ac
bλ
− (2beλ )(bλ (a−1)−ac)

(b2 eλ 2 + c2)
=−1− c(bλ (a−1)−ac)

2bλ
.

Proof.

(I) If the associated Jacobian matrix J3 has two complex conjugate eigenvalues with
modulus 1, then NSB has occurred [Elaydi (2008)]. This means that det(J3) = γ = 1
and −2 < tr(J3) = β < 2. Substituting by β and γ , we get the following:

a− 2ac
bλ
− (2beλ )(bλ (a−1)−ac)

(b2 eλ 2 + c2)
= 1− c(bλ (a−1)−ac)

bλ
(8)

−3 < a− 2ac
bλ
− (2beλ )(bλ (a−1)−ac)

(b2 eλ 2 + c2)
< 1. (9)

Condition (8) violates the stability condition (7) of the equilibrium point E3 of
the dynamical system (3), whereas condition (9) is consistent with the stability
condition (7) of equilibrium point E3.

(II) Flip bifurcation occurs when a single eigenvalue equals −1. In the context of the
characteristic equation of the associated Jacobian matrix J3, the condition of the flip
bifurcation is expressed as 1+β + γ = 0. This gives

2+2a− 4ac
bλ
− (4beλ )(bλ (a−1)−ac)

(b2 eλ 2 + c2)
+

c(bλ (a−1)−ac)
bλ

= 0.

Therefore, the equilibrium point E3 loses its stability through flip bifurcation when

a− 2ac
bλ
− (2beλ )(bλ (a−1)−ac)

(b2 eλ 2 + c2)
=−1− c(bλ (a−1)−ac)

2bλ
. (10)
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Figure 1: Qualitative behavior of the populations xn of the prey and yn of the predator for
b = 0.6, d = 0.4, e = 3.1 and λ = 5

Note that a fold bifurcation or transcritical bifurcation occurs when a real eigenvalue passes
through 1, or it is defined as 1−β + γ = 0. Substituting by β and γ , we get

c(bλ (a−1)−ac)
bλ

= 0, (11)

which is not possible because it contradicts the condition of the third equilibrium point E3.
Then there is no fold bifurcation for this system.

4 Some numerical results
In Fig. 1, we plot the generation n versus the populations xn of the prey and yn of the predator
to check their qualitative behavior. In Figs. 1(a) and 1(b), all of the curves of the populations
of the prey xn and predator yn decrease to zero as n increases (which means that both prey
and predator vanish) when the conditions 0 < a < 1 and 0 < c < 1 are satisfied. This means
that the first steady state (0, 0) is stable. In Figs. 1(a) and 1(b), we change the parameters
a, c and fix the other parameters at b = 0.6, d = 0.4, e = 3.1, and λ = 5. This means that
the steady state (0, 0) will be stable if the conditions 0 < a < 1 and 0 < c < 1 are satisfied,
despite the values of the other parameters. In Fig. 1(c), where a = 1.1 > 1,c = 0.4 < 1, we
find that the curve of the prey xn converges to the value a−1

a = 0.09, while the curve of the
predator goes to zero. In Fig. 1(d), where a = 1.7 > 1,c = 0.1 < 1, the predator’s yn curve
goes to infinity, which is not acceptable. This is because the parameters a, c do not satisfy
the stability conditions.
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Figure 2: Qualitative behavior of the populations xn of the prey and yn of the predator

In Fig. 2, we plot the generation n versus the populations xn of the prey and yn of the
predator to investigate their qualitative behavior. In Figs. 2(a) and 2(b), all of the curves of
the population xn of the prey converge to the value a−1

a , while the curves of the population
yn of the predator tend to zero. This is due to satisfying the stability conditions of the
second steady state, 1 < a < 3, λ < ac

b(a−1) . In Figs. 2(c) and 2(d), the parameter values
lead to instability of the second steady state (x̄1, ȳ1). The population curves of the prey and
predator move away from this steady state. In Fig. 2(c), the population curves of the prey
and predator go to zero. This is because the stability conditions of the second steady state
are not satisfied (a < 1). Also, in Fig. 2(d), the predator population curve moves away from
zero and goes to infinity (λ = 3.1 > ac

b(a−1) = 0.254). Note that when the second steady
state (x̄1, ȳ1) is stable, the trivial steady state will be unstable, and when the trivial steady
state is stable, then the second steady state (x̄1, ȳ1) is unstable.

In Fig. 3, we plot the generation n versus the populations xn, yn to test their qualitative
behavior. In Figs. 3(a)-3(d), all of the curves of the prey population converge to the value
x̄2 =

c
bλ

, and the curves of the predator population tend to the value (bλ (a−1)−ac)(b2 eλ 2+c2)
b2 cd λ 2

if the existence condition λ > ac
b(a−1) and the stability condition are satisfied. In Figs. 3(a)

and 3(b), we use the parameter values b = 0.4, d = 0.9, e = 3.1, while in Figs. 3(c)
and 3(d), we use the parameter values b = 0.6, d = 0.4, e = 1.1. Also, in each figure,
we use different values of the parameters a, c, and λ , which yield the following stable
steady states: (x̄2, ȳ2)|(a) = (0.0893, 0.0691), (x̄2, ȳ2)|(b) = (0.4762, 1.7465), (x̄2, ȳ2)|(c) =
(00877, 0.4431), (x̄2, ȳ2)|(d) = (0.6061, 0.8620).

In Figs. 4(a) and 4(b), we plot the growth rate parameter a versus the parameter λ
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Figure 3: Qualitative behavior of the populations xn of the prey and yn of the predator that 
show the stability of the third steady state

to determine the zone of stability located between the upper (bifurcation) and lower 
(extinction) curve. We note that increasing the growth parameter a leads to a smaller 
stability area. In Fig. 4(a), we fix c = 0 .5 and e = 3 .1 and plot regions for three values 
of b(= 0.1, 0.2, 0.3). From the figure, we note t hat i ncreasing t he value of b  l eads t o a 
decrease in the region of stability and shifts the regions downward. In Fig. 4(b), we fix the 
parameters b = 0.6, e = 3.1 and plot regions for three values of parameter c(= 0.5, 0.6, 0.7). 
We observe that increasing the value of c leads to an increase in the region of stability 
and shifts the regions upward. Also, In Figs. 4(c) and 4(d), we plot parameter b, the 
fraction of predators that can prey, vs. the parameter λ to determine the region of stability. 
We fix t he p arameters a  =  2 .1, e  =  3 .1 a nd p lot r egions f or t hree v alues o f parameter 
c(= 0.01, 0.03, 0.05). We observe that increasing the value of c leads to an increase in 
the region of stability and shifts the regions upward. Also, we note that increasing the value 
of b leads to a decrease in the region of stability and shrinks the regions until they vanish. 
In Fig. 4(d), we increase the value of a from 2.1 to 2.4 and plot regions corresponding to 
three values of parameter e(= 1.1, 2.1, 3.1). We observe that increasing the value of c leads 
to a decrease in the region of stability. Also, increasing the value of b shrinks the stability 
regions until they vanish.

It is clear from these figures t hat c hanging t he p arameters a, b, c ,λ l eads t o a  r ange of 
dynamical behaviors. We will numerically study the complex dynamical behaviors of 
our system. We will use two sets of parameter values of the system. For each case, we 
will study the bifurcations and the nature of the attractors by independently changing the
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Figure 4: Region of stability bounded by the extinction curve (lower) and Hopf bifurcation
curve (upper) depending on values of a, b, and λ . In each subfigure, we use three values of
one parameter

parameters a, λ .

Case I: b = 0.6, c = 0.4
In this case, we use a = 2.4, d = 0.4, and e = 3.1. In Fig. 5, we plot the respective
populations xn, yn of the prey and predator versus the parameter λ . We start the graph at
λ = 1 to focus on its important parts. Note that at λ = 1, we get (x̄, ȳ) = (0.583, 0) =
(x̄2, ȳ2). Increasing λ leads to a decrease of the prey population and an increase of the
predator population. This is consistent with the above analytical results. Then the second
steady state (x̄2, ȳ2) becomes unstable and the third steady state appears. The third steady
state (x̄3, ȳ3) is stable until λ reaches the threshold value λth. After that, the bifurcation
structure for the prey and predator is as shown in the figure. Also, there are many periodic
windows within the chaotic regime. As λ increases, we see a transition phase from stability
to bifurcation within a limit cycle, to a periodic window, and finally to chaos.

In Fig. 6, we choose the parameter values d = 0.4, e = 3.1, and λ = 1.8. We plot the
populations xn, yn of the prey and predator, respectively, versus the parameter a in the
interval (1,4). A bifurcation structure for the populations of the prey and predator appears
when the parameter a reaches a critical value. As a increases, we note a transition from
stability to bifurcation within a simple limit cycle, periodic window, and finally to chaos.

Case II: b = 0.8, c = 0.6
In this case, we use the values a = 2.8, d = 0.4, and e = 2.1. In Fig. 7, we plot the
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Figure 5: Bifurcation structure for prey and predator populations with λ for fixed values
a = 2.4, b = 0.6, c = 0.4, d = 0.4, and e = 3.1
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for fixed values b = 0.6, c = 0.4, d = 0.4, e = 3.1, and λ = 1.8
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Figure 7: Bifurcation structure for prey and predator populations with λ for fixed values
a = 2.8, b = 0.8, c = 0.6, d = 0.4, and e = 2.1

populations xn, yn for the prey and predator, respectively, vs. λ to investigate the dynamical
behavior of our system. We start the graph at λ = 1 to focus on its important parts. Note
that at λ = 1, we have (x̄, ȳ) = (0.6428, 0) = (x̄2, ȳ2). Increasing λ leads to a decrease of
the prey population and an increase of the predator population. This is consistent with the
above analytical results. Then the second steady state (x̄2, ȳ2) becomes unstable and the
third steady state appears. The third steady state (x̄3, ȳ3) becomes stable until λ reaches
a threshold value λth. After that, the bifurcation structure for the prey and predator is as
shown in the figure. Also, there are many periodic windows within the chaotic regime. As
λ increases, we see a transition phase from stability to bifurcation within a limit cycle, to a
periodic window, and finally to chaos.

5 Discussion and conclusion
In this paper, we have proposed and investigated the complex behavior of a discrete
prey-predator model with the mixed functional response of Holling types I and III. The
main idea is to study the effects of changing model parameters on the dynamics of the
model. The equilibrium points of the model are obtained. There are two equilibrium
boundary points and a unique interior equilibrium point. The conditions of the local
stability of these points have been proved using the Jury criterion. Also, we study the
bifurcation analysis of the interior equilibrium point. We have followed the classical work
of Lotka-Volterra by conducting some numerical simulations to confirm our theoretical
results. The model displays fascinating dynamical behavior, including stable behavior,
bifurcation, phase portraits, and chaos. It shows that the equilibrium points of the model
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lose stability via bifurcation. These results reveal rich dynamics of the discrete-time models.
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