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Abstract: Consensus control of multi-agent systems has attracted compelling attentions 
from various scientific communities for its promising applications. This paper presents a 
discrete-time consensus protocol for a class of multi-agent systems with switching 
topologies and input constraints based on distributed predictive control scheme. The 
consensus protocol is not only distributed but also depends on the errors of states between 
agent and its neighbors. We focus mainly on dealing with the input constraints and a 
distributed model predictive control scheme is developed to achieve stable consensus 
under the condition that both velocity and acceleration constraints are included 
simultaneously. The acceleration constraint is regarded as the changing rate of velocity 
based on some reasonable assumptions so as to simplify the analysis. Theoretical analysis 
shows that the constrained system steered by the proposed protocol achieves consensus 
asymptotically if the switching interaction graphs always have a spanning tree. Numerical 
examples are also provided to illustrate the validity of the algorithm. 
 
Keywords: Multi-agent systems, consensus, input constraints, model predictive control, 
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1 Introduction 
Consensus means that a group of dynamic agents agree upon a certain quantity of 
interests such as position and orientation, and which is one of the most fundamental 
problems in multi-agent systems (MASs) [Olfati-Saber, Fax and Murray (2007); Zhan 
and Li (2013)]. Due to the promising applications both in military and civil areas, 
especially in fields such as multi-robot systems and sensor networks, consensus control 
for multi-agent systems has attracted great attention from various domains [Dong and 
Geng (2015); Olfati-Saber and Murray (2004); Sahin (2005); Brambilla, Ferrante, 
Birattari et al. (2013)]. Consensus-seeking problems should be addressed using 
distributed protocols based on local information since these systems are very large-scale 
while the included individuals only have limited situational awareness [Zhang, Cheng, 
Chen et al. (2015); Kia, Cortés and Martínez (2015); Liu, Dou and Sun (2016)]. 
Many distributed consensus control algorithms have been put forward in robotics and 
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control communities. In the 1980s, Reynolds [Reynolds (1987)] introduced three 
heuristic rules for biological swarms, which can be summarized as cohesion, separation, 
and alignment. In 1995, Vicsek et al. [Vicsek, Czirók, Benjacob et al. (2006)] proposed a 
flocking model for self-driven particle systems based on inter-agent velocity alignments. 
Olfati-Saber and Murray [Olfati-Saber and Murray (2003)] provided a pioneering 
theoretical framework for an analysis of consensus protocols for multi-agent networked 
systems. Jadbabaie, Lin et al. [Jadbabaie, Lin and Morse (2002)] explicitly took into 
account possible changes in nearest neighbors over time and provided a theoretical 
explanation for behavior observed in the simulation studies by Vicsek et al. [Vicsek, 
Czirók, Benjacob et al. (2006)]. Ren et al. [Ren and Beard (2005)] extended the results to 
the presence of limited and unreliable information exchange with dynamically changing 
interaction topologies. In the latest literatures, discussions have been focused on the 
directed information flow, switching network topologies, time-delays, and performance 
guarantees when disturbance exists [Li, Chen, Dong et al. (2016); Thunberg, Goncalves 
and Hu (2016); Cao, Xiao and Wang (2016); Sun and Ruan (2008)]. 
From the aforementioned references, we find that most of the existing consensus 
protocols only use the current information to design distributed control input. However, 
abundant evidence have shown that many creatures have the ability to predict the future 
motions of their neighbors [Montague, Dayan, Person et al. (1995)]. Inspired by these 
biological clues, model predictive control (MPC) was introduced to investigate the 
consensus problems of engineering multi-agent systems [Zhang, Cheng, Fan et al. (2008); 
Galbusera, Ferrari-Trecate and Scattolini (2013)]. An advantage of MPC is the capability 
to handle large-scale control problems, to cope with constraints on input variables and 
states easily, and that the control update rates are relatively low [Ferrari-Trecate (2008)]. 
Zhang et al. [Zhang, Chen and Stan (2011)] have proved that the convergence speed can 
be substantially increased while the total communication cost can be reduced if agents 
had predictive intelligence. Ferrari-Trecate et al. [Ferrari-Trecate, Galbusera, Marciandi 
et al. (2007)] proposed an innovative solution for consensus to time-varying and 
undirected communication graphs based on MPC and these results were extended to the 
case of directed graphs [Ferrari-Trecate, Galbusera, Marciandi et al. (2009)]. Trodden et 
al. [Trodden and Richards (2013)] developed a cooperative, distributed form of MPC for 
linear systems with persistent, bounded disturbances. Zhan et al. [Zhan and Li (2013)] 
proposed a weighted-average consensus protocol based on model predictive control and 
analyzed the stability for networks with fixed and switching topologies. Kumar et al. 
[Kumar and Kothare (2013)] designed a novel broadcast stochastic receding horizon 
control architecture using the only available feedback information and broadcast it to all 
agents to achieve the desired system behavior. Zhong et al. [Zhong, Sun, Wang et al. 
(2015)] concerned the consensus problems for first- and second-order discrete-time 
multi-agent systems with delays based on MPC Schemes. Cheng et al. [Cheng, Fan and 
Zhang (2015)] applied model predictive control schemes to consensus control in MASs 
with single-integrator dynamics under switching directed interaction graphs and derived 
the requirements for sampling period to achieve consensus.  
It is a remarkable fact that most of the existing works do not account for input constraints, 
which in many cases have to be included in engineering networked systems due to 
actuators limitations. Cheng et al. [Cheng, Zhang, Fan et al. (2015)] extended their 
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previous results to discrete-time double-integrator consensus problems with directed 
switching interaction topologies and acceleration constraints. However, owing to the 
limitation of available power and safety reasons, which is often encountered in practical 
applications, constraints on velocity should also be included. Therefore, we are trying to 
develop a discrete-time consensus protocol for a class of MASs with single-integrator 
dynamics and switching topologies, and both the velocity and acceleration constraints are 
included simultaneously under the MPC framework. 
The remainder of this paper is organized as follows. In Section 2, some necessary 
preliminary results and lemmas are described together with problem description. Section 
3 gives an MPC protocol for MASs with single-integrator dynamics and constraints. 
Thereafter, the corresponding stability analysis is provided in Section 4. Numerical 
examples are provided in Section 5 to illustrate the validity of the algorithm and Section 
6 summarizes this paper. 
Throughout this paper, nI  and n1  denote identity matrix and the column vector of all 
ones of dimension n , respectively. ( )n RM  represents square matrices of order n  and the 
operator “⊗” denotes the Kronecker product. Let 

T T T
1 1col[ ( ), , ( )] [ ( ), , ( )]n nk k k k=x x x x   with vectors ( ) m

i k R∈x . The notation   
denotes Euclidean norm. 

2 Preliminary and problem description 
Let ( , , )G W E= A  be a weighted directed graph with vertices set 1,{ }, nwW w= … , edge 
set {( , ) : , }i j i jE w w w w W⊆ ∈  and weighted adjacency matrix [ ]ij n na ×=A , which 

describes the interaction topology among agents. If there exists a directed edge ije E∈  

between iw  and jw , agent j  is called a neighbor of agent i , i.e., agent i  has information 

of agent j . { | : }i j j ijN w w W e E= ∈ ∈  is defined as the neighbor set of agent i . The 

adjacency matrix A  satisfies 1ija =  if and only if ( )j iw N j i∈ ≠ , otherwise 0ija = . A 
directed graph G  is said to have a spanning tree if there is at least one agent having 
directed paths to all the other agents. Laplacian matrix [ ]ij n nl ×=L  plays an important role 
in the description of neighbor relationship of a graph and it is defined by 

1,k
,

,

n
ikk i

ij

ij

a i j
l

a i j
= ≠

 == 
− ≠

∑  (1) 

Before discussing the main problem addressed in this note, we also need some necessary 
preliminary results and lemmas on graph and matrix theory first. 

Lemma 2.1: Let ( )f V  be a quadratic function of 1col[ , , ]n=V v v , T
,1 ,[ , , ]i i i mv v=v  , 

,i jv  is jth element of iv . Suppose ( )f V  can be rewritten as 
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1
( ) ( ),

m

l l
l

f f
=

= ∑V V  (2) 

with 1, ,col[ , , ]l l n lv v=V  , T T( ) (1 2)l l l l l l l lf c= + +V V H V V ζ . ,[ ] ( )l ij l nh R= ∈H M  is a 

nonsingular symmetric matrix with , 0ij lh > , T
1, ,[ , , ]l l n lζ ζ=ζ   is a column vector and lc  

is a constant, 1, ,l m=  , , 1, ,i j n=  . ( )f V  achieves its unique minimal point at 
* * *

1col[ , , ]n=V v v , then it holds that 

1). *V  can be calculated by stacking each minimum-value point of ( )l lf V , i.e., one can 
obtain the minimum-value point of ( )f V  by seeking for the minimum-value point of ( )l lf V . 
2). Considering the following constrained optimization problem, 
min ( ), s.t . || || ,if v ≤V v   

whose unique optimal point is denoted by 1
ˆ ˆ ˆcol[ , , ]n=V v v , if l ≡H H  for all 

1, ,l m=  , then 
* *

*
*

( ), if || ( ) || ,
ˆ ( )

( ), otherwise.
|| ( ) ||

i i

i
i

i

k k v
k v k

k

  ≤
= 



v v
v

v
v

 (3) 

3). Considering the following constrained optimization problem, 
min ( ), s.t . || || ,if v ≥V v   

whose unique optimal point is denoted by 1
ˆ ˆ ˆcol[ , , ]n=V v v

, if l ≡H H  for all 
1, ,l m=  , then 

* *

*
*

( ), if || ( ) || ,
ˆ ( )

( ), otherwise.
|| ( ) ||

i i

i
i

i

k k v
k v k

k

  ≥
= 



v v
v

v
v

 (4) 

4). Denote 0= +V V KU , 0( ) ( )g f= +U V KU , where 0V  is a constant matrix and K  is a 
nonsingular and compatible matrix. Suppose the quadratic function ( )g U  achieves its 
unique minimal point at *U , then it follows: 

* *
0 .= +V V KU  (5) 

Proof: 

The proof of part 1) and 2) can be found in Cheng et al. [Cheng, Zhang, Fan et al. (2015)], 
part 3) can be obtained analogously as part 2). Hence, only the proof of part 4) is given in 
this note. 
According to the definition of ( )g U , it can be obtained that 

0,
1 1

( ) ( ) ( ),
m m

l l l l l
l l

g g f
= =

= = +∑ ∑U U V KU
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with T T
0, 0, 0, 0,( ) (1 2)( ) ( ) ( )l l l l l l l l l l lf c+ = + + + + +V KU V KU H V KU V KU ζ , where 0,lV  

is the lth line of 0V . 

One can directly calculate the minimal point *
lU  of ( )l lg U  by 

( ) 0l l lg∂ ∂ =U U , 1, ,l m=  , then it follows: 
T * T

0,( ) 0.l l l+ + =K HKU K HV ζ  (6) 

As we have known that  
* 0.l l+ =HV ζ  (7) 

By virtue of part 1) and substituting (5) into (7), then (6) is obtained, thus the conclusion 
of part 4) can be verified. 
The proof is thus completed. 

Lemma 2.2 [Ren and Beard (2005)]: Let [ ] ( )ij na R= ∈A M  be a stochastic matrix with 
0iia > . If the graph associated with A  has a spanning tree, then A  is SIA (stochastic, 

indecomposable and aperiodic). That is Tlim k
nk→∞

=A y1 , where y  is a nonnegative column 

vector satisfing =Ay y  and T =y y1 . 

Lemma 2.3 [Cheng, Fan and Zhang (2015)]: Let 1, , kA A  be a finite set of SIA matrices 
with the property for each sequence 1, ,i ijA A  of positive length, the matrix product 

( 1) 1ij i j i−A A A  is SIA. Then for each infinite sequence 1 2, ,i iA A  , there exists a column 
vector y  such that  

T
( 1) 1lim .ik i k i nk −→∞

=A A A y 1
 

3 Predictive control-based on consensus with input constraints 
3.1 Consensus with velocity constraint only 
Consider that a system consists of n agents with discrete-time single-integrator dynamics 
and velocity constraints given as below. 

( 1) ( ) ( ), . . || || , 1, , ,i i i ik k T k s t v i n+ = +   ≤ =x x v v   (8) 

where ( ) m
i k R∈v , ( ) m

i k R∈x  are the velocity and position of agent i, respectively. 
T R+∈  is the sampling period. 
Denote  

( ) col [ ( 1| ), ( 2 | ), , ( | )],
( ) col [ ( ), ( 1), , ( 1)].
i i i i

i i i i

k k k k k k Np k
k k k k Nc

=  + + +
=  + + −

X x x x
V v v v



  
Notations Np  and Nc  are the prediction and control horizon, respectively, fulfilling 
Nc Np≤ . 

Based on the nominal model (8) and velocity ( )i kV  to be designed, the position of agents 
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for the instants k t+ , 1, ,t Np=   can be obtained as follows 
( t | ) ( 1| ) ( 1),1 1,
( t | ) ( 1| ) ( 1), .

i i i

i i i

k k k t k T k t t Nc
k k k t k T k Nc Nc t Np

+ = + − + + − ≤ ≤ −

+ = + − + + − ≤ ≤

x x v
x x v  
Then the above iteration can be rewritten in a compact form as: 

( ) ( | ) ,i x i x ik k k= +X P x Q V  (9) 

where T
1[1, ,1]x Np m×= ⊗P I , 

( 1)

1 0 0 0

1 1 0
( ).1 1 1

1 1 2

1 1

x m

Np Nc Np Nc

T

− +
×

 
 
 
 
 = ⊗ 
 
 
 
  

Q I

   







   



 

As prepared above, the optimization problem with velocity constraints in the MPC 
scheme designed for agent i in a finite time horizon Np  is described as follows: 

1
2 2

,
1 0

1min ( ) || ( | ) ( ) || || ( ) || ,
2 2

Np Nc

i i i x i
t t

J k k t k k t k tα −

= =

= + − + + +∑ ∑x r v  (10) 

with ,
( ) { }

1( ) ( )
1 | ( ) |

i

i x j
j n k ii

k t k
N k ∈

+ =
+ ∑r x



, and α  is a positive weight coefficient.  

Note that the definition of , ( )i x k t+r  only depends on the position of agent i and its 
neighbors, which indicates that this control scheme is distributed. 
For simplicity, we rewrite the MPC cost function (10) into a compact form and 
substituting (9) in, it derives: 

2 2
,

1min ( ) || ( | ) ( ) ( ) || || ( ) || ,
2 2i x i x i i x iJ k k k k k kα

= + − +P x Q V R V  (11) 

where , , ,( ) [ ( ), , ( )]i x i x i xk col k k=  R r r . 

Eq. (11) is a quadratic function, whose minimum-value point *( )i kV  can be calculated by 
using ( ) ( ) 0i iJ k k∂ ∂ =V . Since T( )x x Nc mα+ ⊗Q Q I I  is always positive definite and 
invertible, * ( )i kV  is obtained as 

* T 1 T
,( ) ( ) [ ( | ) ( )],i x x Nc m x x i i xk k k kα −= − + ⊗ −V Q Q I I Q P x R  (12) 

whose first m entry will be actually implemented as the control input at sampling instant k, i.e., 
* *

1( ) {[1,0, ,0 ] } ( ).i Np m ik k×=  ⊗v I V  
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If we take the velocity constraints || ( 1) ||i k t v+ − ≤v  into consideration, the control input 
can be obtained as (13) based on Lemma 2.1: 

* *

*
*

( ), || ( ) || ,
ˆ ( )

( ), otherwise.
|| ( ) ||

i i

i
i

i

k if k v
k v k

k

   ≤  
= 



v v
v

v
v

 (13) 

3.2 Consensus with velocity and acceleration constraints 
Due to the limitation of structural strength or available overload, which is often 
encountered in practical networked systems, constraints on acceleration should also be 
considered. Therefore, both the velocity and acceleration constraints are considered 
simultaneously in this subsection. 
Theorem 1: Assume each agent of the system has discrete-time second-order dynamics 
with input constraints given as follows: 

( 1) ( ) ( ),
( ) ( 1) ( ).

i i i

i i i

k k T k
k k T k

+ = +

= − +

x x v
v v u

 (14) 

. . || ( ) || ,|| ( ) || , 0, 0,i is t k v k u ≤ ≤   > >v u v u  (15) 

where ( ) m
i k R∈u  is the acceleration of i . 

Suppose the constraint on turning rate is ignored and coordinated turn can always be 
implemented, that is, the velocity and acceleration are exactly in line. One can derive the 
actual control input as 

*ˆ ( ) ( ),i i ik kη=v v  (16) 

with 

*
* *

*

* * *

*
* *

*

, || ( ) ||
|| ( ) ||

1, || ( ) ||

, || ( ) ||
|| ( ) ||

i
i

i i

i
i

v k v
k

v k v
v k v

k

η


>

= ≤ ≤

 <


v
v

v

v
v

. * ( )i kv  is the optimal velocity when no input 

constraint exists, * min{ ,|| ( 1) || }iv v k Tu= − +v , * max{0,|| ( 1) || }iv k Tu= − −v . 

Proof:  
Based on (14) and ( )i ku  to be designed, the velocity of agent i  for the instant k t+ , 

1, ,t Nc=  , can be obtained as follows 
( | ) ( 1| ) ( ),0 1.i i ik t k k t k T k t t Nc+ = + − + + ≤ ≤ −v v u  

Denote 
( ) col [ ( ), ( 1), , ( 1)].i i i ik k k k Nc=  + + −U u u u  

Then the above iteration can be rewritten in a compact form as: 
( ) ( 1) ( ),i v i v ik k k= − +V P v Q U  (17) 
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where T
1[1, ,1]v Nc m×= ⊗P I ,

1 0 0
0 ( ).

1 1
v m

Nc Nc

T

×

 
 = ⊗ 
  

Q I 



 
Thus by virtue of (14) and (17), the position of agent i  can be rewritten in a compact 
form as: 

( ) ( | ) ( 1) ( ).i x i x v i x v ik k k k k= + − +X P x Q P v Q Q U  (18) 

Substituting (17) into the cost function (11) and the minimum-value point *( )i kU  can be 
obtained by solving a quadratic problem. Then the first m entry of *( )i kU  will be actually 
implemented at sampling instant k, i.e., 

* *
1( ) {[1,0, ,0 ] } ( ).i Nc m ik k×=  ⊗u I U  

Then from part 4) of Lemma 2.1, the velocity at sampling instant k can be obtained as  
* *( ) ( 1) ( ).i i ik k T k= − +v v u  (19) 

If we take the constraints *|| ( ) ||i k u≤u  into consideration and suppose that the velocity 
and acceleration are exactly in line, we have  

ˆ|| ( 1) || || ( ) || || ( 1) || ,i i ik Tu k k Tu− − ≤ ≤ − +v v v  (20) 

where ˆ ( )i kv  denote the actually implemented control input.  

On the other hand, ˆ|| ( ) ||i kv  should fulfill the velocity constraint, i.e., ˆ|| ( ) ||i k v≤v . Denote 
* min{ ,|| ( 1) || }iv v k Tu= − +v , * max{0,|| ( 1) || }iv k Tu= − −v , on basis of part 2) and 3) of 

Lemma 2.1, then the actually implemented control input can be rewritten as (16) with  
*

* *
*

* * *

*
* *

*

, || ( ) ||
|| ( ) ||

1, || ( ) ||

, || ( ) ||
|| ( ) ||

i
i

i i

i
i

v k v
k

v k v
v k v

k

η


>

= ≤ ≤

 <


v
v

v

v
v

 (21) 

The proof is thus completed. 
Remark 1: Note that although the double-integrator dynamics of the system is adopted, 

( )i kv  is still implemented as the control input, while ( )i ku  is regarded as the changing 
rate of velocity input. No specific expression of *( )i kU  or *( )i ku  is given as it is indeed 
an intermediate variable used in the derivation process. 
Remark 2: As a matter of fact, the control input under different constraints can be 
obtained by changing the value of v  and u . When v  or u  is set as positive infinity, it 
means that the corresponding constraints for v  or u  will not be activated. 

4 Stability analysis 
In this section, we will present the convergence analysis of the consensus protocol. 



Consensus of Multi-Agent Systems with Input Constraints                                    1343 

Before seeking to analytically solve the problem, we first give the solution with a much 
simpler form to simplify the analysis. 
Theorem 2: If the quadratic optimization problem (11) is feasible with constraints 
described in (15), then the control input *( )i kv  without constraints has an equivalent 
expression as below: 

*
,( ) [ ( | ) ( )],i i i i xk k k kσ= − −v x r  (22) 

with 0iσ > . 
Proof: 
By the definition of xP  and , ( )i x kR , we know that ,( | )x i i xk k −P x R is an mNp-
dimensional column vector which can be rewritten as follows: 

, ,( | ) [ ( | ) ( )].x i i x x i i xk k k k k− = −P x R P x r  (23) 

Recall (12) and substitute (23) in, it yields that  

( ) 1* T T
,( ) [ ( | ) ( )].i x x Nc m x x i i xk k k kα

−
= − + ⊗ −V Q Q I I Q P x r  (24) 

Consider that only the first m entry of *( )i kV  will be actually implemented as the control 
input, it follows that 

1
*

,1 , ,

1 ,1 1 ,

,

,1 ,

( ) , , [ ( | ) ( )]

[ ( | ) ( )],

i x x m i i x

m

x x m

i i x

m x m x m

k k k k

k k k

φ

φ

φ φ

φ φ

 
   = − −  
  
 
 = − − 
  

v P P x r

P P
x r

P P

 



  



 (25) 

where pφ  is the p-th row of ( ) 1T T
x x Nc m xα

−
+ ⊗Q Q I I Q  and ,x qP  is the q-th column of xP . 

Denote 

, ,
1

, , 1, , .
mNp

pq p x q pl x lq
l

p q mσ φ φ
=

= =  =∑P P 

 
By virtue of stacking matrices and Kronecker product, it is easy to verify that 

0 otherwise
pp

pq

p qσ
σ

=
= 


 (26) 

with 11 mm iσ σ σ= = = . 

Since agent i  will always move toward the desired position , ( )i x kr , 0iσ >  is guaranteed. 
Then it derives that  

*
,( ) [ ( | ) ( )].i i i i xk k k kσ= − −v x r  (27) 
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Thus the proof is completed. 
Remark 3: One can see that the consensus protocol is not only distributed but also only 
depends on the errors of states between agent i  and its neighbors. In fact, just as 
described in many of the literature, such errors are usually sufficient for consensus 
control. Substituting the result of Lemma 4.1 into (16), the actual implemented control 
input ˆ ( )i kv  can be rewritten as  

,ˆ ( ) [ ( | ) ( )].i i i i i xk k k kη σ= − −v x r  (28) 

Theorem 3: Consider a system consists of n agents, whose dynamics and constraints of 
each agent are described in (14) and (15) with control input given in (28). Then there 
exists a stochastic matrix ( )kD  such that the discrete time update scheme of the system 
can be written as 

( 1) ( ) ( ),k k k+ =X D X  
with 1( ) col[ ( ), , ( )]nk k k=X x x . 

Proof: 
Recall the definition of , ( )i x kr  and substitute into the control input (28), it gives  

( ) { }

1ˆ ( ) ( | ) ( )
1 | ( ) |

( ) ( ),
1 | ( ) |

i

i i i i j
j N k ii

i i
i m

i

k k k k
N k

k k
N k

η σ

η σ
∈

 
= − −  + 

= − ⊗
+

∑v x x

L I X

  (29) 

where ( )i kL  is the i-th row of the Laplacian matrix associated with the interaction graph. 

Hence, it follows from (29) that 

1
ˆ ˆ ˆ( ) col[ ( ), , ( )] ( ) ( ),n k mk k k k k= = − ⊗V v v ΗΣΘ L I X

 (30) 

where ( )kL  is the Laplacian matrix, 1( , , )ndiag η η=Η  , 1( , , )ndiag σ σ=Σ  , 

1

1 1
| ( )| 1 | ( )| 1( , , )

nk N k N kdiag + +=Θ  . 

Hence, it follows from (14) that  
ˆ( 1) ( ) ( ) [ ( )] ( ).n k mk k T k T k k+ = + = − ⊗X X V I ΗΣΘ L I X  (31) 

Denote ( ) [ ( )]n k mk T k= − ⊗D I ΗΣΘ L I . One can see that | ( ) | 1
| ( ) | 1

i

i

N k
N k

<
+

, thus enforcing 

1i iTη σ ≤  guarantees that ( )iiD k  is positive, that is, diagonal elements 
| ( ) |( ) 1

| ( ) | 1
i

ii i i
i

N kD k T
N k

σ η= −
+

 satisfies ( ) 0iiD k > . Furthermore, it is not difficult to verify 

that ( )kD  satisfies the conditions that all off-diagonal elements are nonnegative and all 
its row sums are equal to 1, which indicates ( )kD  is a (row) stochastic matrix. 

Thus the proof is completed. 
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Remark 4: One can see from Lemma 4.2 that the system achieves asymptotic consensus 
for any initial condition, if and only if there exists an infinite matrices sequence such that  
lim ( ) lim ( 1) (0) (0) ,SSk k

k k
→∞ →∞

= − =X D D X X

  

where SSX  denotes the consensus state of the system. 

Theorem 4: Suppose that the interaction graph, denoted as ( )G k , changes at time t kT= , 
and keeps fixed across uniformly bounded and non-overlapping time interval [ , )kT kT T+ . 
Let a finite set G  denote all the possible interaction topologies of the system, then 

( )G k G∈ . The constrained system (14) with control input described in (16) achieves 
consensus asymptotically if the infinite sequence ( )G k  always has a spanning tree. 
Proof: 
From Lemma 4.2, we know that ( )kD  describes the corresponding interaction topology 
of ( )G k  and is a stochastic matrix with positive diagonal entries. The assumption that 
interaction graph ( )G k  always has a spanning tree indicates that the graph associated 
with ( )kD  has a spanning tree. By virtue of Lemma 2.2, we know that ( )kD  is SIA. 
Then by applying Lemma 2.3, one gets that 

( )Tlim ( ) lim ( 1) (0) (0) (0) .ssk k
k k

→∞ →∞
= − = =X D D X y X X 1

 
Thus the consensus state is obtained. 

5 Simulation study 
In this section, numerical examples are presented to illustrate the feasibility of the 
distributed MPC consensus protocol by a planar problem.  

  

(a) (b) 
Figure 1: Interaction topologies: (a) 1G  and (b) 2G . An arrow from node j heading to 
node i implies agent i receives information of agent j; thus j is a neighbor of i. Both 1G  
and 2G  have a directed spanning tree 

Consider a system of 5n =  agents moving in two-dimensional plane, that is 2m = . The 
interaction topology switches from 1G  to 2G  periodically with period 0.1T = , which is 
sufficiently small and satisfies the constraint condition 1i iTη σ < . The graphs 1G , 2G  are 
defined in Fig. 1 and both have a directed spanning tree. The parameters are set as 

10Np = , 6Nc = , 0.5α = , 10v = , 2u = . The initial positions and velocities of all the 
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agents are set as T
1 [195 25]= ,1x , T

1 [2 8]= ,−v , T
2 [25 80]= ,x , T

2 [ 8 6]= − ,v , 
T

3 [120,15]=x , T
3 [2,0]=v , T

4 [60,5]=x , T
4 [ 3,6]= −v , T

5 [20,185]=  x , T
5 [ 3, 4]= − −v . 

The positional trajectories and velocities of all the agents are shown in Figs. 2 and 3. It 
can be observed that the control protocol (16) steers all the agents to an average 
consensus point asymptotically. The evolution of velocity and acceleration amplitude 
under different constraint conditions are shown in Fig. 4; one can see that both velocity 
and acceleration meet the condition of constraints, respectively. It can be observed from 
Figs. 4(a) and (b) that the velocity changes at a relatively gentle rate since the 
acceleration is constrained, while the results containing only velocity constraints in (c) 
and (d) are just the reverse. This implies the efficiency of our algorithm and also 
highlights the necessity of taking both velocity and acceleration constraints into 
consideration simultaneously. Thus the effectiveness of Theorem 1 is demonstrated. 

 
Figure 2: Evolution of the agent positions 

 
Figure 3: Evolution of the agent velocities with velocity and acceleration constraints 
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(a)     (b) 

  
 (c)         (d) 

Figure 4: Evolution of velocity and acceleration amplitude under different constraint 
conditions: (a)-(b), both velocity and acceleration constraints are considered; (c)-(d) 
only velocity constraints are considered 

It is worth mentioning that at least two factors are responsible for the large fluctuations in the 
control input ,i xv  and ,i yv  (Fig. 3). The first is the frequent graph switching over time. The 
second but the most is that there is no constraint on the turning rate of velocity vectors, which 
leads to sharp changes in velocity direction. This conclusion can be further confirmed by Fig. 
4(a), in which one can see that the amplitude of velocities has no big fluctuations. 

6 Conclusions 
In this paper, a distributed MPC scheme has been developed to achieve consensus for 
MASs with single-integrator dynamics, input constraints and switching directed 
interaction topologies. The control inputs in analytic form are obtained under different 
constraints. Under the condition that the switching interaction graphs always have a 
spanning tree, we prove that the system containing velocity and acceleration constraints 
can achieve consensus asymptotically. Further extensions of this work will concern 
constraints on the turning rate of velocity vectors, which is a key factor to eliminate the 
large oscillations in control input. 
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