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Abstract: Deep learning models have been shown to have great advantages in answer 
selection tasks. The existing models, which employ encoder-decoder recurrent neural 
network (RNN), have been demonstrated to be effective. However, the traditional 
RNN-based models still suffer from limitations such as 1) high-dimensional data 
representation in natural language processing and 2) biased attentive weights for 
subsequent words in traditional time series models. In this study, a new answer selection 
model is proposed based on the Bidirectional Long Short-Term Memory (Bi-LSTM) and 
attention mechanism. The proposed model is able to generate the more effective 
question-answer pair representation. Experiments on a question answering dataset that 
includes information from multiple fields show the great advantages of our proposed 
model. Specifically, we achieve a maximum improvement of 3.8% over the classical 
LSTM model in terms of mean average precision. 
 
Keywords: Question answering, answer selection, deep learning, Bi-LSTM, attention 
mechanisms. 

1 Introduction 
Community question answering (CQA) systems are platforms in which users can ask or 
answer questions on any topic with few restrictions [Bouziane, Bouchiha, Doumi et al. 
(2015)]. Some CQA sites (e.g., Yahoo! Answers, Stack Overflow, and Baidu Zhidao) 
already include millions of users and large answer databases. However, these sites lack 
the quality control for the millions of answer, which makes it difficult for users to identify 
useful imformation. Answer selection tasks mainly involve recognizing relevant answers 
for generating useful question-answer (QA) pairs, which can enrich the knowledge base 
and improve applications such as chat-bots, search engines, and automatic question 
answering systems [Zhang, Zhu and Engineering (2016)]. Although some answer 
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selection studies [Iyyer, Boyd-Graber, Claudino et al. (2014)] have shown performance 
improvements in recent years, CQA selection tasks remain challenging for two primary 
reasons. 1) Users can express similar meaning with different word choices in response to 
the same question, which creates lexical gaps during question matching. 2) Answers often 
consist of informal, ill-syntax, and variable-length sentences that complicate the 
modeling of semantic information. 
Several studies have investigated sentence structure issues [Juárez-González, 
Téllez-Valero, Delicia-Carral et al. (2006); Narayanan and Harabagiu (2004); Echihabi 
and Marcu (2003)], mostly adopting feature engineering and relatively traditional natural 
language processing technology. These approaches rely on artificial feature extraction 
rules, such as problem types and answer patterns. They identify the problem by matching 
common sets in a limited domain and then extracts the answer using the corresponding 
pattern. Linguistic tools (e.g., grammar and dependency trees) have been introduced for 
more precise pattern matching. However, this requires manually setting the dialogue 
scene and developing a targeted dialogue template for each scene (the mode describes the 
user’s possible problems and corresponding answers). As such, this technique is 
time-consuming and requires significant manual intervention. In addition, sparse data 
processing suffers from low efficiency and cannot effectively model semantic 
information because it overemphasizes the modeling of grammar. 
As an alternative approach, deep learning methods such as recurrent neural networks 
(RNNs) and convolutional neural networks (CNNs) have established learning models 
through high-quality QA corpora. The deep neural networks attempt to model complex 
dialogue through numerical operations between vectors [Severyn and Moschitti (2013); 
Iyyer, Boyd-Graber, Claudino et al. (2014)]. RNN models have been widely used in answer 
selection because of their ability to extract contextual relationships from time series data 
[Iyyer, Boyd-Graber, Claudino et al. (2014); Wang and Nyberg (2015)]. RNN models often 
requires a large amount of corpus for active learning of potential syntactic and semantic 
features in the questions and answers. This compensates for deficiencies in artificial 
extraction features used to express the problem and helps to improve flexibility and 
robustness. RNN models can be considered a deep feedforward neural network in which all 
layers share the same weight. The intended purpose is to learn long-term dependence but 
theoretical and empirical evidence suggests it is difficult to learn and preserve information 
over time. As such, long short-term memory (LSTM) neural networks are often adopted to 
solve this problem by using three “gate” structures [Narayanan and Harabagiu (2004)].  
Although above researches have produced breakthroughs in answer selection tasks, 
problems remain. Inputting words into the neural network requires converting them into 
vectors. The one-hot code that is often used does not reflect the semantic relationship 
between these words and long word vectors are likely to cause dimensional issues. Also, 
the LSTM neural network uses “one-way” time series modeling which prevents word 
meanings from being extracted effectively out of context. In addition, a word is added at 
each time step and the hidden state is updated on a recurring basis. The hidden states near 
the end of the sentence are thus expected to capture more information, which may result 
in a biased attentive weight towards later words. An attention mechanism can be used to 
alleviate this weakness by dynamically aligning the more informative parts of sentences 
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and focusing the answer selection module on keywords.  
The primary objective of this study is the design of a new model, capable of identifying 
important words in QA pairs. The proposed algorithm represents vectors with more 
effective semantic information which can bridge the lexical gap between a question and 
its answer and places more attention on the most important words by giving them higher 
weights to improve answer selection accuracy. This paper includes two main 
contributions: 1) word embedding technical and Bi-LSTM models are used to encode 
vectorized representations of QA pairs with a fixed length. This facilitates the extraction 
of better semantic features in “forward” and “reverse” directions simultaneously. 2) We 
introduce an attention mechanism which can decide on the importance of other words in a 
QA pair when generating a word representation in order to focus on words containing key 
information for answer selection. We perform experiments on datasets acquired form 
multiple websites and included multiple fields of information. The results show that the 
performance of proposed model in this paper is significantly better than the conventional 
deep learning models based on CNN or RNN, both in precision and recall for answer 
selection tasks. 

2 Related work 
2.1 Lexical features approaches 
Early answer selection models were based on lexical features, relying primarily on the 
artificial establishment of a set of rules. Common examples include pattern-based, 
knowledge-based, and noisy channel-based approaches [Bouziane, Bouchiha, Doumi et al. 
(2015)]. The earliest answer selection tasks in CQA systems were based on a fixed pattern, 
often making it difficult to distinguish the answer extraction step from the answer selection 
step. González et al. developed a QA system that used regular expressions to extract 
candidate answers from the collected answer paragraphs (which were based on the type of 
question) to retrieve an answer [Juárez-González, Téllez-Valero, Delicia-Carral et al. 
(2006)]. This system used a Naíve Bayes classifier to select candidate answers according to 
different characteristics. The candidate with the highest probability of being correct was 
then selected.  
Shen et al. [Shen, Rong, Sun et al. (2015)] used a similar strategy, statistical methods for 
pattern matching, to extract answers. This approach used pattern confidence to calculate 
the similarity between a problem and the segment containing the candidate answer, 
establishing both strict and flexible matching patterns. Strict matching assumes the 
relationship between sentences to be the same, while flexible matching primarily uses 
WordNet to establish a relationship between words. Matching weights are then summed 
to accumulate a score for each provided answer. Priberam also developed a QA system 
using patterns to extract candidate answers, in which a validation module was used to 
ensure the correctness of answers [Amaral, Figueira, Martins et al. (2006)]. This was 
done by applying “sanity check” techniques, such as named entity matching. Narayanan 
et al. proposed a knowledge-based technique that modeled the relationship between 
events, entities, and their attributes [Narayanan and Harabagiu (2004)]. This system was 
capable of parsing documents, extracting related attributes, and associating them with 
potential answers. 
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Noisy-channel models are also used for error correction [Khan, Babanezhad, Lin et al. 
(2015)]. In this process, words are provided containing unusual, omitted, or redundant 
letters and the model calculates the probability that a given word is associated with 
another word. Echihabi et al. introduced a probabilistic noisy-channel model for question 
answering and demonstrated its use in the context of an end-to-end CQA system, in 
which sentences are input rather than words [Echihabi and Marcu (2003)]. This system 
calculated the probability of converting a sentence (taken from an information extraction 
system) into the original question. While these approaches have been shown to be 
effective for small-scale data, their performance suffers when processing larger data. 
These traditional methods focused on syntactic matching between questions and answers. 
They had to use tedious task of numerous feature extraction that are utilized in traditional 
linguistic tools. 

2.2 Deep learning approaches 
Neural network models have recently been proposed to represent the meaning of sentences 
in a vector space and compare question and answer candidates in the hidden space [Feng, 
Xiang, Glass et al. (2015); Wang and Nyberg (2015); Xiang, Chen, Wang et al. (2017); 
Zhang, Li, Sha et al. (2017)]. The deep learning technique represented by convolutional 
neural networks establishes a joint learning model through high-quality problem-answer 
corpus and attempts to model complex QA processes using numerical operations between 
vectors. The advantage of this approach is the transforming of complex semantic analysis, 
text searching, and answer extraction into a learnable process. To this end, industry scholars 
have done considerable research on the application of deep learning networks to answer 
selection tasks. 
Severyn et al. used multi-dimensional CNN models to generate vector representations of QA 
sentences with vector inputs [Severyn and Moschitti (2013)]. Yu et al. applied deep CNN 
sentence modeling to identify correct answers in CQA datasets [Shen, Rong, Sun et al. 
(2015)]. Feng et al. proposed a general deep learning framework based on CNNs for solving 
non-factual CQA tasks [Feng, Xiang, Glass et al. (2015)]. The experimental accuracy of this 
model (applied to two widely used answer selection benchmark datasets) has been greatly 
improved, which demonstrates the effectiveness of adding relational information. 
Iyyer et al. used RNNs to model textual composition and applied it to CQA tasks in a 
quiz bowl [Iyyer, Boyd-Graber, Claudino et al. (2014)]. Wang et al. used a Bi-LSTM 
network to learn eigenvector representations of QA pairs from contextual information in 
the text [Wang and Nyberg (2015)]. Yang et al. proposed an attention-based neural 
network architecture that supports multiple input formats to learn key information in QA 
pairs [Xiang, Chen, Wang et al. (2017)]. Experimental results produced an F1 value of 
58.35% for the SemEval-2015 CQA dataset, an increase of 2.21% compared to existing 
deep neural network-based approaches. Rush. proposed an attention-based summarization 
(ABS) system for information redundancy and noise problems, focusing on textual 
information that was useful for abstractive sentence summarization [Zhang, Li, Sha et al. 
(2017)]. The model shows significant performance gains on the DUC-2004 shared task 
compared with several strong baselines. 
As described above, the effectiveness of vector representation is critical in CQA. Recent 
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studies using an RNN model have produced good performance. However, in the RNN 
architecture, input words are processed in a time sequence and hidden states are 
recurrently updated, assigning larger weights to later words. As such, we propose the use 
of attention mechanisms to represent QA pairs and resolve this attention bias problem. 

3 Model overview 
In this study, an attention mechanism is introduced into a Bi-LSTM network and a neural 
network model is developed from the attentive Bi-LSTM. The model can generate a 
semantic coding vector containing a sequence attention probability distribution, which 
was determined by calculating the attention probability of the input sequence. At last, a 
final feature vector can represent the QA text was generated. Answer selection tasks can 
be formulated as follows. Given a question q and an answer candidate pool {a1, a2, …, as}, 
identify the best answer candidate ak, where 1≤k≤s. Answers in the candidate pool can be 
divided into positive answers a+ and negative answers a- for composite QA pairs. Then, 
the QA pairs are used as input to the answer selection model, which can obtain the 
representation vector for each QA pair. Each QA vector pair produces a similarity score 
to represent semantic distance, as shown in Fig. 1. 

 
Figure 1: The framework of answer selection task 

3.1 Attentive bi-LSTM network-based answer selection model framework 
This study investigated answer selection in CQA systems. The framework was divided 
into three steps: vector representation, feature extraction, and similarity calculation. First, 
a word embedding technique was used to construct a vector representation of the QA text 
corpus. Then, a model based on the attentive Bi-LSTM network was developed to extract 
features. Finally, by calculating attention probability for semantic information in text 
sequences, the model pays more attention to the problem itself and ignores information in 
the answer text that is unrelated to the question. This can facilitates optimization of the 
final feature vector representation. The vector cosine distance similarity was used to 
measure the match between questions and answers. The structure of the attentive 
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Bi-LSTM model is shown in Fig. 2. 
 

 
Figure 2: The attentive Bi-LSTM network-based answer selection model architecture 

The model includes three primary components: 
(1) Word vector representation layer-A word embedding technique was used to construct 
a vector for each word in the QA corpus. In contrast to other traditional representation 
models, such as Bag of Words (BOW) [Li, Li, Fu et al. (2016)], each word in the corpus 
was generated as a vector representation of dimension K. The input sequence can then be 
represented by X={E1, E2, …, Et}, where Et is a K-dimensional vector, as shown in Fig. 2. 
(2) Feature extraction layer - The attentive Bi-LSTM network model proposed in this 
paper was used as a coding model to extract features from QA pairs. The question 
sequence qX  was used as input for the network model and the answer sequence aX  was 
generated by word embedding. The input sequence was encoded by the Bi-LSTM 
network layer to produce a tensor of dimension N  [Liu, Cao and Yu (2018)]. The LSTM 
network model adds a memory gate mechanism to the RNN network to solve 
long-distance dependence and vanishing gradient issues. These QA pairs contain a 
significant amount of irrelevant information, which must be filtered to allow the model to 
focus on core words. Therefore, an attention mechanism was introduced to calculate an 
attention probability distribution for the hidden layer of the input sequence after 
Bi-LSTM encoding process [Ive, Gkotsis, Dutta et al. (2018)]. The vectors It and rt, 
generated by the forward-LSTM and reverse-LSTM, were combined into the vector ht for 
use as input in the next layer (Fig. 2). The attention probability was calculated for each 
word in the QA sequence and used to measure the influence of the word. The specific 
calculation method for attention probability of each word is in Section 3.2. Finally, after a 
maximum pooling, max features were acquired for the text vector to reduce the 
dimensionality and number of parameters in the training model. The Bi-LSTM network 
structure is shown in Fig. 3. 
(3) Similarity calculation layer: This part mainly uses the cosine distance similarity of the 
vector as the evaluation criterion of answer selection model [Buck and Koehn (2016)]. 
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Figure 3: The Bi-LSTM network structure 

3.2 Attention probability calculation 
The included attention mechanism operates by retaining the intermediate output of the 
Bi-LSTM encoder input sequence, selectively learning inputs by training a new model, 
and correlating the output sequence with the results of selective learning. As a result, the 
probability of each item to be generated in the output sequence depends on which items 
were selected for the input sequence. 

     

Figure 4: A calculation method for the attention probability distribution 

As shown in Fig. 4, x and y are the input sequences of questions and answers, and H is 
the hidden vector generated by the input sequences. The tka  node is the attention weight 
of the node k  passed to the output t , which essentially determines the influence of the 
node on the output (i.e., the probability). This is equivalent to adding a single layer deep 
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neural network to the original model. Higher values of tka  correspond to increased 
attention from output t being allocated to the input k, thereby increasing its influence. The 
attention distribution probability ija  can be calculated using the following formula: 
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Here, 1is −  first performs a calculation using each h value and then uses a softmax 

operation to acquire an attention distribution vector for the output of time i  in the T  
input hidden states. 

3.3 Attention influence propagation 
This model includes two inputs, a sequence of questions (represented as 

{ }1 2, ,...,q tX X X X= ) and a sequence of answers (represented as { }1 2, ,...,a tX X X X= ). 

The terms ( )qh t  and ( )ah t  are hidden layer state values for the input sequences of QA 
text at each time step t . In the Bi-LSTM network structure, the output of the hidden 
layer is the splicing of the output h



 in the forward LSTM and the output h


 of the 

reverse LSTM. The term qo  is vector representation of the question sequence after a 
max-pooling operation, which is necessary to extract the critical features that can 
represent a sequence. This can reduce dimensionality and preserve the most important 
features in a sequence. This operation can be represented as follows: 

( ) ( ),a q am a qm qm t W h t W o= +   (3) 

( ) ( )( )( ), ,exp tanhT
a q ms a qs t W m t∝
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Here, amW , qmW , and msW  are attention parameters used in the output vector qo  to 
calculate softmax weights and multiply the answer vector of the current hidden layer to 
produce a new hidden layer output with attention weights  ( )ah t . 

4 Network training 
The vanishing gradient problem is common in deep learning applications [Le and 
Zuidema (2016)]. Fig. 5 shows a hypothetical cyclic neural network that can predict 
values after multiple time steps. We assume a neural network model can be used to 
classify documents or make multiple predictions from a text sequence. After the 
prediction, the model receives an error and back propagates all time steps in the neural 
network [Engel and Bershad (1994)]. However, the gradient becomes smaller in each 
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time step of the backpropagation, eventually becoming so small at the beginning of the 
sentence that it does not effectively affect parameters needing to be updated. This is 
because the gradient tdl dh  is either reduced or increased unless 1 /t tdh dh−  is equal to 
one. When this gradient is repeatedly increased or decreased, the gradient of the loss 
function is increased or decreased exponentially. In neural network training, the 
optimization of three gradient descent algorithms (Adagrad, RMSprop, and Adam) has 
primarily been used to solve the problem of gradient disappearance. 

      

Figure 5: The vanishing gradient problem 

Adam (Adaptive Moment Estimation) was used in this study to train the proposed model, 
which can calculate the adaptive learning rate for each parameter. Adam stores 
exponential decay averages for the previous squared gradient of AdaDelta, maintaining 
the average of the exponential decay for the previous gradient. This is essentially an 
RMSprop with a momentum term that dynamically adjusts the learning rate for each 
model parameter, using a first-order moment estimate and a second-order moment 
estimate for the gradient [Le and Zuidema (2016)]. This dynamically adjustment of 
learning rate makes the parameters trained by the model relatively stable. This calculation 
is performed as follows: 
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where mt and nt are the first and second moment estimates of the gradient, respectively. 
These can be considered an estimate of the expectation E|gt| and E|g2t|. The terms tm  

and tn are corrections of mt and nt, which can be approximated as unbiased estimates of 
the expectation. 
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5 Experimental verification 
5.1 Datasets 
The effectiveness of the answer selection model based on the attentive Bi-LSTM network 
was verified using the QA pair corpus acquired from multiple websites3. These data 
included information from the National Basketball Association (player and team stats), 
film and television summaries, and political news posts. The original data were stored in 
a database and exported in a custom JSON data format, which included more than a 
thousand tables4. Tab. 1 lists team sheet data from the 2006-07 Toronto Raptors season. 
The statistical information for each dataset is described in Tab. 2. Fig. 6 shows a 
histogram of question lengths, query lengths, and the number of columns. As seen in the 
figure, the length of the question, the length of the answer, and the number of columns 
were mostly concentrated between 10 and 15 characters, which essentially satisfied a 
normal distribution. 

Table 1: The Toronto Raptors 2006-07 season data sheet (partial) 

Game 3 4 11 
Date 11/5 11/8 11/22 
Team San Antonio Philadelphia Cleveland 
Team Score L94-103 (OT) W106-104 (OT) W95-87 (OT) 
High Points Chris Bosh (19) Chris Bosh (29) Chris Bosh (25) 
High Rebounds Chris Bosh (7) Chris Bosh (9) Chris Bosh (14) 
High Assists T. J. Ford (5) T. J. Ford (7) Chris Bosh (6) 

Location/Attendance Air Canada 
Centre/18,098 

Air Canada 
Centre/15,831 

Air Canada 
Centre/19,800 

Record 1-2 2-2 3-8 

 
Figure 6: A statistical histogram of question length, query length, and the number of columns 

 
3 http://www.spox.com, https://www.yahoo.com/news, www.washingtonpost.com 
4 https://github.com/Bynow76/AS_data/ 
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Table 2: Data set statistics 

Training Data Verification Data Test Data Total 
61297 9145 17284 87726 

5.2 Evaluation metrics 
The goal of answer selection is to identify the most correct option from a candidate pool, 
which is essentially a sorting task. This study utilized common text evaluation indices to 
assess the proposed model, including accuracy, precision, recall, and F1 score. These can 
be expressed as follows: 

Accuracy TP TN
TP FN FP TN

+
=

+ + +
  (11) 

Precision TP
TP FP

=
+

  (12) 

Recall TP
TP FN

=
+

  (13) 

2 Precision RecallF1
Precision Recall
× ×

=
+

  (14) 

5.3 Comparison of training optimization algorithms 
The optimizer has a significant impact on the convergence of the learning model during 
the training process. Therefore, to determine the impact of different optimization 
algorithms on the answer selection model, a comparative experiment was conducted 
using five different algorithms (Adam, AdaGrad, SGD, RMSprop, and AdaDelta) [Duchi, 
Hazan and Singer (2011)]. 

 
Figure 7: The performance of different optimization algorithms for answer selection tasks 

Fig. 7 shows the loss values for different optimization algorithms during answer selection. 
As seen in the figure, SGD performance was poor and the loss value was not effectively 
reduced within 20 epochs. Since AdaGrad can adaptively adjust the learning rate, as the 
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gradient grows from small to large, the learning rate decreases from large to small [Le and 
Zuidema (2016)]. This produced better convergence during answer selection. Both Adadelta 
and RMSprop are extensions of AdaGrad, which attempts to reduce the learning rate in a 
monotonically decreasing trend. The difference is that RMSprop distributes the learning rate 
by exponentially attenuating the mean of the squared gradient. Adam achieved better 
training results in a shorter training time, which also verified the analysis in Section 4. 

5.4 Comparison of answer selection models 
The effectiveness of the proposed model was verified by a comparison with CNN, LSTM. 
Fig. 8 shows the accuracy rate of the attentive Bi-LSTM network model for training and 
test data. The black line indicates training data accuracy and the red line indicates 
verification data accuracy. We mapped each word to a 300-dimensional vector 
representation with 60 hidden layer nodes in the Bi-LSTM network. To prevent 
overfitting, the dropout value was set to 0.3 [Srivastava, Hinton, Krizhevsky et al. (2014)] 
and the batch size was set to 64. The learning step for the corpus model was completed 
mostly in epoch 5. The Bi-LSTM in the attentive multi-Bi-LSTM included two layers. As 
seen in Fig. 9, this model is mostly consistent with the attentive Bi-LSTM model. The 
corpus model has been learned in epoch 30. Parameters in the LSTM model were mostly 
consistent with these two model settings, the performance of which is shown in Fig. 10. 
The feature extraction layer used a CNN model with a filter size of 3, a ReLU activation 
function, and a step size of 1. Model performance is shown in Fig. 11. It is evident from 
the figure that the model convergence rate with attention mechanisms was significantly 
faster than the other two models. 

 

Figure 8: Accuracy curves for the attentive Bi-LSTM model 
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Figure 9: Accuracy curves for the attentive multi-Bi-LSTM model 

 

Figure 10: Accuracy curves for the LSTM model 

 

Figure 11: Accuracy curves for the CNN model 
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5.5 Result and analysis 
After parameter tuning, experimental validation was performed using the data described 
above. The results of this test are shown in Tab. 3, where it is evident that the attentive 
Bi-LSTM model and the attentive multi-Bi-LSTM model developed in this study have 
improved answer selection accuracy. All performance indices were higher than for 
traditional LSTM and CNN models. The plots in Figs. 8-11 demonstrate that the models 
containing attention mechanisms have converged by epoch 3, which is significantly faster 
than in other models. The sequence model based on LSTM effectively improved 
performance, in comparison with CNN. This suggests the LSTM model to be more 
conducive for capturing context information in answer selection tasks, while CNNs are 
useful for acquiring local features. 
The attentive Bi-LSTM model and the attentive multi-Bi-LSTM models exhibited similar 
accuracy, outperforming conventional techniques. This indicates that the attention 
mechanism can significantly improve answer selection efficiency by focusing on useful 
information. These results also suggest that a single-layer Bi-LSTM network based on 
this attention mechanism could extract useful features in text samples. 

Table 3: Experimental comparison results (%) 

 Accuracy Precision Recall F1 Score 
Attentive Bi-LSTM 90.7 84.2 72.7 76.9 
Attentive Multi Bi-LSTM 90.9 85.4 72.3 77.1 
LSTM 86.9 83.1 72.2 75.3 
CNN 88.8 82.8 71.3 75.2 

6 Conclusions 
This study introduced an attention mechanism which can calculate the attentive weights 
of other words in a QA pair on the current output word and combined it with a Bi-LSTM 
network to design a novel network for answer selection tasks in CQA. The model 
considers contextual data and filters out redundant information by assigning different 
weights. The potential of the proposed method was also demonstrated by comparison 
with conventional techniques included CNN or LSTM based models, it improved the 
accuracy of answer selection. In future research, we plan to incorporate other textual 
features such as location, keyword, and grammar information to explore their impact on 
model performance. 
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