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Multiscale Isogeometric Topology Optimization with Unified
Structural Skeleton

Chen Yu1, Qifu Wang1, ∗, Chao Mei1 and Zhaohui Xia1

Abstract: This paper proposes a multiscale isogeometric topology optimization
(ITO) method where the configuration and layout of microstructures are optimized
simultaneously. At micro scale, a shape deformation method is presented to transform
a prototype microstructure (PM) for obtaining a series of graded microstructures (GMs),
where microstructural skeleton based on the level set framework is applied to retain
more topology features and improve the connectability. For the macro scale calculation,
the effective mechanical properties can be estimated by means of the numerical
homogenization method. By adopting identical non-uniform rational basis splines
(NURBS) as basis functions for both parameterized level set model and isogeometric
calculation model, the isogeometric analysis (IGA) is integrated into the level set
method, which contributes to improving the accuracy and efficiency. Numerical examples
demonstrate that, the proposed method is effective in improving the performance and
manufacturability.

Keywords: Isogeometric analysis, topology optimization, shape deformation method,
structural skeleton, level set method.

1 Introduction
Research about artificial microstructures has already attracted great attention in engineering
for the extraordinary properties [Chen, Ortiz and Huang (1998); Gibson and Ashby (1997)],
such as impact energy absorption, thermal insulation. Inspired by the natural materials,
cellular solids as promising materials have experienced an increasing study due to the
superior performance [Valdevit, Jacobsen, Greer et al. (2011); Zheng, Lee, Weisgraber
et al. (2014)]. In recent years, the advances of additive manufacturing technology have
promoted the relative eases of fabrication for the complex structures. Thus, the cellular
materials with periodically arranged microstructures are particularly brought into focus. In
general, the constituent of periodic cellular materials is ordinary material such as mental.
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Therefore, the key issue for gaining the superior performance of such materials is to
design the configuration of the cellular microstructures at micro scale and assemble the
cellular microstructures at macro scale, instead of adjusting the material composition. In
spite of the large amounts of researches including analytical, numerical or experimental
method devoted to cellular composite design, the design method for searching the optimal
configuration and layout of cellular microstructures is still insufficient.
Topology optimization (TO) is a mathematical method to calculate the optimal layout
of materials within a prescribed design domain under boundary conditions. In recent
years, a variety of methods have been proposed and developed to solve TO problems,
such as the density-based homogenization methods [Bendsoe and Kikuchi (1988); Suzuki
and Kikuchi (1991)], solid isotropic material with penalization (SIMP) methods [Zhou
and Rozvany (1991); Bendsoe and Sigmund (1999)], evolutionary structural optimization
(ESO) methods [Xie and Steven (1993); Huang, Radman and Xie (2011); Huang, Xie,
Jia et al. (2012)], level set methods (LSMs) [Sethian and Wiegmann (2000); Wang, Wang
and Guo (2003); Allaire, Jouve and Toader (2004)], and moving morphable components
(MMC) [Guo, Zhang and Zhong (2014); Guo, Zhang, Zhang et al. (2016)]. Reference
[Sigmund and Maute (2013)] gives a comparison and critical review to the various
approaches.
With respect to explicit material representation methods, the LSM employs an implicit
high-dimensional function to describe the geometry. In the LSM, boundaries are
represented as the zero contours of the level set function, by which the variation of
topology structure can be achieved. Due to the characteristics like smooth boundaries and
distinct interfaces [van Dijk, Maute, Langelaar et al. (2013)], the LSM has advantages on
topology optimization structure design and fabrication. In conventional LSM, the evolution
of structural boundary with respect to time is formulated as a Hamilton-Jacobi partial
differential equation (PDE). The materials and shape derivatives from shape variational
analysis [Wang, Wang and Guo (2003)] are applied to solve the problem. However,
complicated numerical processes such as reinitializing the LSF to retain the feature of
signed-distance, extending velocity field of boundary to the design domain decrease
the computational efficiency. To eliminate these undesired numerical processes, the
parameterized level set methods (PLSMs) which employed a variety of basis functions
including finite element (FEM) basis functions [van Dijk, Langelaar and Keulen (2012)],
radial basis functions (RBFs) [Wang and Wang (2006)] and compactly supported RBFs
(CSRBFs) [Wendland (2006)] were proposed and developed. PLSM can avoid such
redundant processes and combine the well-established optimization algorithms with their
characteristics as well as inherit the advantages of LSM.
For the past few years, isogeometric analysis (IGA) [Hughes, Cottrell and Bazilevs
(2005); Cottrell, Hughes and Bazilevs (2009)], whose basis functions for analysis and
computer aided design (CAD) processes are unified, has become an efficient alternative to
conventional FEM in TO problems due to the advantages such as high continuity and high
accuracy. The first study on isogeometric TO traces back to 2010, Seo et al. [Seo, Kim
and Youn (2010)] employed the trimmed surface technique [Kim, Seo and Youn (2009)]
to analysis structural response and calculate the sensitivity. Later, the optimality criteria
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(OC) and the method of moving asymptotes (MMA) were applied to isogeometric SIMP
referred to Hassani et al. [Hassani, Khanzadi and Tavakkoli (2011); Tavakkoli, Hassani
and Ghasemnejad (2013)]. Kumar et al. [Kumar and Parthasarathy (2011)] utilized B-
spline finite elements to develop density-based topology optimization for avoiding the
checkboard artifacts. Dede et al. [Dede, Borden and Hughes (2012)] applied a phase-
field model to solve TO problem, and applied IGA to represent the design domain with
the unique geometric exactness. Qian [Qian (2013)] proposed a density-based TO in B-
spline space where the density field and the density for analysis are represented by tensor-
product B-spline. Thereafter, Wang et al. [Wang and Benson (2015)] presented an accurate
and efficient ITO where the NURBS based IGA integrates with the PLSM by means of
utilizing the NURBS basis functions of the CAD models for both the parameterization of
level set function and the evaluation of structural analysis. Moreover, Hou et al. [Hou, Gai,
Zhu et al. (2017)] applied MMC to explicit isogeometric topology optimization (ITO) to
improve stability and robustness for the reason that the analysis calculation is replaced
by IGA. Gao et al. [Gao, Gao, Luo et al. (2019)] presented an effective and efficient
isogeometric topology design method by the adoption of enhanced density distribution
function. Furthermore, for the systematic design of auxetic metamaterials, an isogeometric
topology optimization method was proposed in Gao et al. [Gao, Xue, Gao et al. (2019)].
Wang et al. [Wang, Wang, Xia et al. (2018)] presented a comprehensive review on ITO
with comparisons to traditional FEM design methods modestly. For improving the
computational efficiency, Wang et al. [Wang, Liao, Ye et al. (2020)] proposed a high-
efficiency ITO with the collaboration of multilevel mesh, MGCG and local-update strategy.
Referring to many applications of TO [van Dijk, Maute, Langelaar et al. (2013)], the
design for engineering cellular materials attracted increasing attentions. Since the inverse
homogenization method [Sigmund (1994)] has been adopted to predict effective properties
of cellular microstructures, the design of microstructures is able to be formulated as an
inverse problem for yielding the expected macro performance [Andreassen, Lazarov and
Sigmund (2014); Takezawa, Kobashi and Kitamura (2015)] and prescribed properties
[Xie, Yang, Shen et al. (2014)]. An extended design strategy of optimizing the
functionally graded microstructures (GMs) is considered as alternative to offer more
mechanical advantages for external stimuli. For the reason that both microstructures and
macrostructures have effect on the performance of cellular composites, the multiscale
concurrent design means that the microstructures are expected to be designed as well
as assembled. Taking into account the linear [Fujii, Chen and Kikuchi (2001)] or
nonlinear [Kato, Kyoya, Yachi et al. (2014)] macroscopic behavior, a periodic arranged
microstructure was designed with the predefined distribution. In general, each element
corresponds to an individual microstructure during multiscale optimization process, which
results in varied optimized microstructures corresponding to different amounts of elements.
With respect to such problem, Zhang et al. [Zhang and Sun (2006)] and Xie et al. [Xie,
Zuo, Huang et al. (2012)] researched the scale effect and drew a conclusion that the
configurations of microstructures would converge to a certain result along with the decrease
of scale ratios.
A reasonable design approach for hierarchical composite structure is supposed to optimize
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the configuration of cellular microstructures and assemble the cellular microstructures
simultaneously. Therefore, Coelho et al. [Coelho, Fernandes, Guedes et al. (2008)]
proposed a hierarchical optimization framework with double loops which correspond
to macroscale materials distribution design and microscale unit cell structure design
respectively. Nakshatrala et al. [Nakshatrala, Tortorelli and Nakshatrala (2013)] proposed
another framework aimed to couple the nonlinear problems between macro and micro
topology optimizations. Wang et al. [Wang, Xu and Pasini (2016)] presented an
isogeometric topology optimization for the periodic cellular microstructures where the
effective properties of cellular microstructure are formulated as functions with respect to
the relative density. Referring to Wang et al. [Wang, Chen and Wang (2016)], a shape
metamorphosis method was presented for obtaining a family of GMs with similar topology,
thereby establishing the relation between effective properties and densities to achieve the
multiscale concurrent design. Gao et al. [Gao, Luo, Xia et al. (2019)] gave the compact and
efficient Matlab codes in both 2D and 3D for the concurrent TO of multiscale composite
structures, in which the energy-based homogenization method was used to calculate the
macroscale effective properties of microstructures.
With a view to the high accuracy and efficiency of IGA and the distinct interfaces
of LSM, we present a multiscale isogeometric topology optimization method where
the configuration and layout of microstructures are optimized simultaneously. For the
multiscale scheme, we apply the material distribution-based method [Cheng, Liu and
Yan (2008)] to distribute cellular materials in macro scale, meanwhile, optimize the
configuration of microstructures in micro scale by means of the isogeometric parameterized
LSM combined with numerical homogenization method. Structural skeleton based on
the level set framework [Xia and Shi (2015)] is employed to improve the topology
similarity and connectability among GMs. The remainder of this paper is organized
as follows: In Section 2, a shape deformation method is presented to yield a series of
microstructures with the unified structural skeleton and similar topology. Section 3 briefly
reviews NURBS-based IGA and introduces the integration of PLSM and IGA based on
NURBS parametrization. The formulation of multiscale concurrent optimization and the
sensitivity analysis are presented in Section 4. Thereafter in Section 5, some numerical
examples are presented to demonstrate the effectiveness in improving the performance and
manufacturability. Finally, a brief conclusion is given in Section 6.

2 Formulation for graded microstructures

2.1 Generation of microstructures

In this section, a series of microstructures with the similar topology are generated by
means of a shape deformation technology. Therefore, these microstructures share a same
prototype microstructure (PM) expressed by the level set function, Φpm(x, t) > 0, x ∈ Ωpm\∂Ωpm

Φpm(x, t) = 0, x ∈ ∂Ωpm ∩D
Φpm(x, t) < 0, x ∈ D\∂Ωpm

(1)
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where Ωpm denotes the structural regions, and D is the design domain. The structural
boundary ∂Ωpm is represented as zero iso-contour of the implicit high-dimensional
function Φpm(x, t).
In order to obtain a series of GMs ranged from void to solid with similar structure to ensure
the connectivity to each other, a shape deformation technique is proposed in this paper.
Referring to Wang et al. [Wang, Chen and Wang (2016)], the GMs were generated along
with parallelly moving the iso-contour of level set function as illustrated at the left side
of Fig. 1. However, the GMs interpolated between void and the PM may yield structural
fracture when structural component is too slender. To eliminate these unexpected fracture,
the structural skeleton based on the level set framework is utilized to maintain the shape of
microstructural components.
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Figure 1: Schematic illustration of shape deformation technique. Left column are the GMs
obtained by parallelly moving the iso-contour of level set function. Relatively, the GMs
of right column are generated by scaling the components size of prototype microstructure
based on the skeleton (marked as red line)

As showed in Fig. 1, we can see the effects brought by the introduction of structural
skeleton intuitively. Referring to Xia et al. [Xia and Shi (2015)], for the cellular materials
with periodically arranged microstructures, the microstructural skeleton can be yielded
as the marked red line of the figure. Taking the skeleton as a benchmark, level set
values are recalculated by zooming in or out within cell domain to generate a series of
microstructures with holding similar basic topology shape. Comparing the GMs of the left
and right columns in Fig. 1, the microstructures with skeleton retain more topology features
by means of adjusting the proportion of materials around skeleton when the structural
components are too slender (when the relative densities in Fig. 1 is below 0.3).
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The presented shape deformation technology works as scaling the components size of
prototype microstructure corresponding to the different relative densities. Thus the GMs
connected to each other naturally and continuously in theory. Because of the TO in macro
scale just focusing on prototype microstructure, the weird-looking level set values of GMs
do not have to be used for calculation.

2.2 Effective properties of graded microstructures

Assuming the microstructures are periodically arranged within the design domain which
is much larger than the microstructure. The effective properties of microstructures can
be estimated by means of the numerical homogenization method [Sigmund (1994)].
By imposing the periodic boundary conditions and referring to the small parameter
perturbation, the effective elasticity tensor of a microstructure can be yielded as,

Dpqrs =
1

VNe

∫
VNe

(
ε0
kl − ε∗kl (upq)

)
DklmnH (ΦNe)

(
ε0
mn − ε∗mn (urs)

)
dΩ (2)

where VNe and Dklmn denote the volume of microstructure and the elasticity of base
material respectively. For the 2D elasticity, the unit vectors (1, 0, 0)T , (0, 1, 0)T and
(0, 0, 1)T are assembled to constitute strain field ε0

kl. The period displacement field upq

and the strain field ε∗kl (u
pq) produced by ε0

kl can be solved in the following equation,∫
VNe

(
ε0
kl − ε∗kl (upq)

)
DklmnH (ΦNe) ε

∗
mn (urs) dΩ = 0, ∀urs ∈ Ū(VNe) (3)

where Ū(VNe) denotes the kinematically admissible displacement space.
According to Zhou et al. [Zhou and Li (2008)], when the differences of spatial topology and
effective property between neighboring microstructures are sufficiently small, the effective
properties of microstructures can be applied to analysis the displacement field at macro
scale. With regard to the GMs obtained in this paper, they possess similar topology
structure and connect to each other naturally and continuously in theory. Exploring
the effective properties of GMs mentioned in Fig. 1, the elasticity tensors of a few
GMs corresponding to different relative densities have been calculated by Eq. (2) and
interpolated to estimate the properties of whole densities field as showed in Fig. 2. In order
to compare the effective properties of microstructures to the property of base material, the
regularized operations are implemented in this paper. In consideration of the zero element
in the elasticity tensor of base material, the effective elasticity tensors are regularized by
diving the factor Escale = Ebase/(1 − µ2) which can also be written as Dbase(1, 1). Here
Ebase and µ denote the Young’s modulus and Poisson’s radio of basis material respectively.
In terms of Wang et al. [Wang, Chen and Wang (2016)], the number of symbol GMs
selected as 21 will balance the accuracy of estimation and the computational efficiency.
When the large-scale GMs are well-organized arranged in the design domain, the
macroscopic displacement field can be obtained and utilized to analysis the microstructures.

3 Integration of PLSM and IGA based on NURBS parameterization
With a view to the smooth boundaries and distinct interfaces of LSM, the high continuity
and accuracy of IGA, a method which integrates the LSM and IGA just meets the demands
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Figure 2: Example to illustrate the regularized effective elasticity tensors with respect to
the relative densities. D(i, j) is the element of regularized elasticity matrix

of the formulation for GMs mentioned in Section 2. As an evolution of conventional LSM,
the parameterized LSM provides the bridge to combine with IGA by means of unified basis
function for parametrization.

3.1 Review of NURBS-based IGA

For the IGA method, multiple NURBS patches are assembled to compose the geometry
with complex topology and shape. Compared to the conventional FEM, the geometry
representation and analysis of IGA are based on the same model. Beginning with the
B-spline, a knot vector constituted by a sequence of non-decreasing real numbers is
represented as:
Ξ= {ξ1, ξ2, · · · , ξn+p+1} (4)

where p, n denote the order of B-spline and the number of basis functions respectively.
Referring to the Cox-de Boor formula [De Boor (1972)], the B-spline basis functions are
recursively generated as: Bi,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise

Bi,p(ξ) = ξ−ξi
ξi+p−ξiBi,p−1(ξ) + ξi+p+1−ξ

ξi+p+1−ξi+1
Bi+1,p−1(ξ)

(5)

Then, NURBS basis functions can be yielded by introducing the positive weight value ωi,

Ni,p(ξ) =
Bi,p(ξ)ωi
n∑
j=1

Bi,p(ξ)ωj

(6)
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Analogously, on the basis of the tensor product formulation, the 2D NURBS basis functions
are represented as:

N j,q
i,p (ξ) =

Bi,p(ξ)Bj,q(ξ)ωi,j
n∑
k=1

m∑
l=1

Bk,p(ξ)Bl,q(ξ)ωk,l

(7)

where Bi,p(ξ), Bj,q(η) are B-spline basis functions constructed from the knot vectors
Ξ= {ξ1, ξ2, · · · , ξn+p+1} and H= {η1, η2, · · · , ηm+q+1}. A NURBS surface can be
represented as a tensor product of bivariate NURBS with p degree in ξ direction and q
degree in η direction.

S(ξ, η) =

n∑
i=1

m∑
j=1

N j,q
i,p (ξ, η)Pi,j (8)

where Pi,j denotes control point. All the spans [ξk, ξk+1]× [ηl, ηl+1] under 1 ≤ k ≤ n+ p
and 1 ≤ l ≤ m+ q constitute the NURBS surface.

3.2 Parameterized LSM based on NURBS basis function

To eliminate the undesired numerical processes such as reinitializing the LSF to retain the
feature of signed-distance, extending velocity field for solving the PDE, the parameterized
level set methods (PLSMs) are proposed. With the interpolation of basis functions,
the Hamilton-Jacobi PDE is converted into ordinary differential equation (ODE) thereby
simplifying the solving process.
The parameterized level set function (LSF) with basis function is formulated as a
summation.

Φ(x, t) = NT (x)A(t) =

n∑
i

Ni(x)αi(t) (9)

where N(x) = [N1(x), N2(x), · · · , Nn(x)]T is the basis function vector at the coordinate
x. Correspondingly, A(t) = [α1(t), α2(t), · · · , αn(t)]T denotes the expansion coefficient
at the time t. By the introduction of basis function, the representation of LSF is divided
into two separate parts which are only associated with space and time respectively. Thus,
the evolution of optimization is just performed by updating the expansion coefficient αi(t).
Difference the LSF Φ(x, t) with respect to the pseudo-time t,
∂Φ(x, t)

∂t
− υn |∇Φ(x, t)| = 0 (10)

Substituting Eq. (9) to Eq. (10), it is converted into the form written as,

NT (x)
∂A(t)

∂t
− υn

∣∣∣(∇N(x))TA(t)
∣∣∣ = 0 (11)

thereby the normal velocity υn = −∂x
∂t
∇Φ
|∇Φ| can be obtained as,

υn =
NT (x)∣∣∣(∇N(x))TA(t)

∣∣∣ ∂A(t)

∂t
(12)
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Compared to the parametrization with basis functions such as finite element (FEM) basis
functions [van Dijk, Langelaar and Keulen (2012)], radial basis functions (RBFs) [Wang
and Wang (2006)] and compactly supported RBFs (CSRBFs) [Wendland (2006)], the
utilization of NURBS [Wang and Benson (2015)] makes interpolation points not limited
in the design domain no longer, that meet the demand of the isogeometric interpolation.
As one dimension problem with the parametric coordinate , the NURBS basis function is
written as Ni(ξ). Eq. (9) is expressed in the form as,

Φ(x, t) = NT (x(ξ))A(t) =

n∑
i

Ni(ξ)αi(t) (13)

In general, TO starts from an initial geometry with multiple holes evenly distributed in
design domain. For the LSM, the initial level set values can be obtained by signed-distance
function. The focus problem is to evaluate the initial expansion coefficients corresponded
to the control points whose number is assumed as m. There will be m collocation points as
well as their equations need to be established. The varied selection strategies of collocation
points were presented such as the Gaussian quadrature scheme [De Boor (1973)] and the
Greville abscissae scheme [Johnson (2005)]. On the basis of comparison in Qian [Qian
(2011)], the Greville abscissae is favored for the advantages as the stability and accuracy
during IGA. Greville abscissae are defined as,

ζi =
1

p
(ξi+1 + ξi+2+, · · · ,+ξi+p) , i = 1, 2, · · · ,m (14)

where ξi denotes the ith knot of the vector Ξ= {ξ1, ξ2, · · · , ξm+p+1} from the NURBS
which are p order and possess m control points.
With respect to the collocation points located in the NURBS surface, two Greville abscissae
for the coordinate expression in ξ and η direction are established and evaluated respectively.
By means of substituting into Eq. (8), the physical coordinates corresponded to the
collocation points are obtained. Afterwards, the corresponding level set values can be
calculated. The linear equation set is established in a similar way to Eq. (9),

Φ = Aα (15)

where Φ denotes the vector containing all initial level set values of collocation points. As
a matrix, A consists of NURBS basis functions corresponded to the collocation points.
Similar to Eq. (9), the updates of expansion coefficients α are only related to time rather
than the coordinates.

4 Multiscale isogeometric topology optimization
In this section, taking the compliance minimization problem as an example, the graded
microstructures (GMs) based multiscale TO is presented and performed in a double-loop
strategy. Although the macroscopic displacement U = U (X) is decoupled with the
microscopic displacement u = u (x), the reasonable solution of optimization can be
obtained in this decouple design scheme according to researches concerning in nonlinear
coupling scheme [Xia and Breitkopf (2015); Alexandersen and Lazarov (2015)].
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4.1 Formulation of multiscale design with GMs

The proposed multiscale optimization method is divided into two parts, the layout of
GMs at macro scale and the configuration of prototype microstructure at micro scale.
Here, we utilize the density-based method to assemble cellular material due to its stability
and the ability to produce the intermediate density element. Meanwhile, explore the
configuration of microstructures by means of the isogeometric parameterized LSM. The
numerical homogenization method is the bridge to establish the numerical relation between
two scales.

4.1.1 Macroscopic topology optimization for the distribution of GMs

In order to generate the layout of GMs with material volume constraint, the formulation of
TO based on material distribution method [Cheng, Liu and Yan (2008)] can be represented
as,

Find : Θ = (ρ1, ρ2, · · · , ρN )

Minimize : J = F TU = UTKU =
N∑

Ne=1

UT
Ne

(∫
ΩB

T
Ne
DNe

(ρNe
)BNe

dΩ
)
UNe

Subjectto : F = KU

G =
N∑

Ne=1

ρNe
V0 − Vmax ≤ 0

0 < ρmin ≤ ρNe ≤ 1

(16)

where the densities Θ of all the microstructure element are design variables and N is the
total number of microstructures. G is the volume constraint for the global design domain
when V0 and Vmax denote the volume of element and the maximum volume in global
respectively. J is the structural mean compliance calculated by the external load F and
corresponding displacement field U .
It is noted that the elasticity tensors DNe

of GMs are represented as a function of the
element density ρNe

. As discussed in Section 2.2, the GMs obtained in proposed method
possess similar topology structure and connect to each other naturally and continuously
in theory. Therefore, the mechanical properties of immediate density element can be
estimated by interpolation,

DNe
= Di +

(ρNe
− ρi)

ρi+1 − ρi
(Di+1 −Di), ρi < ρNe

≤ ρi+1 (17)

where ρi, ρi+1 are densities of the adjacent symbol GMs. Correspondingly, Di,Di+1 are
the elasticity tensors which can be calculated by Eq. (2).
The density ρmin set in Eq. (16) is the density lower bound for the design variables.
Mentioned in Section 2, although the microstructures with skeleton retain more topology
features by means of adjusting the proportion of materials around the skeleton, structural
fracture still occur inevitably when the relative density is too small. For avoiding
the structural fractures of GMs, a density lower bound is set to constrain the sizes of
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microstructural components. The lower bound is not only depended on microstructural
skeleton but also influenced by the precision of microstructural model to some extent.
Considering the simplification of formulation for different structural skeletons and
calculation efficiency related to DOF, ρmin = 0.1 is selected referred to the results of
experiments.

4.1.2 Microscopic topology optimization with isogeometric PLSM

As mentioned above, the mechanical properties of immediate density microstructures can
be estimated by Eq. (17) which is only influenced by the macroscopic design variable
Θ and topology of the prototype microstructure (PM). Hence, the problem in micro scale
focuses on the structure design of PM.
Discretizing the PM into elements, the formulation of microscopic TO based on the
isogeometric parameterized LSM can be represented as,

Find : APM = (α1, α2, · · · , αn)

Minimize : J =
N∑

Ne=1

uTNe
kNe

[
DH (χNe

,ΦPM (APM , ρNe
))
]
uNe

Subjectto : gPM = VPM − VPM,max =
∫
YPM

H(ΦPM )dYPM − VPM,max ≤ 0

a(χNe
,υNe

,ΦNe
) = l(υNe

,ΦNe
) ∀υNe

∈ U(YNe
)

αmin ≤ αPM ≤ αmax

(18)

where the expansion coefficient APM of the PM are design variables and n is the total
number of expansion coefficients. gPM is the volume constraint of the PM at unit cell
when VPM and VPM,max denote the actual volume and the maximum volume of the PM
respectively. J is the summation of all microstructural mean compliance calculated by the
stiffness matrix kNe

of microstructure and the corresponding displacement field uNe
.

It is noted that the elasticity tensors DH of GMs are represented as a function of the
element density ρNe

and the expansion coefficient APM . At this point, ρNe
is invariable

during a microscopic optimization of double loop scheme. Therefore, the core of affecting
the objective function J concentrate on the elasticity tensors DH

PM of PM, which can be
estimated by Eq. (2).
From the perspective of the whole optimization process, macro design variables ρNe

and
micro design variables APM are updated alternately by the double loop scheme. In this
way, several merits are able to be gained, such as: (1) Integrated optimization problem is
decoupled into the usual TO in single scale, where the more constrains can be concerned
as well as the high efficiency of calculation: (2) The density based optimization in
macroscopic level impels the densities of GMs to be distributed smoothly and continuously
in the whole design domain; (3) With the help of the advantages as smooth boundaries and
distinct interfaces of the LSM, the topology structure of GMs can be expressed accurately
that benefits to the estimation of mechanical properties.
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4.2 Sensitivity analysis

In the proposed design method, the problem will be settled by the gradient based
algorithms. The optimality criteria (OC) [Rozvany and Kirsch (1995)] is introduced to
solve the distribution of GMs, meanwhile the method of moving asymptotes (MMA)
[Svanberg (1987)] is utilized to update the configuration of the PM. The first-order
derivatives of the objective function and constraints with respect to the design variables
are required in both the algorithms.

4.2.1 Sensitivity analysis for the distribution of GMs

At macro-scale, the derivatives of objective function in Eq. (16) with respect to the densities
of GMs can be obtained as,

∂J

∂ρNe

= −UT
Ne

∂KNe

∂ρNe

UNe
= −UT

Ne

(∫
Ω
BT
Ne

∂D̃Ne
(ρNe

)

∂ρNe

BNe
dΩ

)
UNe

(19)

As discussed in Section 2, when the prototype microstructure (PM) is certain, the topology
structure and corresponding mechanical properties of the GMs are only affected by the
relative densities. Considering the density lower bound, a projection method is adopted to
allow for void microstructure. The elasticity tensors of GMs are calculated by D̃Ne

=
HpmDNe

+ (1 − Hpm)Dvoid. Here, Hpm = H(ρNe
− ρmin) is the Heaviside step

function and Dvoid = ρminD denotes the pseudo elasticity tensor of the void regions.
Thus, the derivatives of elasticity tensors can be approximately calculated by combining
the interpolation function Eq. (17) from Fig. 2.
Additionally, the derivatives of the volume constraint are calculated as,

∂G

∂ρNe

=

∂

(
N∑

Ne=1

ρNe
V0 − Vmax

)
∂ρNe

= V0 (20)

4.2.2 Sensitivity analysis of the prototype microstructure

It is noted that all the GMs distributed within design domain possess the independent
densities in theory. Therefore, the objective function represented as the summation of all
microstructures in Eq. (18) requires the huge amount of computation. In order improve the
efficiency of the design method, the objective function is simplified as,

J =

m∑
Ne=1

uTNe
kNe

[
DH
N (χN ,ΦPM (APM , ρN ))

]
uNe

(21)

where (N1, N2, · · · , Nm) denotes the graded microstructure with the similar relative
density ρN which accounts for a considerable proportion in the global. Hence, the
derivatives of Eq. (21) with respect to the expansion coefficients can be written as,

∂J

∂αne

= −
m∑

Ne=1

uTNe

(∫
VNe

BT
Ne

∂DH
N (χN ,ΦPM (APM , ρN ))

∂αne

BNe
dVNe

)
uNe

(22)
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The key issue focuses on the derivatives of the elasticity tensors with respect to the
expansion coefficients. Referring to the shape derivative in Sokolowski et al. [Sokolowski
and Zolesio (1992)], the derivatives with respect to t can be obtained as,
∂DH

N

∂t
=

1

|VNe|

∫
∂VNe

Υ(ΦNe
)H (ΦNe) υndΓ (23)

where equation is simplified by Υ(ΦNe
) =

(
ε0
kl − ε∗kl (upq)

)
Dklmn

(
ε0
mn − ε∗mn (urs)

)
.

Substituting dΓ = δ(Φ) |Φ| dΩ where δ(·) is the Dirac function and Eq. (12) into Eq. (23),
it is converted into,

∂DH
N

∂t
=

1

|VNe|

n∑
ne=1

(∫
VNe

Υ(ΦNe
)H (ΦNe) δ (ΦNe)Nne

(x) dVNe

)
∂αne

∂t
(24)

whereNne
(x) is the NURBS basis function corresponding to the neth collocation point and

expansion coefficient, Considering the chain rules, the derivatives of the elasticity tensors
with respect to the expansion coefficients will yield,
∂DH

N

∂αne

=
1

|VNe|

∫
VNe

Υ(ΦNe
)H (ΦNe) δ (ΦNe)Nne

(x) dVNe (25)

In the same way, the derivatives of volume constraint can be calculated by
∂gPM
∂αne

=
1

|VNe|

∫
VNe

H (ΦNe) δ (ΦNe)Nne
(x) dVNe (26)

4.3 IGA for prototype microstructure

With respect to the equilibrium equations required in Eq. (18) during the microstructure
optimization, the stiffness matrix K is composed of all the element stiffness matrix Ke

which is represented as,

Ke =

∫
Ωe

BTDBdΩ =

∫
Ω̂e

BTDB |J1| dΩ̂ =

∫
Ωe

BTDB |J1| |J2| dΩ (27)

where B denotes the strain-displacement matrix while D is the elasticity tensors of
material. Ωe is the physical domain of element, correspondingly, Ω̂e and Ωe are the
domains in the NURBS parametric space and the integrated parametric space respectively.
The Jacobian J2 and J1 as the bonds are utilized to build the relation from the integrated
parametric space to the NURBS parametric space, then to the physical space.
For the plane stress problem,B is represented as a matrix,

B =

 ∂N1

∂x 0 · · · ∂Nnc

∂x 0

0 ∂N1

∂y · · · 0 ∂Nnc

∂y
∂N1

∂y
∂N1

∂x · · · ∂Nnc

∂y
∂Nnc

∂x

 (28)

whereNi denotes the basis function of NURBS element corresponded to nc control points.
The Jacobian J1 is written as,

J1 =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
(29)
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Transforming the Gauss quadrature domain to the NURBS parametric domain [ξi, ξi+1]×
[ηj , ηj+1], the relation can be established by the equation{
ξ = ξi+1−ξi

2 (ξ − 1) + ξi
η = ηj+1−ηj

2 (η − 1) + ηj
(30)

Thus, the Jacobian J2 can be yield as,

J2 =

[
∂ξ

∂ξ

∂η

∂ξ
∂ξ
∂η

∂η
∂η

]
=

[ ξi+1−ξi
2 0

0 ηj+1−ηj
2

]
(31)

For the reason that the design domain of microstructure is constant, it is not necessary to
remesh the element during optimization. In consideration of the singularity in analysis
calculations, the “ersatz material” is employed. Thereby, the element stiffness matrix of
the intermediate density can be expressed as a multiple of entity element stiffness matrix.

Ke =

∫
Ωe

BTDB |J1| |J2| ρ(x)dΩ = ρeKsolid (32)

4.4 Numerical implementation
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GMs via Eq.(19) and Eq.(20)
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Convergence ?
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Convergence ?

Reconstructing the structure and properties of 
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Computing mean compliance by Eq. (21)

Outputing optimal configuration of PM

PMA

Figure 3: Flowchart of the multiscale optimization

Fig. 3 illustrates the flowchart of the proposed multiscale topology optimization with the
graded microstructures. The key points of the multiscale process are: (1) the PM is only
defined by the expansion coefficientAPM ; (2) the GMs with unified structural skeleton are
just generated by the PM and the relative densitiesΘ; (3) the relation between the elasticity
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tensors yielded from Eq. (2) and the relative densities can be established as Fig. 2. On this
basis, the layout of GMs and the configuration of PM are alternately updated to a locally
optimal solution. Finally, the double-loop optimization will terminate when the number of
total loop reaches the predefined maximum.
It is noted that the generation of GMs and the corresponding estimation of mechanical
properties are separate from each other. Therefore, the parallel computing strategy can be
utilized to improve the efficiency. The same goes for the sensitivity analysis in Eq. (22) and
Eq. (26) for the reason that the variables of the integration are almost same with respect to
the different derivatives. The OC is introduced to solve the distribution of GMs, meanwhile
the MMA is utilized to update the configuration of PM.

5 Numerical examples
In this section, numerical examples for the multiscale minimal compliance optimization
problems are presented and illustrate the effectiveness in improving the performance and
manufacturability. The programs are run on the desktop where the CPU is Intel core
i7-2600 K of 3.4 GHz, the RAM is 12 GB, and the software environment is MATLAB
2015a. In macro scale, unified 4-node linear elements are adopted to represent the GMs
one by one. Meanwhile in micro scale, the quadratic isogeometric elements with the
3 × 3 Gauss quadrature rule are established. All the microstructures consist of a base
material whose Young’s modulus and Poisson’s radio are 1000 and 0.3 respectively. It
is noted that the regularized effective elasticity tensors are obtained by diving the factor
Escale = Ematerial/(1− µ2) = 1099.
For the alternative one-scale optimization, the loop will terminate when the relative
difference of the design variables between two iterations is under 10−3. The distribution
of GMs and configuration of PM as the optimized solution are outputted as soon as the
number of double-loop reaches the predefined maximum.

5.1 Layered beam design

As shown in Fig. 4, we test a beam problem which is fixed on the left edge. At the top
edge, a linearly-increasing distributed load with the maximum value qmax = 1.6 is applied.
The length and height of macrostructure are 32 and 20 respectively when the thickness is
set as 1.
The beam is discretized into 20 layers with 20 × 32 four-node elements, where each layer
is composed by the identical GMs. Thus, the macro design variables ρNe of each layers
will keep consistent. 32 × 32 quadratic isogeometric elements constitutes the mesh of
microstructure for generating the GMs and solving the corresponding displacement fields.
The maximum volume of PM is set as VPM, max = 0.4 while the relative densities ρNe of
GMs are allowed to vary within the interval [0.1, 1]. A material usage constraint of 50% is
applied for the macrostructure.
Both the distribution and the configurations of GMs are shown in Fig. 5. The color bar
at the right side briefly indicate the distribution of materials which vary within the interval
[0.27, 1] in this problem. The left side three microstructures from bottom to top corresponds



794 CMES, vol.122, no.3, pp.779-803, 2020

Layer  1

Layer 20

Layer  2

32

2
0

max 1.6q 

Figure 4: A hierarchical design problem for the beam

Figure 5: Optimized solution of the multiscale design for the hierarchical beam

to the GMs of the relative densities 0.28, 0.35 and 0.5 respectively. It is found that the upper
and lower layers are fully-solids which will provide sufficient stiffness for the avoiding of
bending deformation something like the solid face-sheets in sandwich. For the reason that
the GMs of middle layers are generated from the unified PM as shown in the right side of
Fig. 6, they possess identical structural skeleton and similar topology structure that benefits
to the connectivity and manufacturability. In the theory, the connection among GMs will
realize completely continuous with the infinite elements.
The optimized solution of the PM under volume constrain 0.4 is plotted in Fig. 6 where the
red line is marked as the structural skeleton. In order to support the linearly increasing loads
rightwards, the PM contains the upper-right-aligned structural components to enhance
the directional stiffness that will be mapped to all the GMs. The mechanical properties
exhibited below the structure figure also illustrate the sense of the components distribution.
Here, the elasticity tensors of the GMs with relative densities [0 : 0.05 : 1] are calculated
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Figure 6: (a) Regularized elasticity tensors of GMs with respect to relative densities (b)
configuration and elasticity tensor of PM

by Eq. (2) and linearly interpolated as the chart in Fig. 6. It can be found that the GMs
obtained from the proposed shape deformation technology almost possess similar effective
properties and behave as a monotone function of the densities. Hence, the configuration
of PM is representative for all microstructures and it is expected to generate the preferable
solution.
As the double-loop scheme proceeding, the macro distribution design will convergence to
a stable locally optimal solution fast with OC algorithm at a single scale. Here, the stages
of the micro configuration design are gathered as shown in Fig. 7. It is seen that there
are several dramatic changes around Stage 35, 50 and 70 of iterative curve. Comparing
the configurations of prototype microstructures in corresponding Stages, the structural
fractures as well as the holes mergence gradually occurred in some area. The GMs based
on unified structural skeleton will be in the same situation. Thus, the temporary weakening
of microstructural effective properties induced the sharp increase in the objective function.
In preparation, the initial microstructure with the multiple holes is utilized to generate the
GMs. Then one of them corresponded to VPM, max is selected as the PM, and the GMs
corresponded to the material usage constraint are pre-distributed within the design domain.
Thus, the volume ratio in Fig. 7 keep constant. The objective function of the final optimized
solution is JGM = 14.32.
To illustrate the advantages, the identical problem is solved by the SIMP method in single
macro scale. As shown in Fig. 8(a), the materials with the relative densities varying in
interval [0.4, 1] are distributed in a similar pattern compared to the proposed method. The
objective function finally convergence to JSIMP = 32.21, significantly greater than the
proposed approach. It can be considered as that the multiscale design gives birth to broad
design space, and the introduction of micro scale design releases the design freedoms to
advance a remarkable improvement.
Fig. 8(b) is the solution solved by GMs generated without the unified structural skeleton for
the identical problem. The same initial conditions and loop scheme ensure the fair contrast.
The final compliance is JnoskeleotnGM = 16.42. Despite the tremendous improvement
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Stage 1

Stage 50

Stage 35

Stage 75

Stage 110

Stage 142

Figure 7: Objective function in the micro configuration design, and the PM of key iteration
stage

compared to the SIMP, the performance is inferior to the multiscale design with the
proposed shape deformation technology. As discussed in Section 2, the microstructures
with skeleton retain more topology features, thus the low-density GMs are able to be
utilized with good connectivity. Therefore, the more plentiful candidates for GMs release
the implicit design constrains modestly.

5.2 Cantilever beam

This example is to evaluate the result of the well-studied cantilever beam optimization
problem as illustrated in Fig. 9. Here, a beam with 120 of length and 30 of height is fixed
at the left edge, and a vertical concentrated force F = 5 is applied at the center of the
right boundary. A mesh constituted by 32× 32 quadratic isogeometric elements is adopted
to generate the GMs and analysis the corresponding displacement fields. The maximum
volume of PM is set as VPM, max = 0.5 while the relative densities ρNe of GMs can vary
between 0.1 and 1. A material usage constraint of 50% is applied for the macrostructure.
As the material usage constraint, the 30 × 120 four-node elements in macro scale are
set as the “gray materials” with the relative density of 0.5. On the foundation of such
initial conditions, all the microstructures are divided to five groups as shown in Fig. 10
according to the orientations of major principal stresses. Each group corresponds to the
GMs generated from the same PM. Considering the symmetry of the problem, the design
is transformed to three parallel microscale designs which share the unified objective of
optimization.
The final optimized solution is plotted in Fig. 11, as the microstructures defined by the PMs
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a b

Figure 8: Comparison to other methods, (a) solved by SIMP and (b) solved by GMs
generated without the skeleton

120

3
0F=5

Figure 9: Design problem of the cantilever beam

and densities are distributed in the predefined domain of the groups. Fig. 12 illustrates
the configuration of three PMs, as well as the elasticity tensors of their corresponding
GMs. Compared to the well-known solution of SIMP, there are a mass of the full-
solid microstructures distributed in a similar way. It can be considered for the reason
that as the stiffest microstructure of GMs, the solid material should be placed in the
mainly structural frame for supporting the load. The intermediate-densities GMs are
distributed around the mainly components for stabilizing and strengthening stiffness for
the efficient utilization. As the discussed characteristic of the identical structural skeleton,
the advantages of connectivity and manufacturability are still maintained. The optimized
compliance convergences to JGM = 4.356 in the end.
Fig. 12 illustrates the configuration of three PMs with the marked structural skeletons.
The elasticity tensors of the corresponding GMs are calculated and interpolated as the
charts respectively. Although the trend of the interpolation curves belonged to the first
PM behaves similar to the example 1, the interpolation curves in Figs. 12(b) and 12(c)
take a sudden turn near ρGM = 0.9. From the perspective of the structural shape and
elasticity tensors of corresponding PMs, it can be aware that they appear the much weak
bearing performance in vertical direction relative to horizontal direction even close to none.
The GMs yielded from such PMs also maintain the directional features until the change of
structural frame occurring caused by the relative densities close to 1. As shown in Fig. 11,
the GMs yielded from the third PM mainly appear as a solid form or sandwiched between
entity components that moderate the extreme bearing weakness.
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PM 3

PM 2

PM 1

Figure 10: Five groups are divided according to orientations of major principal stresses,
and design is transformed to three parallel microscale designs due to the symmetry

Figure 11: Optimized solution of the Cantilever beam with three types of PMs

For comparison, the identical problem is solved by means of SIMP and the unified
microstructure optimization. The optimized mean compliances are JSIMP = 4.437 and
Jhomo_micro = 9.835 respectively. It once again confirms that the proposed multiscale
design method is effective for improving structural stiffness compared with the single scale
design. With respect to the little progress effect relative to SIMP, it is attributed to the
release of the design freedom. In contrast to example 1, the microstructures of each layer
are not restricted in an identical GM, thus the density optimization appears the polarization
to 0 and 1.

6 Conclusions
This paper develops a multiscale isogeometric topology optimization method by the
establishment of the structural similar microstructures. A shape deformation method is
proposed to transform the PM for yielding a series of GMs where microstructural skeleton
based on the level set framework is unified to retain more topology features and improve
the connectability among the microstructures. Thus, the effective mechanical properties
can be estimated by means of the numerical homogenization method. The global design
problem is divided into two scale as the configuration design of PM in micro scale and
the distributions optimization of GMs in macro scale. For the multiscale scheme, the
material distribution-based method is applied to assemble the GMs while the isogeometric
parameterized LSM is utilized for the structure optimization of PM. This method
inherits the high accuracy and efficiency of IGA and the smooth boundaries and distinct
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Figure 12: Configuration and effective properties of three PMs with the marked structural
skeletons. Elasticity tensors of the corresponding key GMs are regularized and interpolated
as the charts

interfaces of LSM. The introduction of structural skeleton contributes to maintaining the
microstructural topology features especially for the low-density GMs. Thus, the more
plentiful candidates with good connectivity can be assembled within the macrostructure for
generating a preferable solution. The two numerical examples are presented to demonstrate
the effectiveness in improving the performance and manufacturability.
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